Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.103
Filter
1.
Front Immunol ; 15: 1397338, 2024.
Article in English | MEDLINE | ID: mdl-38774865

ABSTRACT

Objectives: This manuscript undertakes a systematic examination of the research landscape concerning global Cryptococcus species and their dynamism with the host immune system spanning the past decade. It furnishes a detailed survey of leading knowledge institutions and critical focal points in this area, utilizing bibliometric analysis. Methods: VOSviewer and CiteSpace software platforms were employed to systematically analyze and graphically depict the relevant literature indexed in the WoSCC database over the preceding ten years. Results: In the interval between October 1, 2013, and October 1, 2023, a corpus of 795 publications was amassed. The primary research institutions involved in this study include Duke University, the University of Minnesota, and the University of Sydney. The leading trio of nations, in terms of publication volume, comprises the United States, China, and Brazil. Among the most prolific authors are Casadevall, Arturo; Wormley, Floyd L., Jr.; and Olszewski, Michal A., with the most highly cited author being Perfect, Jr. The most esteemed journal is Mbio, while Infection and Immunity commands the highest citation frequency, and the Journal of Clinical Microbiology boasts the most significant impact factor. Present research foci encompass the intricate interactions between Cryptococcus pathogenesis and host immunity, alongside immune mechanisms, complications, and immunotherapies. Conclusion: This represents the first exhaustive scholarly review and bibliometric scrutiny of the evolving landscapes in Cryptococcus research and its interactions with the host immune system. The analyses delineated herein provide insights into prevailing research foci and trajectories, thus furnishing critical directions for subsequent inquiries in this domain.


Subject(s)
Bibliometrics , Cryptococcosis , Cryptococcus , Humans , Cryptococcosis/immunology , Cryptococcus/immunology , Host-Pathogen Interactions/immunology , Animals , Immune System/immunology
2.
Methods Mol Biol ; 2775: 29-46, 2024.
Article in English | MEDLINE | ID: mdl-38758309

ABSTRACT

Cryptococcus neoformans and Cryptococcus gattii are the predominant etiological agents of cryptococcosis, a particularly problematic disease in immunocompromised individuals. The increased clinical use of immunosuppressive drugs, the inherent ability of Cryptococcus species to suppress and evade host immune responses, and the emergence of drug-resistant yeast support the need for model systems that facilitate the design of novel immunotherapies and antifungals to combat disease progression. The mouse model of cryptococcosis is a widely used system to study Cryptococcus pathogenesis and the efficacy of antifungal drugs in vivo. In this chapter, we describe three commonly used strategies to establish cryptococcosis in mice: intranasal, intratracheal, and intravenous inoculations. Also, we discuss the methodology for delivering drugs to mice via intraperitoneal injection.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Disease Models, Animal , Animals , Cryptococcosis/microbiology , Cryptococcosis/drug therapy , Cryptococcosis/immunology , Mice , Cryptococcus neoformans/pathogenicity , Cryptococcus gattii/pathogenicity , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use
3.
Methods Mol Biol ; 2775: 157-169, 2024.
Article in English | MEDLINE | ID: mdl-38758317

ABSTRACT

Monocyte/macrophage cells play a central role in innate immunity against C. neoformans and C. gattii, species known to cause human disease. Cryptococcus is the only fungal genus known to possess such a large extracellular polysaccharide capsule, which impacts interactions of innate cells with the yeast. This interaction results in different fates, such as phagocytosis and intracellular proliferation and, as the interaction progresses, vomocytosis, cell-to-cell transfer, lysis of macrophages, or yeast killing. Differentiating internalized versus external Cryptococcus cells is thus essential to evaluate monocyte-macrophage phagocytosis. We describe here a protocol that allows quantification of Cryptococcus spp. phagocytosis using quantitative flow cytometry in human monocytes and a murine macrophage cell line (J774).


Subject(s)
Cryptococcus neoformans , Flow Cytometry , Macrophages , Monocytes , Phagocytosis , Cryptococcus neoformans/immunology , Animals , Mice , Humans , Monocytes/immunology , Monocytes/cytology , Macrophages/immunology , Macrophages/microbiology , Flow Cytometry/methods , Cell Line , Cryptococcosis/immunology , Cryptococcosis/microbiology
4.
Methods Mol Biol ; 2775: 195-209, 2024.
Article in English | MEDLINE | ID: mdl-38758319

ABSTRACT

Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an encapsulated fungal pathogen found ubiquitously in the environment that causes pneumonia and life-threatening infections of the central nervous system. Following inhalation of yeasts or desiccated basidiospores into the lung alveoli, resident pulmonary phagocytic cells aid in the identification and eradication of Cryptococcus yeast through their arsenal of pattern recognition receptors (PRRs). PRRs recognize conserved pathogen-associated molecular patterns (PAMPs), such as branched mannans, ß-glucans, and chitins that are the major components of the fungal cell wall. However, the key receptors/ligand interactions required for cryptococcal recognition and eventual fungal clearance have yet to be elucidated. Here we present an imaging flow cytometer (IFC) method that offers a novel quantitative cellular imaging and population statistics tool to accurately measure phagocytosis of fungal cells. It has the capacity to measure two distinct steps of phagocytosis: association/attachment and internalization in a high-throughput and quantitative manner that is difficult to achieve with other technologies. Results from these IFC studies allow for the potential to identify PRRs required for recognition, uptake, and subsequent activation of cytokine production, as well as other effector cell responses required for fungal clearance.


Subject(s)
Cryptococcus neoformans , Flow Cytometry , Phagocytosis , Flow Cytometry/methods , Cryptococcus neoformans/metabolism , Animals , Mice , Phagocytes/metabolism , Phagocytes/microbiology , Cryptococcosis/microbiology , Cryptococcosis/metabolism , Cryptococcosis/immunology , Cryptococcus/metabolism , Humans , Image Cytometry/methods , Receptors, Pattern Recognition/metabolism
5.
Methods Mol Biol ; 2775: 211-221, 2024.
Article in English | MEDLINE | ID: mdl-38758320

ABSTRACT

The ability of C. neoformans to survive and replicate within host phagocytes enables it to evade the immune system and allows for persistence of the infection. As such, measuring fungal burden of C. neoformans strains-and indeed how drug treatments can influence fungal burden-provides important information about C. neoformans pathogenesis. In this chapter, we describe two methods that may be used to appraise fungal burden: a standard end-point colony-formation assay for calculating the average number of yeast per host cell and a fluorescence microscopy-based method that may be used to measure changes in fungal burden in individual living macrophages in real time.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Macrophages , Microscopy, Fluorescence , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Cryptococcosis/microbiology , Cryptococcosis/immunology , Microscopy, Fluorescence/methods , Animals , Mice , Colony Count, Microbial/methods , Humans
6.
Methods Mol Biol ; 2775: 171-193, 2024.
Article in English | MEDLINE | ID: mdl-38758318

ABSTRACT

The interaction between macrophages and Cryptococcus neoformans is crucial in the pathogenesis of cryptococcosis. These phagocytes are important immune effectors, but also a niche in which facultative intracellular parasites, such as C. neoformans, thrive. Consequently, phagocytosis of cryptococcal cells and its outcomes are very frequently studied. One major issue with several of the tests used for this, however, is that macrophage-C. neoformans interaction does not always result in phagocytosis, as fungi may be attached to the external surface of the phagocyte. The most used methodologies to study phagocytosis of cryptococcal cells have varying degrees of precision in separating fungi that are truly internalized from those that are outside macrophages. Here we describe two assays to measure phagocytosis that can differentiate internal from external C. neoformans cells.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Macrophages , Phagocytosis , Cryptococcus neoformans/immunology , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Cryptococcosis/microbiology , Cryptococcosis/immunology , Animals , Mice , Humans , Host-Pathogen Interactions/immunology
7.
Methods Mol Biol ; 2775: 307-328, 2024.
Article in English | MEDLINE | ID: mdl-38758326

ABSTRACT

The importance of humoral immunity to fungal infections remains to be elucidated. In cryptococcosis, patients that fail to generate antibodies against antigens of the fungus Cryptococcus neoformans are more susceptible to the disease, demonstrating the importance of these molecules to the antifungal immune response. Historically, antibodies against C. neoformans have been applied in diagnosis, therapeutics, and as important research tools to elucidate fungal biology. Throughout the process of generating monoclonal antibodies (mAbs) from a single B-cell clone and targeting a single epitope, several immunization steps might be required for the detection of responsive antibodies to the antigen of interest in the serum. This complex mixture of antibodies comprises the polyclonal antibodies. To obtain mAbs, B-lymphocytes are harvested (from spleen or peripheral blood) and fused with tumor myeloma cells, to generate hybridomas that are individually cloned and specifically screened for mAb production. In this chapter, we describe all the necessary steps, from the immunization to polyclonal antibody harvesting, hybridoma generation, and mAb production and purification. Additionally, we discuss new cutting-edge approaches for generating interspecies mAbs, such as humanized mAbs, or for similar species in distinct host backgrounds.


Subject(s)
Antibodies, Fungal , Antibodies, Monoclonal , Cryptococcus neoformans , Hybridomas , Cryptococcus neoformans/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Animals , Humans , Hybridomas/immunology , Antibodies, Fungal/immunology , Antibodies, Fungal/isolation & purification , Mice , B-Lymphocytes/immunology , Cryptococcosis/immunology , Cryptococcosis/diagnosis , Antigens, Fungal/immunology , Immunization
8.
Methods Mol Biol ; 2775: 239-255, 2024.
Article in English | MEDLINE | ID: mdl-38758322

ABSTRACT

One of the standard assays for the fungal pathogen Cryptococcus neoformans is the glucuronoxylomannan (GXM) ELISA. This assay utilizes monoclonal antibodies targeted against the critical virulence factor, the polysaccharide (PS) capsule. GXM ELISA is one of the most used assays in the field used for diagnosis of cryptococcal infection, quantification of PS content, and determination of binding specificity for antibodies. Here we present three variations of the GXM ELISA used by our group-indirect, capture, and competition ELISAs. We have also provided some history, perspective, and notes on these methods, which we hope will help the reader choose, and implement, the best assay for their research.While it has long been referred to as the GXM ELISA, we also suggest a name update to better reflect our updated understanding of the polysaccharide antigens targeted by this assay. The Cryptococcal PS ELISA is a more accurate description of this set of methodologies and the antigens they measure. Finally, we discuss the limitations of this assay and put forth future plans for expanding the antigens assayed by ELISA.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Enzyme-Linked Immunosorbent Assay , Polysaccharides , Enzyme-Linked Immunosorbent Assay/methods , Cryptococcus neoformans/immunology , Cryptococcosis/diagnosis , Cryptococcosis/microbiology , Cryptococcosis/immunology , Polysaccharides/analysis , Polysaccharides/immunology , Humans , Antigens, Fungal/immunology , Antigens, Fungal/analysis , Fungal Polysaccharides/immunology , Fungal Polysaccharides/analysis , Antibodies, Monoclonal/immunology , Antibodies, Fungal/immunology
9.
Methods Mol Biol ; 2775: 359-365, 2024.
Article in English | MEDLINE | ID: mdl-38758329

ABSTRACT

Extracellular vesicles (EVs) are produced by all domains of life. In fungal pathogens, they participate in virulence mechanisms and/or induce protective immunity, depending on the pathogenic species. EVs produced by pathogenic members of the Cryptococcus genus mediate virulence, antifungal resistance, as well as humoral and cell-mediated immunity. The isolation of cryptococcal EVs has been laborious and time-consuming for years. In this chapter, we detail a fast protocol for the isolation and analysis of EVs produced by members of the Cryptococcus genus.


Subject(s)
Cryptococcus , Extracellular Vesicles , Extracellular Vesicles/metabolism , Cryptococcosis/microbiology , Cryptococcosis/immunology , Humans
10.
Methods Mol Biol ; 2775: 411-422, 2024.
Article in English | MEDLINE | ID: mdl-38758334

ABSTRACT

Cryptococcus neoformans infections are a major worldwide concern as current treatment strategies are becoming less effective in alleviating the infection. The most extreme and fatal cases are those of immunocompromised individuals. Clinical treatments for cryptococcosis are limited to a few classes of approved drugs, and due to a rise in drug resistance, these drugs are becoming less effective. Therefore, it is essential to develop innovative ways to control this infection. Vaccinations have emerged as a safe, viable, and cost-effective solution to treat a number of diseases over the years. Currently, there are no clinically available vaccines to treat cryptococcal infections, but a number of studies have shown promising results in animal models. Here, we present step-by-step experimental protocols using live-attenuated or heat-killed C. neoformans cells as a vaccination strategy in a preventive or in a therapeutic murine model of cryptococcosis.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Disease Models, Animal , Fungal Vaccines , Cryptococcus neoformans/immunology , Cryptococcosis/immunology , Cryptococcosis/prevention & control , Animals , Fungal Vaccines/immunology , Mice , Vaccination/methods , Vaccines, Attenuated/immunology , Humans
11.
Methods Mol Biol ; 2775: 393-410, 2024.
Article in English | MEDLINE | ID: mdl-38758333

ABSTRACT

Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.


Subject(s)
Chitosan , Cryptococcosis , Cryptococcus neoformans , Fungal Vaccines , Animals , Chitosan/chemistry , Mice , Fungal Vaccines/immunology , Fungal Vaccines/genetics , Fungal Vaccines/administration & dosage , Cryptococcosis/immunology , Cryptococcosis/prevention & control , Cryptococcosis/microbiology , Cryptococcus neoformans/immunology , Cryptococcus neoformans/genetics , Disease Models, Animal , Vaccination/methods , Female , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics
13.
Int Immunopharmacol ; 132: 111995, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581993

ABSTRACT

Elevation of arginase enzyme activity in the lung contributes to the pathogenesis of various chronic inflammatory diseases and infections. Inhibition of arginase expression and activity is able to alleviate those effects. Here, we investigated the immunomodulatory effect of arginase inhibitor in C. neoformans infection. In the pulmonary cryptococcosis model that was shown to recapitulate human infection, we found arginase expression was excessively induced in the lung during the late stage of infection. To inhibit the activity of arginase, we administered a specific arginase inhibitor, nor-NOHA, during C. neoformans infection. Inhibition of arginase reduced eosinophil infiltration and level of IL-13 secretion in the lungs. Whole lung transcriptome RNA-sequencing analysis revealed that treatment with nor-NOHA resulted in shifting the Th2-type gene expression patterns induced by C. neoformans infection to the Th1-type immune profile, with higher expression of cytokines Ifng, Il6, Tnfa, Csf3, chemokines Cxcl9 and Cxcl10 and transcription factor Stat1. More importantly, mice treated with arginase inhibitor had more infiltrating brain leukocytes and enhanced gene expression of Th1-associated cytokines and chemokines that are known to be essential for protection against C. neoformans infection. Inhibition of arginase dramatically attenuated spleen and brain infection, with improved survival. Taken together, these studies demonstrated that inhibiting arginase activity induced by C. neoformans infection can modulate host immune response by enhancing protective type-1 immune response during C. neoformans infection. The inhibition of arginase activity could be an immunomodulatory target to enhance protective anti-cryptococcal immune responses.


Subject(s)
Arginase , Arginine/analogs & derivatives , Cryptococcosis , Cryptococcus neoformans , Mice, Inbred C57BL , Animals , Arginase/metabolism , Arginase/antagonists & inhibitors , Arginase/genetics , Cryptococcosis/immunology , Cryptococcosis/drug therapy , Cryptococcus neoformans/immunology , Cryptococcus neoformans/drug effects , Mice , Lung/immunology , Lung/pathology , Lung/drug effects , Cytokines/metabolism , Cytokines/immunology , Female , Disease Models, Animal , Lung Diseases, Fungal/immunology , Lung Diseases, Fungal/drug therapy , Humans , Th2 Cells/immunology , Th2 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/drug effects , Brain/immunology , Brain/drug effects , Brain/pathology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
14.
Med Microbiol Immunol ; 212(1): 53-63, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36367554

ABSTRACT

It has been reported that IL-33 receptor ST2 deficiency mitigates Cryptococcus neoformans (C. neoformans) pulmonary infection in BALB/c mice. IL-33 may modulate immune responses in ST2-dependent and ST2-independent manners. The host genetic background (i.e., BALB/c, C57BL/6 J) influences immune responses against C. neoformans. In the present study, we aimed to explore the roles of IL-33 and ST2 in pulmonary C. neoformans-infected mice on a C57BL/6 J genetic background. C. neoformans infection increased IL-33 expression in lung tissues. IL-33 deficiency but not ST2 deficiency significantly extended the survival time of C. neoformans-infected mice. In contrast, either IL-33 or ST2 deficiency reduced fungal burdens in lung, spleen and brain tissues from the mice following C. neoformans intratracheal inoculation. Similarly, inflammatory responses in the lung tissues were more pronounced in both the IL-33-/- and ST2-/- infected mice. However, mucus production was decreased in IL-33-/- infected mice alone, and the level of IL-5 in bronchoalveolar lavage fluid (BALF) was substantially decreased in the IL-33-/- infected mice but not ST2-/- infected mice. Moreover, IL-33 deficiency but not ST2 deficiency increased iNOS-positive macrophages. At the early stage of infection, the reduced pulmonary fungal burden in the IL-33-/- and ST2-/- mice was accompanied by increased neutrophil infiltration. Collectively, IL-33 regulated pulmonary C. neoformans infection in an ST2-dependent and ST2-independent manner in C57BL/6 J mice.


Subject(s)
Cryptococcosis , Interleukin-33 , Animals , Mice , Cryptococcosis/immunology , Cryptococcus neoformans/physiology , Interleukin-33/genetics , Lung , Mice, Inbred C57BL
15.
Actual. SIDA. infectol ; 30(110): 20-27, 20220000. tab, graf
Article in Spanish | LILACS, BINACIS | ID: biblio-1413684

ABSTRACT

Antecedentes: El recuento de unidades formadoras de colonia (UFC) de Cryptococcus en el líquido cefalorraquídeo (LCR) sería un marcador fiable para el pronóstico del paciente y una herramienta simple y económica. Objetivo: Evaluar la utilidad del recuento de UFC de Cryptococcus spp. y compararlo con las variaciones de antígeno capsular de Cryptococcus (AgCr) en LCR.Materiales y métodos: Se realizó la revisión de historias clínicas de pacientes con meningoencefalitis por Cryptococcus asociada con el sida en nuestro centro, entre febrero de 2016 y julio de 2020. Se evaluaron los valores de UFC y AgCr en LCR durante la evolución de la micosis. Resultados y discusión: Se analizaron datos de 94 episodios clínicos de 85 pacientes, con un total de 297 observaciones de muestras de LCR. Se evidenció el valor del recuento de UFC por ser un marcador de viabilidad y de carga fúngica. El recuento de UFC bajo no necesariamente coexistió con un nivel bajo de AgCr. Con respecto a la evolución en el tiempo, la mayoría de los pacientes fueron diagnosticados con una alta carga fúngica y su descenso ocurrió más rápido que el del AgCr, por lo que reflejaría la mejora del paciente, permitiendo tomar conductas al respecto.Palabras clave: Criptococosis, carga fúngica, ufc/mL.


Background. The Cryptococcus' colony-forming unit (CFU) count in cerebrospinal fluid (CSF) would be a reliable marker for patient prognosis and a simple and inexpensive tool. Objectives: To evaluate the usefulness of the CFU count of Cryptococcus spp. And to compare it with the variations of Cryptococcus' capsular antigen (CrAg) in CSF.Materials and methods. Clinical records of patients with aids-related meningoencephalitis caused by Cryptococcusassisted in our center between February 2016 and July 2020 were reviewed. CFU count and CrAg values in CSF were evaluated during the evolution of the mycosis.Results and Discussion. Data from 94 clinical episodes of 85 patients with a total of 297 observations of CSF samples were analyzed.The importance of using the CFU count was evidenced as it is a viability and fungal load marker.Low CFU count did not necessarily coexist with low CrAg.Regarding the evolution over time, most of the patients were diagnosed with a high fungal load and its decrease occurred faster than that the one of AgCr. This would reflect the improvement of the patient, allowing behaviors to be taken in this regard


Subject(s)
Humans , Male , Female , Colony Count, Microbial , Cerebrospinal Fluid/immunology , Acquired Immunodeficiency Syndrome/immunology , Cryptococcosis/immunology , Antigens
16.
Cells ; 11(21)2022 10 26.
Article in English | MEDLINE | ID: mdl-36359781

ABSTRACT

Chimeric antigen receptors (CARs) redirect T cells to recognize a specific target. CAR components play a pivotal role in antigen specificity, structure stability, expression on cell surface, and induction of cellular activation, which together determine the success of CAR T-cell therapy. CAR products targeting B-cell lymphoma encouraged the development of new CAR applications beyond cancer. For example, our group developed a CAR to specifically target glucuronoxylomannan (GXM) in the capsule of Cryptococcus species, called GXMR-CAR or GXMR-IgG4-28ζ. Cryptococcus are fungi that cause the life-threatening disease cryptococcosis, and GXMR-IgG4-28ζ redirected T cells to target yeast and titan cell forms of Cryptococcus spp. Here, we replaced the IgG4-hinge and CD28-transmembrane domains from GXMR-CAR with a CD8α molecule as the hinge/transmembrane and used CD28 or 4-1BB molecules as co-stimulatory domains, creating GXMR-8-28ζ and GXMR-8-BBζ, respectively. Jurkat cells expressing GXMR-CAR containing CD8α as the hinge/transmembrane improved the CAR expression and induced a tonic signaling. GXMR-8-28ζ and GXMR-8-BBζ induced high levels of IL-2 and up-regulation of CD69 expression in the presence of reference strains of C. neoformans and C. gattii. Moreover, GXMR-8-28ζ and GXMR-8-BBζ showed increased strength in response to incubation with clinical isolates of Cryptococcuss spp., and 4-1BB co-stimulatory domain triggered a more pronounced cellular activation. Dasatinib, a tyrosine kinase inhibitor, attenuated the GXMR-CAR signaling cascade's engagement in the presence or absence of its ligand. This study optimized novel second-generation GXMR-CARs containing the CD8-hinge/transmembrane domain that improved CAR expression, antigen recognition, and signal strength in T-cell activation.


Subject(s)
Cryptococcus , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Humans , CD28 Antigens/metabolism , Cryptococcus/immunology , Cryptococcus/metabolism , Immunoglobulin G , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/chemistry , Receptors, Chimeric Antigen/metabolism , Signal Transduction , Xenograft Model Antitumor Assays , Polysaccharides/chemistry , Polysaccharides/immunology , Cryptococcosis/immunology , Cryptococcosis/therapy
17.
Nature ; 608(7921): 161-167, 2022 08.
Article in English | MEDLINE | ID: mdl-35896747

ABSTRACT

Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Fungal Proteins , Hypersensitivity , Inflammation , Toll-Like Receptor 4 , Virulence Factors , Animals , Cryptococcosis/immunology , Cryptococcosis/microbiology , Cryptococcosis/pathology , Cryptococcus neoformans/immunology , Cryptococcus neoformans/pathogenicity , Cytokines/immunology , Fungal Proteins/immunology , Fungal Proteins/metabolism , Hypersensitivity/immunology , Hypersensitivity/microbiology , Immunity, Innate , Inflammation/immunology , Inflammation/microbiology , Lipopolysaccharides/immunology , Lung/immunology , Lung/microbiology , Macrophages/cytology , Macrophages/immunology , Macrophages/microbiology , Mice , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Virulence , Virulence Factors/immunology
18.
Immunology ; 165(1): 110-121, 2022 01.
Article in English | MEDLINE | ID: mdl-34458991

ABSTRACT

Decades of studies on antibody structure led to the tenet that the V region binds antigens while the C region interacts with immune effectors. In some antibodies, however, the C region affects affinity and/or specificity for the antigen. One example is the 3E5 monoclonal murine IgG family, in which the mIgG3 isotype has different fine specificity to the Cryptococcus neoformans capsule polysaccharide than the other mIgG isotypes despite their identical variable sequences. Our group serendipitously found another pair of mIgG1/mIgG3 antibodies based on the 2H1 hybridoma to the C. neoformans capsule that recapitulated the differences observed with 3E5. In this work, we report the molecular basis of the constant domain effects on antigen binding using recombinant antibodies. As with 3E5, immunofluorescence experiments show a punctate pattern for 2H1-mIgG3 and an annular pattern for 2H1-mIgG1; these binding patterns have been associated with protective efficacy in murine cryptococcosis. Also as observed with 3E5, 2H1-mIgG3 bound on ELISA to both acetylated and non-acetylated capsular polysaccharide, whereas 2H1-mIgG1 only bound well to the acetylated form, consistent with differences in fine specificity. In engineering hybrid mIgG1/mIgG3 antibodies, we found that switching the 2H1-mIgG3 hinge for its mIgG1 counterpart changed the immunofluorescence pattern to annular, but a 2H1-mIgG1 antibody with an mIgG3 hinge still had an annular pattern. The hinge is thus necessary but not sufficient for these changes in binding to the antigen. This important role for the constant region in antigen binding could affect antibody biology and engineering.


Subject(s)
Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Bacterial Capsules/chemistry , Bacterial Capsules/immunology , Cryptococcus neoformans/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Binding Sites, Antibody , CHO Cells , Cell Line , Cricetulus , Cryptococcosis/immunology , Epitopes/chemistry , Epitopes/immunology , Mice , Recombinant Fusion Proteins , Structure-Activity Relationship
19.
Sci Rep ; 11(1): 21110, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702961

ABSTRACT

Cryptococcus deneoformans is an opportunistic fungal pathogen that infects the lungs via airborne transmission and frequently causes fatal meningoencephalitis. Claudins (Cldns), a family of proteins with 27 members found in mammals, form the tight junctions within epithelial cell sheets. Cldn-4 and 18 are highly expressed in airway tissues, yet the roles of these claudins in respiratory infections have not been clarified. In the present study, we analyzed the roles of Cldn-4 and lung-specific Cldn-18 (luCldn-18) in host defense against C. deneoformans infection. luCldn-18-deficient mice exhibited increased susceptibility to pulmonary infection, while Cldn-4-deficient mice had normal fungal clearance. In luCldn-18-deficient mice, production of cytokines including IFN-γ was significantly decreased compared to wild-type mice, although infiltration of inflammatory cells including CD4+ T cells into the alveolar space was significantly increased. In addition, luCldn-18 deficiency led to high K+ ion concentrations in bronchoalveolar lavage fluids and also to alveolus acidification. The fungal replication was significantly enhanced both in acidic culture conditions and in the alveolar spaces of luCldn-18-deficient mice, compared with physiological pH conditions and those of wild-type mice, respectively. These results suggest that luCldn-18 may affect the clinical course of cryptococcal infection indirectly through dysregulation of the alveolar space microenvironment.


Subject(s)
Cellular Microenvironment/immunology , Claudins/deficiency , Cryptococcosis/immunology , Cryptococcus/immunology , Lung/immunology , Pneumonia/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cellular Microenvironment/genetics , Claudins/immunology , Cryptococcosis/genetics , Interferon-gamma/genetics , Interferon-gamma/immunology , Lung/microbiology , Mice , Mice, Knockout , Organ Specificity/genetics , Organ Specificity/immunology , Pneumonia/genetics , Pneumonia/microbiology
20.
mBio ; 12(5): e0270821, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34700378

ABSTRACT

The Cryptococcus gattii species complex has often been referred to as a primary pathogen due to its high infection frequency among apparently immunocompetent patients. In order to scrutinize the immune status of patients and the lineages of etiologic agents, we analyzed patient histories and the molecular types of etiologic agents from 135 global C. gattii cases. Eighty-six of 135 patients had been diagnosed as immunocompetent, although some of them had underlying medical issues, and 49 were diagnosed as immunocompromised with risk factors similar to those seen in Cryptococcus neoformans infection. We focused on the 86 apparently immunocompetent patients and were able to obtain plasma from 32 (37%) to analyze for the presence of autoantibodies against the granulocyte-macrophage colony-stimulating factor (GM-CSF) since these antibodies have been reported as a hidden risk factor for C. gattii infection. Among the 32 patients, 25 were free from any known other health issues, and 7 had various medical conditions at the time of diagnosis for cryptococcosis. Importantly, plasma from 19 (76%) of 25 patients with no recognized underlying medical condition showed the presence of GM-CSF autoantibodies, supporting this antibody as a major hidden risk factor for C. gattii infection. These data indicate that seemingly immunocompetent people with C. gattii infection warrant detailed evaluation for unrecognized immunologic risks. There was no relationship between molecular type and underlying conditions of patients. Frequency of each molecular type was related to its geographic origin exemplified by the overrepresentation of VGIV in HIV-positive (HIV+) patients due to its prevalence in Africa. IMPORTANCE The C. neoformans and C. gattii species complex causes cryptococcosis. The C. neoformans species complex is known as an opportunistic pathogen since it primarily infects immunocompromised patients. C. gattii species complex has been referred to as a primary pathogen due to its high infection frequency in apparently immunocompetent people. We analyzed 135 global cases of C. gattii infection with documented patient history. Eighty-six of 135 patients were originally diagnosed as immunocompetent and 49 as immunosuppressed with similar underlying conditions reported for C. neoformans infection. A significant number of C. gattii patients without known underlying conditions possessed autoantibodies against granulocytes-macrophage colony-stimulating factor (GM-CSF) in their plasma, supporting the presence of GM-CSF antibodies as a hidden risk factor for C. gattii infection. No relationship was found between C. gattii lineages and the underlying conditions except for overrepresentation of the molecular type VGIV among HIV+ patients due to the prevalence of VGIV in Africa.


Subject(s)
Cryptococcosis/etiology , Cryptococcus gattii/pathogenicity , Opportunistic Infections/etiology , Opportunistic Infections/microbiology , Africa/epidemiology , Autoantibodies/blood , Autoantibodies/immunology , Cryptococcosis/immunology , Cryptococcosis/microbiology , Cryptococcus gattii/classification , Cryptococcus gattii/genetics , Cryptococcus gattii/immunology , HIV Infections/complications , HIV Infections/epidemiology , Humans , Immunocompetence , Immunocompromised Host , Opportunistic Infections/immunology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...