Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.981
Filter
1.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564658

ABSTRACT

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Subject(s)
Cross-Linking Reagents , Gene Expression , Globulins , Hypocreales , Monophenol Monooxygenase , Recombinant Proteins , Soybean Proteins , Monophenol Monooxygenase/biosynthesis , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/isolation & purification , Monophenol Monooxygenase/metabolism , Cross-Linking Reagents/isolation & purification , Cross-Linking Reagents/metabolism , Hypocreales/classification , Hypocreales/genetics , Hypocreales/growth & development , Hypocreales/metabolism , Globulins/chemistry , Globulins/metabolism , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Electroporation , Cellulose , Ammonium Sulfate , Chromatography, Gel , Fractional Precipitation , Emulsions/chemistry , Emulsions/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Protein Stability , Endoplasmic Reticulum/metabolism , Protein Sorting Signals , Oils/chemistry , Water/chemistry
2.
Adv Sci (Weinh) ; 11(18): e2306950, 2024 May.
Article in English | MEDLINE | ID: mdl-38441365

ABSTRACT

Intracellular proteome aggregation is a ubiquitous disease hallmark with its composition associated with pathogenicity. Herein, this work reports on a cell-permeable photosensitizer (P8, Rose Bengal derivative) for selective photo induced proximity labeling and crosslinking of cellular aggregated proteome. Rose Bengal is identified out of common photosensitizer scaffolds for its unique intrinsic binding affinity to various protein aggregates driven by the hydrophobic effect. Further acetylation permeabilizes Rose Bengal to selectively image, label, and crosslink aggregated proteome in live stressed cells. A combination of photo-chemical, tandem mass spectrometry, and protein biochemistry characterizations reveals the complexity in photosensitizing pathways (both Type I & II), modification sites and labeling mechanisms. The diverse labeling sites and reaction types result in highly effective enrichment and identification of aggregated proteome. Finally, aggregated proteomics and interaction analyses thereby reveal extensive entangling of proteostasis network components mediated by HSP70 chaperone (HSPA1B) and active participation of autophagy pathway in combating proteasome inhibition. Overall, this work exemplifies the first photo induced proximity labeling and crosslinking method (namely AggID) to profile intracellular aggregated proteome and analyze its interactions.


Subject(s)
Photosensitizing Agents , Proteome , Photosensitizing Agents/metabolism , Proteome/metabolism , Humans , Rose Bengal/metabolism , Cross-Linking Reagents/metabolism , Proteomics/methods , Tandem Mass Spectrometry/methods , Protein Aggregates
3.
Essays Biochem ; 67(2): 215-228, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36734207

ABSTRACT

Cross-linking mass spectrometry has become an established technology to provide structural information on the topology and dynamics of protein complexes. Readily accessible workflows can provide detailed data on simplified systems, such as purified complexes. However, using this technology to study the structure of protein complexes in situ, such as in organelles, cells, and even tissues, is still a technological frontier. The complexity of these systems remains a considerable challenge, but there have been dramatic improvements in sample handling, data acquisition, and data processing. Here, we summarise these developments and describe the paths towards comprehensive and comparative structural interactomes by cross-linking mass spectrometry.


Subject(s)
Proteomics , Proteomics/methods , Mass Spectrometry/methods , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism
4.
Biomater Adv ; 137: 212822, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35929237

ABSTRACT

The Boston Keratoprosthesis type I (B-KPro) is widely used in the world, but the lack of donor corneas limits its application. This study aims to prepare the acellular porcine cornea (APC) crosslinked with ultraviolet A (UVA)/riboflavin instead of donor corneas as the scaffold for B-KPro. Decellularization of freeze-thaw combined with biological enzymes resulted in approximately 5 ng/mg DNA residue, the a-Gal removal rate of 99%, and glycosaminoglycans retention at a high level of 46.66 ± 2.59 mg/mg. UVA/ riboflavin cross-linking was adopted to induce the formation of new chemical bonds between adjacent collagen chains in the corneal stroma to improve the mechanical properties and resistance to enzymatic hydrolysis. Through comprehensive analysis of the biomechanics, enzyme degradation, immunogenicity and histological structure of the APC crosslinked at different times, CL3 (irradiation conditions, 365 nm, 3 mW/cm, 80 min, both sides) was selected and transplanted into the rabbit cornea model through interlamellar keratoplasty and penetrating keratoplasty as the scaffold of the B-KPro. Compared with the native porcine cornea (NPC) and APC, the experiment of interlamellar pocket indicated that the structure of CL3 was homogeneous without degradation and vascularization in vivo at 12 weeks after surgery. Simultaneously, the results of transplantation of B-KPro showed complete epithelialization of CL3 within 1 week, and neovascularization of the cornea indicated rejection but could be controlled with immunosuppressants. At 3 months postoperatively, the lens of B-KPro remained transparent, and the structure of CL3 was compact and uniform, accompanied by the migration and proliferation of a large number of stromal cells without degradation, suggesting the CL3 could be a promising corneal substitute.


Subject(s)
Cornea , Corneal Diseases , Animals , Cornea/surgery , Corneal Diseases/metabolism , Cross-Linking Reagents/metabolism , Photosensitizing Agents/metabolism , Prostheses and Implants , Rabbits , Riboflavin/pharmacology , Swine , Ultraviolet Rays
5.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35886996

ABSTRACT

In recent years, new cross-linkers from renewable resources have been sought to replace toxic synthetic compounds of this type. One of the most popular synthetic cross-linking agents used for biomedical applications is glutaraldehyde. However, the unreacted cross-linker can be released from the materials and cause cytotoxic effects. In the present work, dialdehyde starch nanocrystals (NDASs) were obtained from this polysaccharide nanocrystal form as an alternative to commonly used cross-linking agents. Then, 5-15% NDASs were used for chemical cross-linking of native chitosan (CS), gelatin (Gel), and a mixture of these two biopolymers (CS-Gel) via Schiff base reaction. The obtained materials, forming thin films, were characterized by ATR-FTIR, SEM, and XRD analysis. Thermal and mechanical properties were determined by TGA analysis and tensile testing. Moreover, all cross-linked biopolymers were also characterized by hydrophilic character, swelling ability, and protein absorption. The toxicity of obtained materials was tested using the Microtox test. Dialdehyde starch nanocrystals appear as a beneficial plant-derived cross-linking agent that allows obtaining cross-linked biopolymer materials with properties desirable for biomedical applications.


Subject(s)
Blood Proteins , Chitosan , Cross-Linking Reagents , Gelatin , Nanoparticles , Starch , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Blood Proteins/chemistry , Blood Proteins/metabolism , Chitosan/chemistry , Chitosan/metabolism , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Gelatin/chemistry , Gelatin/metabolism , Humans , Nanoparticles/chemistry , Nanoparticles/metabolism , Starch/analogs & derivatives , Starch/chemistry , Starch/metabolism
6.
Sheng Wu Gong Cheng Xue Bao ; 38(7): 2499-2512, 2022 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-35871620

ABSTRACT

Protein cross-linking plays important roles in food, chemical, medicine and other fields. Enzyme-catalyzed protein cross-linking is an efficient and economically viable alternative to physical and chemical cross-linking. However, detailed analysis of enzyme-catalyzed protein cross-linking at molecular level is still lacking. This review summarized the mechanisms of enzyme-catalyzed protein cross-linking, its effects on protein structure, and its applications in food, chemical and pharmaceutical fields.


Subject(s)
Proteins , Transglutaminases , Catalysis , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Proteins/chemistry , Transglutaminases/metabolism
7.
Methods Mol Biol ; 2477: 35-55, 2022.
Article in English | MEDLINE | ID: mdl-35524110

ABSTRACT

Detecting protein-RNA interactions in vivo is essential for deciphering many important cellular pathways. Several methods have been described for this purpose, among which cross-linking analysis of cDNA, CRAC. This method relies on a first step of UV cross-linking of living yeast cells and several subsequent steps of purification of the protein-RNA complexes, some of which under denaturing condition. Without altering the general principle of the method, we have modified and improved the protocol, with the specific aim of sequencing the nascent RNA isolated from transcription complexes and generate high-resolution and directional transcription maps.


Subject(s)
Nucleotides , RNA , Cross-Linking Reagents/metabolism , DNA, Complementary/genetics , DNA, Complementary/metabolism , RNA/metabolism
8.
Chem Res Toxicol ; 35(2): 326-336, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35084835

ABSTRACT

Protein disulfide isomerases (PDIs) function in forming the correct disulfide bonds in client proteins, thereby aiding the folding of proteins that enter the secretory pathway. Recently, several PDIs have been identified as targets of organic electrophiles, yet the client proteins of specific PDIs remain largely undefined. Here, we report that PDIs expressed in Saccharomyces cerevisiae are targets of divinyl sulfone (DVSF) and other thiol-reactive protein cross-linkers. Using DVSF, we identified the interaction partners that were cross-linked to Pdi1 and Eug1, finding that both proteins form cross-linked complexes with other PDIs, as well as vacuolar hydrolases, proteins involved in cell wall biosynthesis and maintenance, and many ER proteostasis factors involved ER stress signaling and ER-associated protein degradation (ERAD). The latter discovery prompted us to examine the effects of DVSF on ER quality control, where we found that DVSF inhibits the degradation of the ERAD substrate CPY*, in addition to covalently modifying Ire1 and blocking the activation of the unfolded protein response. Our results reveal that DVSF targets many proteins within the ER proteostasis network and suggest that these proteins may be suitable targets for covalent therapeutic development in the future.


Subject(s)
Cross-Linking Reagents/metabolism , Protein Disulfide-Isomerases/metabolism , Saccharomyces cerevisiae/enzymology , Sulfhydryl Compounds/metabolism , Cross-Linking Reagents/chemistry , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Molecular Structure , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/chemistry , Proteolysis/drug effects , Proteostasis/drug effects , Sulfhydryl Compounds/chemistry , Sulfones/pharmacology
9.
Cell Chem Biol ; 29(1): 84-97.e8, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34331854

ABSTRACT

N-glycans are displayed on cell-surface proteins and can engage in direct binding interactions with membrane-bound and secreted glycan-binding proteins (GBPs). Biochemical identification and characterization of glycan-mediated interactions is often made difficult by low binding affinities. Here we describe the metabolic introduction of a diazirine photo-cross-linker onto N-acetylglucosamine (GlcNAc) residues of N-linked glycoproteins on cell surfaces. We characterize sites at which diazirine-modified GlcNAc is incorporated, as well as modest perturbations to glycan structure. We show that diazirine-modified GlcNAc can be used to covalently cross-link two extracellular GBPs, galectin-1 and cholera toxin subunit B, to cell-surface N-linked glycoproteins. The extent of cross-linking correlates with display of the preferred glycan ligands for the GBPs. In addition, covalently cross-linked complexes could be isolated, and protein components of cross-linked N-linked glycoproteins were identified by proteomics analysis. This method may be useful in the discovery and characterization of binding interactions that depend on N-glycans.


Subject(s)
Acetylglucosamine/metabolism , Cell Membrane/metabolism , Cross-Linking Reagents/metabolism , Glycoproteins/metabolism , Acetylglucosamine/chemistry , Cell Membrane/chemistry , Cells, Cultured , Cross-Linking Reagents/chemistry , Glycoproteins/chemistry , Humans , Photochemical Processes , Polysaccharides/chemistry , Polysaccharides/metabolism , Surface Properties
10.
J Cell Biol ; 221(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34766978

ABSTRACT

The early insect embryo develops as a multinucleated cell distributing the genome uniformly to the cell cortex. Mechanistic insight for nuclear positioning beyond cytoskeletal requirements is missing. Contemporary hypotheses propose actomyosin-driven cytoplasmic movement transporting nuclei or repulsion of neighbor nuclei driven by microtubule motors. Here, we show that microtubule cross-linking by Feo and Klp3A is essential for nuclear distribution and internuclear distance maintenance in Drosophila. Germline knockdown causes irregular, less-dense nuclear delivery to the cell cortex and smaller distribution in ex vivo embryo explants. A minimal internuclear distance is maintained in explants from control embryos but not from Feo-inhibited embryos, following micromanipulation-assisted repositioning. A dimerization-deficient Feo abolishes nuclear separation in embryo explants, while the full-length protein rescues the genetic knockdown. We conclude that Feo and Klp3A cross-linking of antiparallel microtubule overlap generates a length-regulated mechanical link between neighboring microtubule asters. Enabled by a novel experimental approach, our study illuminates an essential process of embryonic multicellularity.


Subject(s)
Cell Nucleus/metabolism , Cross-Linking Reagents/metabolism , Drosophila melanogaster/metabolism , Giant Cells/metabolism , Microtubules/metabolism , Animals , Drosophila Proteins/metabolism , Embryo, Nonmammalian/metabolism , Green Fluorescent Proteins/metabolism , RNA Interference , Time-Lapse Imaging
11.
Exp Cell Res ; 411(1): 112986, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34942188

ABSTRACT

Chaperone-mediated autophagy (CMA) is a unique proteolytic pathway, in which cytoplasmic proteins recognized by heat shock cognate protein 70 (Hsc70/HSPA8) are transported into lysosomes for degradation. The substrate/chaperone complex binds to the cytosolic tail of the lysosomal-associated membrane protein type 2A (LAMP2A), but whether the interaction between Hsc70 and LAMP2A is direct or mediated by other molecules has remained to be elucidated. The structure of LAMP2A comprises a large lumenal domain composed of two domains, both with the ß-prism fold, a transmembrane domain and a short cytoplasmic tail. We previously reported the structural basis for the homophilic interaction of the lumenal domains of LAMP2A, using site-specific photo-crosslinking and/or steric hindrance within cells. In the present study, we introduced a photo-crosslinker into the cytoplasmic tail of LAMP2A and successfully detected its crosslinking with Hsc70, revealing this direct interaction for the first time. Furthermore, we demonstrated that the truncation of the membrane-distal domain within the lumenal domain of LAMP2A reduced the amount of Hsc70 that coimmunoprecipitated with LAMP2A. Our present results suggested that the two-domain architecture of the lumenal domains of LAMP2A underlies the interaction with Hsc70 at the cytoplasmic surface of the lysosome.


Subject(s)
Cross-Linking Reagents/metabolism , Cytoplasm/metabolism , HSC70 Heat-Shock Proteins/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomes/metabolism , Protein Interaction Domains and Motifs , HSC70 Heat-Shock Proteins/chemistry , Humans , Lysosomal-Associated Membrane Protein 2/chemistry
12.
Angew Chem Int Ed Engl ; 61(10): e202111085, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34847623

ABSTRACT

Approaches for profiling protease substrates are critical for defining protease functions, but remain challenging tasks. We combine genetic code expansion, photocrosslinking and proteomics to identify substrates of the mitochondrial (mt) human caseinolytic protease P (hClpP). Site-specific incorporation of the diazirine-bearing amino acid DiazK into the inner proteolytic chamber of hClpP, followed by UV-irradiation of cells, allows to covalently trap substrate proteins of hClpP and to substantiate hClpP's major involvement in maintaining overall mt homeostasis. In addition to confirming many of the previously annotated hClpP substrates, our approach adds a diverse set of new proteins to the hClpP interactome. Importantly, our workflow allows identifying substrate dynamics upon application of external cues in an unbiased manner. Identification of unique hClpP-substrate proteins upon induction of mt oxidative stress, suggests that hClpP counteracts oxidative stress by processing of proteins that are involved in respiratory chain complex synthesis and maturation as well as in catabolic pathways.


Subject(s)
Cross-Linking Reagents/metabolism , Endopeptidase Clp/metabolism , Mitochondria/enzymology , Cross-Linking Reagents/chemistry , Endopeptidase Clp/chemistry , Humans , Models, Molecular , Molecular Structure , Photochemical Processes , Substrate Specificity
13.
Molecules ; 26(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34946566

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a structurally diverse group of natural products. They feature a wide range of intriguing post-translational modifications, as exemplified by the biarylitides. These are a family of cyclic tripeptides found in Planomonospora, carrying a biaryl linkage between two aromatic amino acids. Recent genomic analyses revealed that the minimal biosynthetic prerequisite of biarylitide biosynthesis consists of only one ribosomally synthesized pentapeptide precursor as the substrate and a modifying cytochrome-P450-dependent enzyme. In silico analyses revealed that minimal biarylitide RiPP clusters are widespread among natural product producers across phylogenetic borders, including myxobacteria. We report here the genome-guided discovery of the first myxobacterial biarylitide MeYLH, termed Myxarylin, from Pyxidicoccus fallax An d48. Myxarylin was found to be an N-methylated tripeptide that surprisingly exhibits a C-N biaryl crosslink. In contrast to Myxarylin, previously isolated biarylitides are N-acetylated tripeptides that feature a C-C biaryl crosslink. Furthermore, the formation of Myxarylin was confirmed by the heterologous expression of the identified biosynthetic genes in Myxococcus xanthus DK1622. These findings expand the structural and biosynthetic scope of biarylitide-type RiPPs and emphasize the distinct biochemistry found in the myxobacterial realm.


Subject(s)
Cross-Linking Reagents/metabolism , Myxococcales/chemistry , Peptides/metabolism , Cross-Linking Reagents/chemistry , Molecular Conformation , Peptides/chemistry , Protein Processing, Post-Translational
14.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884761

ABSTRACT

(1) Background: Vitamin B12 deficiency in Caenorhabditis elegans results in severe oxidative stress and induces morphological abnormality in mutants due to disordered cuticle collagen biosynthesis. We clarified the underlying mechanism leading to such mutant worms due to vitamin B12 deficiency. (2) Results: The deficient worms exhibited decreased collagen levels of up to approximately 59% compared with the control. Although vitamin B12 deficiency did not affect the mRNA expression of prolyl 4-hydroxylase, which catalyzes the formation of 4-hydroxyproline involved in intercellular collagen biosynthesis, the level of ascorbic acid, a prolyl 4-hydroxylase coenzyme, was markedly decreased. Dityrosine crosslinking is involved in the extracellular maturation of worm collagen. The dityrosine level of collagen significantly increased in the deficient worms compared with the control. However, vitamin B12 deficiency hardly affected the mRNA expression levels of bli-3 and mlt-7, which are encoding crosslinking-related enzymes, suggesting that deficiency-induced oxidative stress leads to dityrosine crosslinking. Moreover, using GMC101 mutant worms that express the full-length human amyloid ß, we found that vitamin B12 deficiency did not affect the gene and protein expressions of amyloid ß but increased the formation of dityrosine crosslinking in the amyloid ß protein. (3) Conclusions: Vitamin B12-deficient wild-type worms showed motility dysfunction due to decreased collagen levels and the formation of highly tyrosine-crosslinked collagen, potentially reducing their flexibility. In GMC101 mutant worms, vitamin B12 deficiency-induced oxidative stress triggers dityrosine-crosslinked amyloid ß formation, which might promote its stabilization and toxic oligomerization.


Subject(s)
Amyloid beta-Peptides/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Collagen/metabolism , Vitamin B 12/metabolism , Amyloid beta-Peptides/chemistry , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans Proteins/chemistry , Collagen/biosynthesis , Collagen/chemistry , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Mutation , Oxidative Stress , RNA, Helminth/genetics , RNA, Helminth/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Tyrosine/metabolism , Vitamin B 12 Deficiency/genetics , Vitamin B 12 Deficiency/metabolism
15.
Biochem J ; 478(19): 3505-3525, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34515295

ABSTRACT

DJ-1 is known to play neuroprotective roles by eliminating reactive oxygen species (ROS) as an antioxidant protein. However, the molecular mechanism of DJ-1 function has not been well elucidated. This study explored the structural and functional changes of DJ-1 in response to oxidative stress. Human DJ-1 has three cysteine residues (Cys46, Cys53 and Cys106). We found that, in addition to Cys106, Cys46 is the most reactive cysteine residue in DJ-1, which was identified employing an NPSB-B chemical probe (Ctag) that selectively reacts with redox-sensitive cysteine sulfhydryl. Peroxidatic Cys46 readily formed an intra-disulfide bond with adjacent resolving Cys53, which was identified with nanoUPLC-ESI-q-TOF tandem mass spectrometry (MS/MS) employing DBond algorithm under the non-reducing condition. Mutants (C46A and C53A), not forming Cys46-Cys53 disulfide cross-linking, increased oxidation of Cys106 to sulfinic and sulfonic acids. Furthermore, we found that DJ-1 C46A mutant has distorted unstable structure identified by biochemical assay and employing hydrogen/deuterium exchange-mass spectrometry (HDX-MS) analysis. All three Cys mutants lost antioxidant activities in SN4741 cell, a dopaminergic neuronal cell, unlike WT DJ-1. These findings suggest that all three Cys residues including Cys46-Cys53 disulfide cross-linking are required for maintaining the structural integrity, the regulation process and cellular function as an antioxidant protein. These studies broaden the understanding of regulatory mechanisms of DJ-1 that operate under oxidative conditions.


Subject(s)
Antioxidants/chemistry , Antioxidants/metabolism , Cysteine/metabolism , Oxidative Stress/genetics , Protein Deglycase DJ-1/chemistry , Protein Deglycase DJ-1/metabolism , Cross-Linking Reagents/metabolism , Dopaminergic Neurons/metabolism , Gene Knockout Techniques , HeLa Cells , Humans , Hydrogen Deuterium Exchange-Mass Spectrometry , Oxidation-Reduction , Protein Deglycase DJ-1/genetics , Protein Domains , Reactive Oxygen Species/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sulfhydryl Compounds/metabolism , Tandem Mass Spectrometry , Transfection
16.
PLoS One ; 16(9): e0257026, 2021.
Article in English | MEDLINE | ID: mdl-34473773

ABSTRACT

Mucoid Pseudomonas aeruginosa is a prevalent cystic fibrosis (CF) lung colonizer, producing an extracellular matrix (ECM) composed predominantly of the extracellular polysaccharide (EPS) alginate. The ECM limits antimicrobial penetration and, consequently, CF sufferers are prone to chronic mucoid P. aeruginosa lung infections. Interactions between cations with elevated concentrations in the CF lung and the anionic EPS, enhance the structural rigidity of the biofilm and exacerbates virulence. In this work, two large mucoid P. aeruginosa EPS models, based on ß-D-mannuronate (M) and ß-D-mannuronate-α-L-guluronate systems (M-G), and encompassing thermodynamically stable acetylation configurations-a structural motif unique to mucoid P. aeruginosa-were created. Using highly accurate first principles calculations, stable coordination environments adopted by the cations have been identified and thermodynamic stability quantified. These models show the weak cross-linking capability of Na+ and Mg2+ ions relative to Ca2+ ions and indicate a preference for cation binding within M-G blocks due to the smaller torsional rearrangements needed to reveal stable binding sites. The geometry of the chelation site influences the stability of the resulting complexes more than electrostatic interactions, and the results show nuanced chemical insight into previous experimental observations.


Subject(s)
Alginates/metabolism , Cations/metabolism , Cystic Fibrosis/metabolism , Extracellular Matrix/metabolism , Models, Molecular , Polysaccharides, Bacterial/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Anions/metabolism , Binding Sites , Biofilms , Calcium/metabolism , Cross-Linking Reagents/metabolism , Cystic Fibrosis/microbiology , Hexuronic Acids/chemistry , Hexuronic Acids/metabolism , Hydrogen Bonding , Magnesium/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Sodium/metabolism , Thermodynamics , Virulence
17.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34429361

ABSTRACT

A cell wall made of the heteropolymer peptidoglycan (PG) surrounds most bacterial cells. This essential surface layer is required to prevent lysis from internal osmotic pressure. The class A penicillin-binding proteins (aPBPs) play key roles in building the PG network. These bifunctional enzymes possess both PG glycosyltransferase (PGT) and transpeptidase (TP) activity to polymerize the wall glycans and cross-link them, respectively. In Escherichia coli and other gram-negative bacteria, aPBP function is dependent on outer membrane lipoproteins. The lipoprotein LpoA activates PBP1a and LpoB promotes PBP1b activity. In a purified system, the major effect of LpoA on PBP1a is TP stimulation. However, the relevance of this activation to the cellular function of LpoA has remained unclear. To better understand why PBP1a requires LpoA for its activity in cells, we identified variants of PBP1a from E. coli and Pseudomonas aeruginosa that function in the absence of the lipoprotein. The changes resulting in LpoA bypass map to the PGT domain and the linker region between the two catalytic domains. Purification of the E. coli variants showed that they are hyperactivated for PGT but not TP activity. Furthermore, in vivo analysis found that LpoA is necessary for the glycan synthesis activity of PBP1a in cells. Thus, our results reveal that LpoA exerts a much greater control over the cellular activity of PBP1a than previously appreciated. It not only modulates PG cross-linking but is also required for its cognate synthase to make PG glycans in the first place.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Cell Wall/enzymology , Cross-Linking Reagents/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Lipoproteins/metabolism , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Peptidoglycan/metabolism , Bacterial Outer Membrane Proteins/genetics , Cross-Linking Reagents/metabolism , Escherichia coli Proteins/genetics , Lipoproteins/genetics , Penicillin-Binding Proteins/genetics , Peptidoglycan Glycosyltransferase/genetics
18.
Cell Rep ; 36(5): 109468, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34348161

ABSTRACT

Reversible monoubiquitination of small subunit ribosomal proteins RPS2/uS5 and RPS3/uS3 has been noted to occur on ribosomes involved in ZNF598-dependent mRNA surveillance. Subsequent deubiquitination of RPS2 and RPS3 by USP10 is critical for recycling of stalled ribosomes in a process known as ribosome-associated quality control. Here, we identify and characterize the RPS2- and RPS3-specific E3 ligase Really Interesting New Gene (RING) finger protein 10 (RNF10) and its role in translation. Overexpression of RNF10 increases 40S ribosomal subunit degradation similarly to the knockout of USP10. Although a substantial fraction of RNF10-mediated RPS2 and RPS3 monoubiquitination results from ZNF598-dependent sensing of collided ribosomes, ZNF598-independent impairment of translation initiation and elongation also contributes to RPS2 and RPS3 monoubiquitination. RNF10 photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) identifies crosslinked mRNAs, tRNAs, and 18S rRNAs, indicating recruitment of RNF10 to ribosomes stalled in translation. These impeded ribosomes are tagged by ubiquitin at their 40S subunit for subsequent programmed degradation unless rescued by USP10.


Subject(s)
Carrier Proteins/metabolism , Protein Biosynthesis , Ribosome Subunits, Small, Eukaryotic/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cross-Linking Reagents/metabolism , HEK293 Cells , Humans , Models, Biological , Mutation/genetics , Peptides/metabolism , Protein Domains , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomal Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitination
19.
Nat Chem Biol ; 17(8): 865-871, 2021 08.
Article in English | MEDLINE | ID: mdl-34253910

ABSTRACT

Collagens are fibrous proteins that are integral to the strength and stability of connective tissues. During collagen maturation, lysyl oxidases (LOX) initiate the cross-linking of fibers, but abnormal LOX activity is associated with impaired tissue function as seen in fibrotic and malignant diseases. Visualizing and targeting this dynamic process in healthy and diseased tissue is important, but so far not feasible. Here we present a probe for the simultaneous monitoring and targeting of LOX-mediated collagen cross-linking that combines a LOX-activity sensor with a collagen peptide to chemoselectively target endogenous aldehydes generated by LOX. This synergistic probe becomes covalently anchored and lights up in vivo and in situ in response to LOX at the sites where cross-linking occurs, as demonstrated by staining of normal skin and cancer sections. We anticipate that our reactive collagen-based sensor will improve understanding of collagen remodeling and provide opportunities for the diagnosis of fibrotic and malignant diseases.


Subject(s)
Collagen/metabolism , Cross-Linking Reagents/metabolism , Peptides/metabolism , Protein-Lysine 6-Oxidase/metabolism , Aldehydes/chemistry , Aldehydes/metabolism , Animals , Collagen/chemistry , Cross-Linking Reagents/chemistry , Female , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Peptides/chemistry , Protein-Lysine 6-Oxidase/chemistry
20.
J Mater Chem B ; 9(27): 5456-5464, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34048521

ABSTRACT

Hydrogels are perfectly suited to support cell and tissue growth in advanced tissue engineering applications as well as classical wound treatment scenarios. Ideal hydrogel materials for these applications should be easy to produce, biocompatible, resorbable and antimicrobial. Here we report the fabrication of degradable covalent antimicrobial lysine and tryptophan containing copolypeptide hydrogels, whereby the hydrogel properties can be independently modulated by the copolypeptide monomer ratio and chiral composition. Well-defined statistical copolypeptides comprising different overall molecular weights as well as ratios of l- and d-lysine and tryptophan at ratios of 35 : 15, 70 : 30 and 80 : 20 were obtained by N-carboxyanhydride (NCA) polymerisation and subsequently crosslinked by the selective reaction of bifunctional triazolinedione (TAD) with tryptophan. Real-time rheology was used to monitor the crosslinking reaction recording the fastest increase and overall modulus for copolypeptides with the higher tryptophan ratio. Water uptake of cylindrical hydrogel samples was dependent on crosslinking ratio but found independent of chiral composition, while enzymatic degradation proceeded significantly faster for samples containing more l-amino acids. Antimicrobial activity on a range of hydrogels containing different polypeptide chain lengths, lysine/tryptophan composition and l/d enantiomers was tested against reference laboratory strains of Gram-negative Escherichia coli (E. coli; ATCC25922) and Gram-positive, Staphylococcus aureus (S. aureus; ATCC25923). log reductions of 2.8-3.4 were recorded for the most potent hydrogels. In vitro leachable cytotoxicity tests confirmed non-cytotoxicity as per ISO guidelines.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Cross-Linking Reagents/pharmacology , Hydrogels/pharmacology , Peptides/pharmacology , Triazoles/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Escherichia coli/drug effects , Humans , Hydrogels/chemistry , Hydrogels/metabolism , Microbial Sensitivity Tests , Peptides/chemistry , Peptides/metabolism , Staphylococcus aureus/drug effects , Triazoles/chemistry , Triazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...