Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.263
Filter
1.
PLoS Negl Trop Dis ; 18(5): e0012152, 2024 May.
Article in English | MEDLINE | ID: mdl-38717980

ABSTRACT

BACKGROUND: Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY: We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS: Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION: Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.


Subject(s)
Antivenins , Neutralization Tests , Antivenins/pharmacology , Antivenins/immunology , Animals , Mexico , Snake Bites/drug therapy , Snake Bites/immunology , Viperidae , Crotalus , Crotalid Venoms/immunology
2.
Toxicon ; 243: 107746, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38704124

ABSTRACT

Our study presents the anticancer potential of crotamine from Crotalus durissus terrificus in human prostate cancer cell line DU-145. Crotamine isolation was conducted through RP-FPLC, its molecular mass analyzed by MALDI-TOF was 4881.4 kDa, and N-terminal sequencing confirmed crotamine identity. Crotamine demonstrated no toxicity and did not inhibit migration in HUVEC cells. Although no cell death occurred in DU-145 cells, crotamine inhibited their migration. Thus, crotamine presented potential to be a prototype of anticancer drug.


Subject(s)
Antineoplastic Agents , Cell Movement , Crotalid Venoms , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Crotalid Venoms/toxicity , Antineoplastic Agents/pharmacology , Crotalus , Human Umbilical Vein Endothelial Cells/drug effects , Animals
3.
PLoS One ; 19(4): e0298737, 2024.
Article in English | MEDLINE | ID: mdl-38630660

ABSTRACT

We tested the effects of relational and instrumental message strategies on US residents' perception of rattlesnakes-animals that tend to generate feelings of fear, disgust, or hatred but are nevertheless key members of healthy ecosystems. We deployed an online survey to social media users (n = 1,182) to describe perceptions of rattlesnakes and assess the change after viewing a randomly selected relational or instrumental video message. An 8-item, pre-and post-Rattlesnake Perception Test (RPT) evaluated perception variables along emotional, knowledge, and behavioral gradients on a 5-point Likert scale; the eight responses were combined to produce an Aggregate Rattlesnake Perception (ARP) score for each participant. We found that people from Abrahamic religions (i.e., Christianity, Judaism, Islam) and those identifying as female were associated with low initial perceptions of rattlesnakes, whereas agnostics and individuals residing in the Midwest region and in rural residential areas had relatively favorable perceptions. Overall, both videos produced positive changes in rattlesnake perception, although the instrumental video message led to a greater increase in ARP than the relational message. The relational message was associated with significant increases in ARP only among females, agnostics, Baby Boomers (age 57-75), and Generation-Z (age 18-25 to exclude minors). The instrumental video message was associated with significant increases in ARP, and this result varied by religious group. ARP changed less in those reporting prior experience with a venomous snake bite (to them, a friend, or a pet) than in those with no such experience. Our data suggest that relational and instrumental message strategies can improve people's perceptions of unpopular and potentially dangerous wildlife, but their effectiveness may vary by gender, age, religious beliefs, and experience. These results can be used to hone and personalize communication strategies to improve perceptions of unpopular wildlife species.


Subject(s)
Crotalus , Ecosystem , Animals , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Animals, Wild , Communication , Perception
4.
Toxicon ; 242: 107711, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38583578

ABSTRACT

Crotalus neutralizing factor (CNF) is an endogenous glycoprotein from Crotalus durissus terrificus snake blood that inhibits secretory phospholipases A2 (sPLA2) from the Viperid but not from Elapid venoms (subgroups IA and IIA, respectively). In the present study, we demonstrated that CNF can inhibit group III-PLA2 from bee venom by forming a stable enzyme-inhibitor complex. This finding opens up new possibilities for the potential use of CNF and/or CNF-based derivatives in the therapeutics of bee stings.


Subject(s)
Bee Venoms , Crotalus , Venomous Snakes , Animals , Bee Venoms/pharmacology , Phospholipase A2 Inhibitors/pharmacology , Crotalid Venoms/antagonists & inhibitors , Bees , Phospholipases A2 , Glycoproteins/pharmacology , Phospholipases A2, Secretory/antagonists & inhibitors
5.
Proc Natl Acad Sci U S A ; 121(16): e2313440121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38578985

ABSTRACT

Developmental phenotypic changes can evolve under selection imposed by age- and size-related ecological differences. Many of these changes occur through programmed alterations to gene expression patterns, but the molecular mechanisms and gene-regulatory networks underlying these adaptive changes remain poorly understood. Many venomous snakes, including the eastern diamondback rattlesnake (Crotalus adamanteus), undergo correlated changes in diet and venom expression as snakes grow larger with age, providing models for identifying mechanisms of timed expression changes that underlie adaptive life history traits. By combining a highly contiguous, chromosome-level genome assembly with measures of expression, chromatin accessibility, and histone modifications, we identified cis-regulatory elements and trans-regulatory factors controlling venom ontogeny in the venom glands of C. adamanteus. Ontogenetic expression changes were significantly correlated with epigenomic changes within genes, immediately adjacent to genes (e.g., promoters), and more distant from genes (e.g., enhancers). We identified 37 candidate transcription factors (TFs), with the vast majority being up-regulated in adults. The ontogenetic change is largely driven by an increase in the expression of TFs associated with growth signaling, transcriptional activation, and circadian rhythm/biological timing systems in adults with corresponding epigenomic changes near the differentially expressed venom genes. However, both expression activation and repression contributed to the composition of both adult and juvenile venoms, demonstrating the complexity and potential evolvability of gene regulation for this trait. Overall, given that age-based trait variation is common across the tree of life, we provide a framework for understanding gene-regulatory-network-driven life-history evolution more broadly.


Subject(s)
Crotalid Venoms , Venomous Snakes , Animals , Crotalid Venoms/genetics , Crotalid Venoms/metabolism , Epigenomics , Crotalus/genetics , Crotalus/metabolism
6.
Toxins (Basel) ; 16(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38535823

ABSTRACT

Island tameness results largely from a lack of natural predators. Because some insular rattlesnake populations lack functional rattles, presumably the consequence of relaxed selection from reduced predation, we hypothesized that the Santa Catalina Island, California, USA, population of the southern Pacific rattlesnake (Crotalus helleri, which possesses a functional rattle), would exhibit a decrement in defensive behavior relative to their mainland counterparts. Contrary to our prediction, rattlesnakes from the island not only lacked tameness compared to mainland snakes, but instead exhibited measurably greater levels of defensiveness. Island snakes attempted to bite 4.7 times more frequently as we endeavored to secure them by hand, and required 2.1-fold more time to be pinned and captured. When induced to bite a beaker after being grasped, the island snakes also delivered 2.1-fold greater quantities of venom when controlling for body size. The additional venom resulted from 2.1-fold larger pulses of venom ejected from the fangs. We found no effects of duration in captivity (2-36 months), which suggests an absence of long-term habituation of antipredator behaviors. Breeding bird surveys and Christmas bird counts indicated reduced population densities of avian predators on Catalina compared to the mainland. However, historical estimates confirmed that populations of foxes and introduced mammalian predators (cats and pigs) and antagonists (herbivorous ungulates) substantially exceeded those on the mainland in recent centuries, and therefore best explain the paradoxically exaggerated defensive behaviors exhibited by Catalina's rattlesnakes. These findings augment our understanding of anthropogenic effects on the behaviors of island animals and underscore how these effects can negatively affect human safety.


Subject(s)
Crotalus , Hand , Venomous Snakes , Humans , Animals , Swine , Population Density , Body Size , Tosylarginine Methyl Ester , Mammals
7.
Blood Coagul Fibrinolysis ; 35(4): 167-172, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38477828

ABSTRACT

BACKGROUND: The Western diamondback rattlesnake ( Crotalus atrox ) is a medically important venomous snake in the Southwestern United States, injuring humans, and their companion animals. The goals of this investigation were to utilize a rabbit model of subcutaneous envenomation to assess Crotalus atrox venom coagulopathy and determine the efficacy of a ruthenium-containing antivenom (RA) in attenuating it. METHODS: Sedated New Zealand White rabbits had viscoelastic measurements of whole blood coagulation kinetics obtained from ear artery samples. Crotalus atrox venom (4 mg/kg) was injected subcutaneously and changes in coagulation determined over three hours and compared to samples obtained prior to envenomation. Other rabbits had site-directed RA injected 5 min after venom injection. RESULTS: A significant decrease in the velocity of clot growth and thrombus strength was observed in animals injected with venom alone. Site-directed administration of RA resulted in no change in coagulation over the 3 h following venom injection. The interaction of antivenom administration and time was significantly different in the cases of clot growth velocity and strength. CONCLUSIONS: A novel rabbit model was used to define the toxicodynamic profile of coagulopathy of Crotalus atrox venom and demonstrate the efficacy of RA. Future investigation is planned involving other medically important venoms and RA administration.


Subject(s)
Antivenins , Blood Coagulation Disorders , Crotalid Venoms , Crotalus , Venomous Snakes , Animals , Rabbits , Antivenins/pharmacology , Antivenins/therapeutic use , Crotalid Venoms/pharmacology , Blood Coagulation Disorders/drug therapy , Snake Bites/drug therapy , Blood Coagulation/drug effects , Disease Models, Animal
8.
Toxins (Basel) ; 16(2)2024 02 10.
Article in English | MEDLINE | ID: mdl-38393179

ABSTRACT

Phospholipases A2 (PLA2s) are a large family of snake toxins manifesting diverse biological effects, which are not always related to phospholipolytic activity. Snake venom PLA2s (svPLA2s) are extracellular proteins with a molecular mass of 13-14 kDa. They are present in venoms in the form of monomers, dimers, and larger oligomers. The cardiovascular system is one of the multiple svPLA2 targets in prey organisms. The results obtained previously on the cardiovascular effects of monomeric svPLA2s were inconsistent, while the data on the dimeric svPLA2 crotoxin from the rattlesnake Crotalus durissus terrificus showed that it significantly reduced the contractile force of guinea pig hearts. Here, we studied the effects of the heterodimeric svPLA2 HDP-1 from the viper Vipera nikolskii on papillary muscle (PM) contractility and the tension of the aortic rings (ARs). HDP-1 is structurally different from crotoxin, and over a wide range of concentrations, it produced a long-term, stable, positive inotropic effect in PMs, which did not turn into contractures at the concentrations studied. This also distinguishes HDP-1 from the monomeric svPLA2s, which at high concentrations inhibited cardiac function. HDP-1, when acting on ARs preconstricted with 10 µM phenylephrine, induced a vasorelaxant effect, similar to some other svPLA2s. These are the first indications of the cardiac and vascular effects of true vipers' heterodimeric svPLA2s.


Subject(s)
Crotalid Venoms , Crotoxin , Venomous Snakes , Rats , Animals , Guinea Pigs , Crotoxin/pharmacology , Papillary Muscles , Vipera , Aorta, Thoracic/metabolism , Phospholipases A2/pharmacology , Phospholipases A2/metabolism , Crotalus/metabolism , Snake Venoms/metabolism , Polyesters , Crotalid Venoms/toxicity , Crotalid Venoms/metabolism
9.
BMC Genomics ; 25(1): 186, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365592

ABSTRACT

BACKGROUND: Venom systems are ideal models to study genetic regulatory mechanisms that underpin evolutionary novelty. Snake venom glands are thought to share a common origin, but there are major distinctions between venom toxins from the medically significant snake families Elapidae and Viperidae, and toxin gene regulatory investigations in elapid snakes have been limited. Here, we used high-throughput RNA-sequencing to profile gene expression and microRNAs between active (milked) and resting (unmilked) venom glands in an elapid (Eastern Brown Snake, Pseudonaja textilis), in addition to comparative genomics, to identify cis- and trans-acting regulation of venom production in an elapid in comparison to viperids (Crotalus viridis and C. tigris). RESULTS: Although there is conservation in high-level mechanistic pathways regulating venom production (unfolded protein response, Notch signaling and cholesterol homeostasis), there are differences in the regulation of histone methylation enzymes, transcription factors, and microRNAs in venom glands from these two snake families. Histone methyltransferases and transcription factor (TF) specificity protein 1 (Sp1) were highly upregulated in the milked elapid venom gland in comparison to the viperids, whereas nuclear factor I (NFI) TFs were upregulated after viperid venom milking. Sp1 and NFI cis-regulatory elements were common to toxin gene promoter regions, but many unique elements were also present between elapid and viperid toxins. The presence of Sp1 binding sites across multiple elapid toxin gene promoter regions that have been experimentally determined to regulate expression, in addition to upregulation of Sp1 after venom milking, suggests this transcription factor is involved in elapid toxin expression. microRNA profiles were distinctive between milked and unmilked venom glands for both snake families, and microRNAs were predicted to target a diversity of toxin transcripts in the elapid P. textilis venom gland, but only snake venom metalloproteinase transcripts in the viperid C. viridis venom gland. These results suggest differences in toxin gene posttranscriptional regulation between the elapid P. textilis and viperid C. viridis. CONCLUSIONS: Our comparative transcriptomic and genomic analyses between toxin genes and isoforms in elapid and viperid snakes suggests independent toxin regulation between these two snake families, demonstrating multiple different regulatory mechanisms underpin a venomous phenotype.


Subject(s)
Crotalus , MicroRNAs , Toxins, Biological , Venomous Snakes , Viperidae , Humans , Animals , Elapidae/genetics , Snake Venoms/chemistry , Snake Venoms/genetics , Snake Venoms/metabolism , Elapid Venoms/chemistry , Elapid Venoms/genetics , Elapid Venoms/metabolism , Viperidae/genetics , Viperidae/metabolism , Transcriptome , Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
10.
Toxicon ; 240: 107637, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331109

ABSTRACT

Here we describe the acute myocardial effects of an elapid (red spitting cobra, Naja pallida) and a viper (western diamondback rattlesnake, Crotalus atrox) venom using an ex vivo heart model. Our results reveal two different pathophysiological trajectories that influence heart function and morphology. While cobra venom causes a drop in contractile force, rattlesnake venom causes enhanced contractility and frequency that coincides with differences in myocellular morphology. This highlights the medical complexity of snake venom-induced cardiotoxicity.


Subject(s)
Crotalid Venoms , Naja , Venomous Snakes , Animals , Crotalus , Cardiotoxicity , Elapid Venoms/toxicity , Elapidae , Crotalid Venoms/toxicity
11.
Curr Biol ; 34(3): R98-R99, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38320482

ABSTRACT

How are motor neurons tuned for very different jobs? Classic work has focused on variations in motor neuron size and their premotor networks. New results in rattlesnakes show that shifting a motor neuron's temporal precision can be as simple as changing its potassium channel conductance.


Subject(s)
Crotalus , Motor Neurons , Motor Neurons/physiology , Crotalus/physiology , Animals
12.
Toxicon ; 241: 107663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423218

ABSTRACT

Deinagkistrodon acutus is a medically important pitviper inhabiting mainly South China and Taiwan. The hemorrhagic effects of its envenoming are compatible to its venom, which is abundant in metalloproteases (svMPs) and C-type lectin-like proteins. In this study, we investigated geographic variations in the venom of D. acutus collected from Taiwan and four Mainland Chinese provinces: Fujian, Jiangxi, Anhui, and Hunan. The variations were assessed through high-performance liquid chromatography, non-metric multidimensional scaling analysis, gel electrophoresis, and enzyme-linked immunosorbent assay (ELISA) with a monospecific antivenom (DaMAV) generated against the Taiwanese D. acutus venom, and discussed based on venom-protein sequences in databases and literature related to D. acutus venom. Additionally, the cross-reactivity of DaMAV against Crotalus horridus and Calloselasma rhodostoma venoms was investigated. We noted differential abundances of D. acutus venom metalloproteases, C-type lectin-like proteins, and phospholipase A2, along with point mutations and selective expression of serine protease isoforms. The ELISA results revealed that the venom from Taiwan was more reactive toward Taiwanese DaMAV than the four Mainland Chinese venoms, consistent with chromatographic profile differences, whereas C. horridus venom presented moderate cross-reactivity with DaMAV. The observed immunoreactivities of these venom with DaMAV can be attributed to the high prevalence of their PIII-svMPs, which are the dominant antigens, and the conservation of PIII-svMP epitopes.


Subject(s)
Antivenins , Crotalinae , Crotalus , Venomous Snakes , Venoms , Animals , Taiwan , Enzyme-Linked Immunosorbent Assay , Electrophoresis , Metalloproteases/analysis , Computational Biology , Lectins, C-Type
13.
J Zoo Wildl Med ; 54(4): 817-824, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38252007

ABSTRACT

Anticoagulants prevent clotting of blood samples and preserve cellular morphology for hematologic evaluations, but studies comparing anticoagulants are limited in snakes. The objective of this study was to evaluate the effects of lithium heparin (LH) and dipotassium ethylenediaminetetraacetic acid (EDTA) on hematologic values in prairie rattlesnakes (PR; Crotalus viridis, n = 16) and Lake Erie water snakes (LEWS; Nerodia sipedon insularum, n = 21). Venipuncture was performed and blood samples were immediately aliquoted into LH and EDTA microtainers. Packed cell volume (PCV), total solids (TS), 100-cell differential counts, and Avian Leukopet white blood cell counts (WBC) were determined for each anticoagulant. Passing-Bablok regression and Bland-Altman plots revealed that anticoagulant choice did not constantly or proportionally bias the values of any WBC parameter. Mixed models demonstrated that blood anticoagulated with EDTA had higher PCV in PR (P = 0.04) and TS in both species (P < 0.05). However, the magnitude of the differences attributable to anticoagulant choice was relatively small and likely not clinically important. Hemolysis was not appreciated in any samples. Our findings demonstrate that LH and EDTA are equally appropriate for use in PR and LEWS, but may require separate reference values.


Subject(s)
Colubridae , Heparin , Venomous Snakes , Animals , Heparin/pharmacology , Edetic Acid/pharmacology , Crotalus , Lithium , Anticoagulants/pharmacology
15.
Toxicon ; 237: 107552, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065257

ABSTRACT

The state of Paraná is home to three out of the five medically significant snake genera in Brazil and lacks of snakebite epidemiology studies. This study aimed to ascertain the spatial, environmental, and socioeconomic factors associated with snakebite risk by analyzing notification data of cases in the state of Paraná. Notification and socioeconomic data were gathered from the online platforms of the National System of Notifiable Diseases (SINAN) and the Brazilian Institute of Geography and Statistics (IBGE). Land cover and land use maps were obtained from the Mapbiomas platform in raster format and subsequently converted into vectors using QGis software. The proportions of land use and land cover in square kilometers (km2) were then calculated. All acquired data were tabulated using Microsoft Excel 365 software. For spatial analysis, GeoDa software version 1.20 was utilized to calculate the Global and Local Moran indices, assessing spatial correlations. Between 2007 and 2021, 12,877 notifications were recorded, with an average incidence of 8.22/100,000 inhabitants in the state, 8166 (63.41%) caused by Bothrops, 1534 (11.91%) caused by Crotalus, 56 (0.43%) caused by Micrurus. 1703 (13.22%) caused by non-venomous snake species, and the remaining cases did not have the identified causative species. The incidents caused by Bothrops and Crotalus showed different distribution patterns. Spatial analysis revealed that key factors contributing to snakebite risk included the presence of native forests, mangroves, apicuns, and monospecific planted forests. The population group at the highest risk comprised rural residents and workers. Furthermore, the absence of basic sanitation and proper garbage collection and disposal exhibited positive correlations with snakebites. Conversely, intensive farming practices with substantial mechanization and pastures demonstrated negative spatial correlations. This study has enabled the identification of the primary factors associated with snakebite risk, facilitating more targeted efforts to prevent snakebite accidents among vulnerable populations.


Subject(s)
Bothrops , Snake Bites , Humans , Animals , Snake Bites/epidemiology , Snake Bites/complications , Brazil/epidemiology , Snakes , Geography , Crotalus
16.
Biochimie ; 218: 46-56, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37659716

ABSTRACT

In accidents involving Crotalus snakes, the crotoxin complex (CTX) plays lethal action due to its neurotoxic activity. On the other hand, CTX have potential biotechnological application due to its anti-tumoral, anti-inflammatory, antimicrobial, analgesic and immunomodulatory properties. CTX is a heterodimer composed of Crotoxin A (CA or crotapotin), the acidic nontoxic and non-enzymatic component and; Crotoxin B (CB), a basic, toxic and catalytic PLA2. Currently, there are two classes of CTX isoforms, whose differences in their biological activities have been attributed to features presented in CB isoforms. Here, we present the crystal structure of CB isolated from the Crotalus durissus collilineatus venom. It amino acid sequence was assigned using the SEQUENCE SLIDER software, which revealed that the crystal structure is a heterodimer composed of two new CB isoforms (colCB-A and colCB-B). Bioinformatic and biophysical analyses showed that the toxin forms a tetrameric assembly in solution similar to CB from Crotalus durissus terrificus venom, despite some differences observed at the dimeric interface. By the previously proposed classification, the colCB-B presents features of the class I isoforms while colCB-A cannot be classified into classes I and II based on its amino acid sequence. Due to similar features observed for other CB isoforms found in the NCBI database and the results obtained for colCB-A, we suggest that there are more than two classes of CTX and CB isoforms in crotalic venoms.


Subject(s)
Crotalid Venoms , Crotoxin , Venomous Snakes , Animals , Crotoxin/chemistry , Phospholipases A2/chemistry , Crotalus/metabolism , Crotalid Venoms/chemistry , Protein Isoforms/metabolism
17.
Biochimie ; 216: 160-174, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37890695

ABSTRACT

Crotalus culminatus is a medically significant species of rattlesnake in Mexico [1]. While the proteomic composition of its venom has been previously reported for both juvenile and adult specimens, there has been limited research into its functional properties, with only a few studies, including one focusing on coagulotoxicity mechanisms. In this study, we aimed to compare the biochemical and biological activities of the venom of juvenile and adult snakes. Additionally, we assessed antibody production using the venoms of juveniles and adults as immunogens in rabbits. Our findings reveal lethality and proteolytic activity differences between the venoms of juveniles and adults. Notably, juvenile venoms exhibited high proportions of crotamine, while adult venoms displayed a reduction of this component. A commercially available antivenom demonstrated effective neutralization of lethality of both juvenile and adult venoms in mice. However, it failed to neutralize the paralytic activity induced by crotamine, which, in contrast, was successfully inhibited by antibodies obtained from hyperimmunized rabbits. These results suggest the potential inclusion of C. culminatus venom from juveniles in commercial antivenom immunization schemes to generate antibodies targeting this small myotoxin.


Subject(s)
Antivenins , Crotalid Venoms , Rabbits , Animals , Mice , Antivenins/pharmacology , Crotalus , Proteomics , Crotalid Venoms/toxicity , Crotalid Venoms/chemistry , Neurotoxins , Mexico
18.
Mol Ecol ; 33(2): e17210, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010927

ABSTRACT

Emerging infectious diseases in wildlife species caused by pathogenic fungi are of growing concern, yet crucial knowledge gaps remain for diseases with potentially large impacts. For example, there is detailed knowledge about host pathology and mechanisms underlying response for chytridiomycosis in amphibians and white-nose syndrome in bats, but such information is lacking for other more recently described fungal infections. One such disease is ophidiomycosis, caused by the fungus Ophidiomyces ophidiicola, which has been identified in many species of snakes, yet the biological mechanisms and molecular changes occurring during infection are unknown. To gain this information, we performed a controlled experimental infection in captive Prairie rattlesnakes (Crotalus viridis) with O. ophidiicola at two different temperatures: 20 and 26°C. We then compared liver, kidney, and skin transcriptomes to assess tissue-specific genetic responses to O. ophidiicola infection. Given previous histopathological studies and the fact that snakes are ectotherms, we expected highest fungal activity on skin and a significant impact of temperature on host response. Although we found fungal activity to be localized on skin, most of the differential gene expression occurred in internal tissues. Infected snakes at the lower temperature had the highest host mortality whereas two-thirds of the infected snakes at the higher temperature survived. Our results suggest that ophidiomycosis is likely a systemic disease with long-term effects on host response. Our analysis also identified candidate protein coding genes that are potentially involved in host response, providing genetic tools for studies of host response to ophidiomycosis in natural populations.


Subject(s)
Biological Phenomena , Dermatomycoses , Venomous Snakes , Animals , Dermatomycoses/genetics , Dermatomycoses/veterinary , Dermatomycoses/microbiology , Crotalus , Gene Expression Profiling
19.
Curr Biol ; 34(2): 286-297.e5, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38157862

ABSTRACT

The evolution of novel motor behaviors requires modifications in the central pattern generators (CPGs) controlling muscle activity. How such changes gradually lead to novel behaviors remains enigmatic due to the long time course of evolution. Rattlesnakes provide a unique opportunity to investigate how a locomotor CPG was evolutionarily modified to generate a novel behavior-in this case, acoustic signaling. We show that motoneurons (MNs) in the body and tail spinal cord of rattlesnakes possess fundamentally different physiological characteristics, which allow MNs in the tail to integrate and transmit CPG output for controlling superfast muscles with high temporal precision. Using patch-clamp electrophysiology, we demonstrate that these differences in locomotor and rattle MNs are mainly determined by KV72/3 potassium channels. However, although KV72/3 exerted a significantly different influence on locomotor and rattle MN physiology, single-cell RNA-seq unexpectedly did not reveal any differences in KV72/3 channels' expression. VIDEO ABSTRACT.


Subject(s)
Crotalus , Potassium Channels , Animals , Locomotion/physiology , Motor Neurons/physiology , Spinal Cord/physiology
20.
Biol Open ; 12(11)2023 11 15.
Article in English | MEDLINE | ID: mdl-37909760

ABSTRACT

For terrestrial locomotion of animals and machines, physical characteristics of the substrate can strongly impact kinematics and performance. Snakes are an especially interesting system for studying substrate effects because their gait depends more on the environment than on their speed. We tested sidewinder rattlesnakes (Crotalus cerastes) on two surfaces: sand collected from their natural environment and vinyl tile flooring, an artificial surface often used to elicit sidewinding in laboratory settings. Of ten kinematic variables examined, two differed significantly between the substrates: the body's waveform had an average of ∼17% longer wavelength on vinyl flooring (measured in body lengths), and snakes lifted their bodies an average of ∼40% higher on sand (measured in body lengths). Sidewinding may also differ among substrates in ways we did not measure (e.g. ground reaction forces and energetics), leaving open clear directions for future study.


Subject(s)
Crotalus , Sand , Animals , Biomechanical Phenomena , Environment
SELECTION OF CITATIONS
SEARCH DETAIL
...