Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
2.
Proc Natl Acad Sci U S A ; 121(7): e2315733121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38330012

ABSTRACT

Cryptococcus neoformans is a fungal pathogen responsible for cryptococcosis and cryptococcal meningitis. The C. neoformans' capsular polysaccharide and its shed exopolysaccharide function both as key virulence factors and to protect the fungal cell from phagocytosis. Currently, a glycoconjugate of these polysaccharides is being explored as a vaccine to protect against C. neoformans infection. In this study, NOE and J-coupling values from NMR experiments were consistent with a converged structure of the synthetic decasaccharide, GXM10-Ac3, calculated from MD simulations. GXM10-Ac3 was designed as an extension of glucuronoxylomannan (GXM) polysaccharide motif (M2) which is common in the clinically predominant serotype A strains and is recognized by protective forms of GXM-specific monoclonal antibodies. The M2 motif is a hexasaccharide with a three-residue α-mannan backbone, modified by ß-(1→2)-xyloses (Xyl) on the first two mannoses (Man) and a ß-(1→2)-glucuronic acid (GlcA) on the third Man. Combined NMR and MD analyses reveal that GXM10-Ac3 adopts an extended structure, with Xyl/GlcA branches alternating sides along the α-mannan backbone. O-acetyl esters also alternate sides and are grouped in pairs. MD analysis of a twelve M2-repeating unit polymer supports the notion that the GXM10-Ac3 structure is uniformly represented throughout the polysaccharide. This derived GXM model displays high flexibility while maintaining a structural identity, yielding insights to further explore intermolecular interactions between polysaccharides, interactions with anti-GXM mAbs, and the cryptococcal polysaccharide architecture.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Mannans , Cryptococcus neoformans/chemistry , Polysaccharides/chemistry , Cryptococcosis/microbiology , Magnetic Resonance Spectroscopy , Antibodies, Monoclonal , Antibodies, Fungal
3.
Bioengineered ; 14(1): 2281059, 2023 12.
Article in English | MEDLINE | ID: mdl-37978838

ABSTRACT

Cryptococcus spp. has a polysaccharide capsule composed of glucuronoxylomannan-GXM, a major virulence factor that can prevent the recognition of fungi by immune cells. Chimeric Antigen Receptor (CAR) redirects T cells to target Cryptococcus spp. as previously demonstrated by a CAR specific to GXM, GXMR-CAR. The current study evaluated the strength of the signal transduction triggered by GXMR-CAR, composed of a distinct antigen-binding domain sourced from a single-chain variable fragment (scFv). GXM-specific scFv derived from mAbs 2H1 and 18B7, 2H1-GXMR-CAR and 18B7-GXMR-CAR, respectively, were designed to express CD8 molecule as hinge/transmembrane, and the costimulatory molecule CD137 (4-1BB) coupled to CD3ζ. The 2H1-GXMR-CAR or 18B7-GXMR-CAR Jurkat cells recognized soluble GXM from C. gattii and C. neoformans, and the levels of IL-2 released by the modified cells did not differ between the GXMR-CAR constructs after exposure to Cryptococcus spp. 18B7-GXMR-CAR triggered tonic signaling was more pronounced in modified Jurkat cells, and a protein kinase inhibitor of the Src family (dasatinib) significantly reduced GXMR-CAR tonic signaling and inhibited cell activation against ligands. 18B7 scFv showed a structural modification of the variable heavy (VH) chain that clarified the difference in the strength of tonic signaling and the level of cell activation between 2H1-GXMR-CAR and 18B7-GXMR-CAR. GXMR-CAR constructs induced T-cell activation against clinical isolates of Cryptococcus spp. and serum from patients with cryptococcosis induced high levels of IL-2, mainly in cells modified with 18B7-GXMR-CAR. Thus, 18B7-GXMR-CAR and 2H1-GXMR-CAR mediated T cell activation against Cryptococcus spp. and 18B7 and 2H1 scFv influenced the strength of tonic signaling.


2H1-GXMR-CAR and 18B7-GXMR-CAR are efficiently expressed on the cell surface;2H1-GXMR-CAR and 18B7-GXMR-CAR redirected T cells toward the ligands;18B7-GXMR-CAR provided highest levels of tonic signaling;Binding pocket of 18B7 scFv favored the tonic signaling triggered by GXMR-CAR;Binding pocket of 18B7 scFv favored the tonic signaling triggered by GXMR-CAR.


Subject(s)
Cryptococcus neoformans , Receptors, Chimeric Antigen , Single-Chain Antibodies , Humans , Interleukin-2 , Polysaccharides/chemistry , Cryptococcus neoformans/chemistry , Signal Transduction
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1310-1318, 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37489009

ABSTRACT

Intein-mediated protein splicing has been widely used in protein engineering; however, the splicing efficiency and extein specificity usually limit its further application. Thus, there is a demand for more general inteins that can overcome these limitations. Here, we study the trans-splicing of CPE intein obtained from the directed evolution of Cne PRP8, which shows that its splicing rate is ~29- fold higher than that of the wild-type. When the +1 residue of C-extein is changed to cysteine, CPE also shows high splicing activity. Faster association and higher affinity may contribute to the high splicing rate compared with wild-type intein. These findings have important implications for the future engineering of inteins and provide clues for fundamental studies of protein structure and folding.


Subject(s)
Cryptococcus neoformans , Inteins , Protein Splicing , Cryptococcus neoformans/chemistry , Cryptococcus neoformans/genetics , Protein Engineering , Proteins/chemistry , Directed Molecular Evolution
5.
mBio ; 12(6): e0327321, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34933457

ABSTRACT

Histone chaperoning ensures genomic integrity during routine processes such as DNA replication and transcription as well as DNA repair upon damage. Here, we identify a nuclear J domain protein, Dnj4, in the fungal pathogen Cryptococcus neoformans and demonstrate that it interacts with histones 3 and 4, suggesting a role as a histone chaperone. In support of this idea, a dnj4Δ deletion mutant had elevated levels of DNA damage and was hypersensitive to DNA-damaging agents. The transcriptional response to DNA damage was also impaired in the dnj4Δ mutant. Genes related to DNA damage and iron homeostasis were upregulated in the wild-type strain in response to hydroxyurea treatment; however, their upregulation was either absent from or reduced in the dnj4Δ mutant. Accordingly, excess iron rescued the mutant's growth in response to DNA-damaging agents. Iron homeostasis is crucial for virulence in C. neoformans; however, Dnj4 was found to be dispensable for disease in a mouse model of cryptococcosis. Finally, we confirmed a conserved role for Dnj4 as a histone chaperone by expressing it in Saccharomyces cerevisiae and showing that it disrupted endogenous histone chaperoning. Altogether, this study highlights the importance of a JDP cochaperone in maintaining genome integrity in C. neoformans. IMPORTANCE DNA replication, gene expression, and genomic repair all require precise coordination of the many proteins that interact with DNA. This includes the histones as well as their chaperones. In this study, we show that a histone chaperone, Dnj4, is required for genome integrity and for the response to DNA damage. The gene encoding this protein in Cryptococcus neoformans lacks an ortholog in Saccharomyces cerevisiae; however, it is conserved in humans in which its ortholog is essential. Since it is not essential in C. neoformans, we were able to generate deletion mutants to characterize the roles of Dnj4. We also expressed Dnj4 in S. cerevisiae, in which it was able to bind S. cerevisiae histones and interfere with existing histone chaperoning machinery. Therefore, we show a conserved role for Dnj4 in histone chaperoning that suggests that C. neoformans is useful to better understand aspects of this important biological process.


Subject(s)
Cryptococcosis/microbiology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , DNA Damage , Fungal Proteins/metabolism , Histone Chaperones/metabolism , Cryptococcus neoformans/chemistry , Cryptococcus neoformans/growth & development , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Histone Chaperones/chemistry , Histone Chaperones/genetics , Histones/genetics , Histones/metabolism , Humans , Iron/metabolism , Protein Binding , Protein Domains
6.
mBio ; 12(6): e0279021, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34724824

ABSTRACT

The environmental yeast Cryptococcus neoformans is the most common cause of deadly fungal meningitis in primarily immunocompromised populations. A number of factors contribute to cryptococcal pathogenesis. Among them, inositol utilization has been shown to promote C. neoformans development in nature and invasion of central nervous system during dissemination. The mechanisms of the inositol regulation of fungal virulence remain incompletely understood. In this study, we analyzed inositol-induced capsule growth and the contribution of a unique inositol catabolic pathway in fungal development and virulence. We found that genes involved in the inositol catabolic pathway are highly induced by inositol, and they are also highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. This pathway in C. neoformans contains three genes encoding myo-inositol oxygenases that convert myo-inositol into d-glucuronic acid, a substrate of the pentose phosphate cycle and a component of the polysaccharide capsule. Our mutagenesis analysis demonstrates that inositol catabolism is required for C. neoformans virulence and deletion mutants of myo-inositol oxygenases result in altered capsule growth as well as the polysaccharide structure, including O-acetylation. Our study indicates that the ability to utilize the abundant inositol in the brain may contribute to fungal pathogenesis in this neurotropic fungal pathogen. IMPORTANCE The human pathogen Cryptococcus neoformans is the leading cause of fungal meningitis in primarily immunocompromised populations. Understanding how this environmental organism adapts to the human host to cause deadly infection will guide our development of novel disease control strategies. Our recent studies revealed that inositol utilization by the fungus promotes C. neoformans development in nature and invasion of the central nervous system during infection. The mechanisms of the inositol regulation in fungal virulence remain incompletely understood. In this study, we found that C. neoformans has three genes encoding myo-inositol oxygenase, a key enzyme in the inositol catabolic pathway. Expression of these genes is highly induced by inositol, and they are highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. Our mutagenesis analysis indeed demonstrates that inositol catabolism is required for C. neoformans virulence by altering the growth and structure of polysaccharide capsule, a major virulence factor. Considering the abundance of free inositol and inositol-related metabolites in the brain, our study reveals an important mechanism of host inositol-mediated fungal pathogenesis for this neurotropic fungal pathogen.


Subject(s)
Cryptococcus neoformans/metabolism , Cryptococcus neoformans/pathogenicity , Fungal Capsules/chemistry , Inositol/metabolism , Meningitis, Cryptococcal/microbiology , Animals , Brain/metabolism , Brain/microbiology , Cryptococcus neoformans/chemistry , Cryptococcus neoformans/genetics , Female , Fungal Capsules/genetics , Fungal Capsules/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Humans , Male , Meningitis, Cryptococcal/metabolism , Mice , Oxygenases/genetics , Oxygenases/metabolism , Rabbits , Virulence
7.
Microbiology (Reading) ; 167(6)2021 06.
Article in English | MEDLINE | ID: mdl-34125663

ABSTRACT

The CAP64 gene is known to be involved in capsule formation in the basidiomycete yeast Cryptococcus neoformans. A null mutant of CAP64, Δcap64, lacks a capsule around the cell wall and its acidic organelles are not stained with quinacrine. In order to clarify whether the Cap64 protein indeed maintains vacuole or vesicle acidification, so that the vesicle containing the capsule polysaccharide or DBB substrate are transported to the cell membrane side, the relationship between CAP64 and intracellular transport genes and between CAP64 and enzyme-secretion activity were analysed. Laccase activity was higher in the Δcap64 strain than in the wild-type strain, and the transcriptional levels of SAV1 and VPH1 were also higher in the Δcap64 strain than in the wild-type strain. The intracellular localization of the Cap64 protein was analysed by overexpressing an mCherry-tagged Cap64 and observing its fluorescence. The Cap64 protein was accumulated within cells in a patch-like manner. The quinacrine-stained cells were observed to analyse the acidified cell compartments; quinacrine was found to be accumulated in a patch-like manner, with the patches overlapping the fluorescence of CAP64-mCherry fusion protein. Quinacrine was thus accumulated in a patch-like fashion in the cells, and the mCherry-tagged Cap64 protein position was consistent with the position of quinacrine accumulation in cells. These results suggest that CAP64 might be involved in intracellular acidification and vesicle secretion via exocytosis.


Subject(s)
Cryptococcosis/microbiology , Cryptococcus neoformans/metabolism , Fungal Proteins/metabolism , Polysaccharides/biosynthesis , Cryptococcus neoformans/chemistry , Cryptococcus neoformans/genetics , Cryptococcus neoformans/growth & development , Fungal Proteins/genetics , Homeostasis , Humans , Hydrogen-Ion Concentration , Protein Transport , Vacuoles/chemistry , Vacuoles/metabolism
8.
Cell Cycle ; 20(3): 271-282, 2021 02.
Article in English | MEDLINE | ID: mdl-33463377

ABSTRACT

Cryptococcus neoformans is a pathogenic fungus which causes millions of deaths and infections, especially threatening immunocompromised individuals. During the development of new drugs, the ubiquitination has been found to play an important role in the regulation of the virulence and cell cycle of this fungus. Based on this mechanism, ubiquitination-related mutant strains exhibiting cell cycle arrest have been established for drug development for the fungus. However, flow cytometry detection of the cell cycle in fungi is generally difficult because the thick cell wall and capsule of fungi generally contribute to a nonspecific signal of cytometry. In this study, an improved method, derived from Saccharomyces cerevisiae assays, is developed to specifically stain C. neoformans, in whose cell cycle the G1 and G2 peaks are separated enough to be allowed for cell cycle analysis. As a result, the improved method facilitates the detection of the alterations in the cell cycle of C. neoformans with a mutation that results in cell cycle arrest, which distinctly delays the cell division of C. neoformans. Thus, the improved method reported here provides detailed technical information regarding assays on C. neoformans and, more importantly, offers a solution for assessing the cell cycle in other fungi in the future. Abbreviation: PI: propidium iodide.


Subject(s)
Benzothiazoles/analysis , Cell Cycle/physiology , Cryptococcus neoformans/chemistry , Cryptococcus neoformans/physiology , Diamines/analysis , Quinolines/analysis , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/physiology , Cells, Cultured , Flow Cytometry/methods , Fluorescent Dyes/analysis , Fungal Proteins/analysis , Fungal Proteins/physiology , Staining and Labeling/methods
9.
Org Biomol Chem ; 19(13): 2923-2931, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33471013

ABSTRACT

The synthesis of a vicinally branched trisaccharide composed of two d-galactofuranoside residues attached viaß-(1 → 2)- and ß-(1 → 3)-linkages to the α-d-galactopyranoside unit has been performed for the first time. The reported trisaccharide represents the galactoxylomannan moiety first described in 2017, which is the capsular polysaccharide of the opportunistic fungal pathogen Cryptococcus neoformans responsible for life-threatening infections in immunocompromised patients. The NMR-data reported here for the synthetic model trisaccharide are in good agreement with the previously assessed structure of galactoxylomannan and are useful for structural analysis of related polysaccharides. The target trisaccharide as well as the constituent disaccharides were analyzed by a combination of computational and NMR methods to demonstrate good convergence of the theoretical and experimental results. The results suggest that the furanoside ring conformation may strongly depend on the aglycon structure. The reported conformational tendencies are important for further analysis of carbohydrate-protein interaction, which is critical for the host response toward C. neoformans infection.


Subject(s)
Cryptococcus neoformans/chemistry , Polysaccharides/chemistry , Carbohydrate Conformation , Density Functional Theory , Magnetic Resonance Spectroscopy , Polysaccharides/chemical synthesis
10.
mSphere ; 5(5)2020 09 09.
Article in English | MEDLINE | ID: mdl-32907953

ABSTRACT

Intracellular calcium (Ca2+) is crucial for signal transduction in Cryptococcus neoformans, the major cause of fatal fungal meningitis. The calcineurin pathway is the only Ca2+-requiring signaling cascade implicated in cryptococcal stress adaptation and virulence, with Ca2+ binding mediated by the EF-hand domains of the Ca2+ sensor protein calmodulin. In this study, we identified the cryptococcal ortholog of neuronal calcium sensor 1 (Ncs1) as a member of the EF-hand superfamily. We demonstrated that Ncs1 has a role in Ca2+ homeostasis under stress and nonstress conditions, as the ncs1Δ mutant is sensitive to a high Ca2+ concentration and has an elevated basal Ca2+ level. Furthermore, NCS1 expression is induced by Ca2+, with the Ncs1 protein adopting a punctate subcellular distribution. We also demonstrate that, in contrast to the case with Saccharomyces cerevisiae, NCS1 expression in C. neoformans is regulated by the calcineurin pathway via the transcription factor Crz1, as NCS1 expression is reduced by FK506 treatment and CRZ1 deletion. Moreover, the ncs1Δ mutant shares a high temperature and high Ca2+ sensitivity phenotype with the calcineurin and calmodulin mutants (cna1Δ and cam1Δ), and the NCS1 promoter contains two calcineurin/Crz1-dependent response elements (CDRE1). Ncs1 deficiency coincided with reduced growth, characterized by delayed bud emergence and aberrant cell division, and hypovirulence in a mouse infection model. In summary, our data show that Ncs1 has a significant role as a Ca2+ sensor in C. neoformans, working with calcineurin to regulate Ca2+ homeostasis and, consequently, promote fungal growth and virulence.IMPORTANCECryptococcus neoformans is the major cause of fungal meningitis in HIV-infected patients. Several studies have highlighted the important contributions of Ca2+ signaling and homeostasis to the virulence of C. neoformans Here, we identify the cryptococcal ortholog of neuronal calcium sensor 1 (Ncs1) and demonstrate its role in Ca2+ homeostasis, bud emergence, cell cycle progression, and virulence. We also show that Ncs1 function is regulated by the calcineurin/Crz1 signaling cascade. Our work provides evidence of a link between Ca2+ homeostasis and cell cycle progression in C. neoformans.


Subject(s)
Calcineurin/genetics , Calcium-Binding Proteins/genetics , Cell Division/genetics , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , Neuronal Calcium-Sensor Proteins/genetics , Neuropeptides/genetics , Animals , Cryptococcus neoformans/chemistry , Female , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Humans , Mice , Mice, Inbred C57BL , Signal Transduction , Virulence/genetics
11.
Carbohydr Res ; 497: 108150, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32932031

ABSTRACT

Cryptococcus neoformans is an opportunistic fungal pathogen, which is a frequent cause of a life-threatening meningitis in immunocompromised individuals. We report the first total synthesis of the serotype B heptasaccharide repeating motif. The use of di- and trisaccharide building blocks enabled a concise convergent synthesis of the protected 6-O-acetylated repeating motif in three steps. Glycosylations gave total 1,2-trans selectivity, despite the absence of a neighboring participating group. Using our recently disclosed catalyst pre-tuning strategy global deprotection gave the desired 6-O-acetylated heptasaccharide with no saturation by-products, overall in four steps 31% yield. The serotype B glucuronoxylomannan (GXM) glycans accessed in this study will increase the structurally diversity of our GXM microarray, allowing further steps towards the development of semi-synthetic vaccines against cryptococcal infections.


Subject(s)
Cryptococcus neoformans/chemistry , Cryptococcus neoformans/cytology , Fungal Capsules/chemistry , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Repetitive Sequences, Nucleic Acid , Acetylation , Chemistry Techniques, Synthetic
12.
Molecules ; 25(11)2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32517333

ABSTRACT

The pathogenic encapsulated Cryptococcus neoformans fungus causes serious disease in immunosuppressed hosts. The capsule, a key virulence factor, consists primarily of the glucuronoxylomannan polysaccharide (GXM) that varies in composition according to serotype. While GXM is a potential vaccine target, vaccine development has been confounded by the existence of epitopes that elicit non-protective antibodies. Although there is evidence for protective antibodies binding conformational epitopes, the secondary structure of GXM remains an unsolved problem. Here an array of molecular dynamics simulations reveal that the GXM mannan backbone is consistently extended and relatively inflexible in both C. neoformans serotypes A and D. Backbone substitution does not alter the secondary structure, but rather adds structural motifs: ß DGlcA and ß DXyl side chains decorate the mannan backbone in two hydrophillic fringes, with mannose-6-O-acetylation forming a hydrophobic ridge between them. This work provides mechanistic rationales for clinical observations-the importance of O-acetylation for antibody binding; the lack of binding of protective antibodies to short GXM fragments; the existence of epitopes that elicit non-protective antibodies; and the self-aggregation of GXM chains-indicating that molecular modelling can play a role in the rational design of conjugate vaccines.


Subject(s)
Cryptococcus neoformans/chemistry , Epitopes/chemistry , Polysaccharides/chemistry , Acetates/chemistry , Amino Acid Motifs , Antibodies/chemistry , Antibody Specificity , Antigens/chemistry , Antigens, Fungal/chemistry , Carbohydrates/chemistry , Cluster Analysis , Disaccharides/chemistry , Glycosides/chemistry , Humans , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Secondary , Virulence Factors
13.
Fungal Biol ; 124(5): 516-524, 2020 05.
Article in English | MEDLINE | ID: mdl-32389315

ABSTRACT

Maintaining appropriate levels of trace elements during infection of a host is essential for microbial pathogenicity. Here we compared the uptake of 10 trace elements from 3 commonly-used laboratory media by 3 pathogens, Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, and a model yeast, Saccharomyces cerevisiae. The trace element composition of the yeasts, C. albicans, C. neoformans and S. cerevisiae, grown in rich (YPD) medium, differed primarily in P, S, Fe, Zn and Co. Speciation analysis of the intracellular fraction, which indicates the size of the organic ligands with which trace elements are complexed, showed that the ligands for S were similar in the three fungi but there were significant differences in binding partners for Fe and Zn between C. neoformans and S.cerevisiae. The profile for Cu varied across the 3 yeast species. In a comparison of C. albicans and A. fumigatus hyphae, the former showed higher Fe, Cu, Zn and Mn, while A. fumigatus contained higher P, S Ca and Mo. Washing C. albicans cells with the cell-impermeable chelator, EGTA, depleted 50-90 % of cellular Ca, suggesting that a large proportion of this cation is stored in the cell wall. Treatment with the cell wall stressor, Calcofluor White (CFW), alone had little effect on the elemental profile whilst combined Ca + CFW stress resulted in high cellular Cu and very high Ca. Together our data enhance our understanding of trace element uptake by pathogenic fungi and provide evidence for the cell wall as an important storage organelle for Ca.


Subject(s)
Fungi , Trace Elements , Aspergillus fumigatus/chemistry , Candida albicans/chemistry , Cryptococcus neoformans/chemistry , Fungi/chemistry , Saccharomyces cerevisiae/chemistry , Stress, Physiological , Trace Elements/analysis
14.
mBio ; 11(3)2020 05 12.
Article in English | MEDLINE | ID: mdl-32398313

ABSTRACT

Cryptococcus neoformans is a human-pathogenic fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised individuals. To investigate the roles of N-glycan core structure in cryptococcal pathogenicity, we constructed mutant strains of C. neoformans with defects in the assembly of lipid-linked N-glycans in the luminal side of the endoplasmic reticulum (ER). Deletion of ALG3 (alg3Δ), which encodes dolichyl-phosphate-mannose (Dol-P-Man)-dependent α-1,3-mannosyltransferase, resulted in the production of truncated neutral N-glycans carrying five mannose residues as a major species. Despite moderate or nondetectable defects in virulence-associated phenotypes in vitro, the alg3Δ mutant was avirulent in a mouse model of systemic cryptococcosis. Notably, the mutant did not show defects in early stages of host cell interaction during infection, including attachment to lung epithelial cells, opsonic/nonopsonic phagocytosis, and manipulation of phagosome acidification. However, the ability to drive macrophage cell death was greatly decreased in this mutant, without loss of cell wall remodeling capacity. Furthermore, deletion of ALG9 and ALG12, encoding Dol-P-Man-dependent α-1,2-mannosyltransferases and α-1,6-mannosyltransferases, generating truncated core N-glycans with six and seven mannose residues, respectively, also displayed remarkably reduced macrophage cell death and in vivo virulence. However, secretion levels of interleukin-1ß (IL-1ß) were not reduced in the bone marrow-derived dendritic cells obtained from Asc- and Gsdmd-deficient mice infected with the alg3Δ mutant strain, excluding the possibility that pyroptosis is a main host cell death pathway dependent on intact core N-glycans. Our results demonstrated N-glycan structures as a critical feature in modulating death of host cells, which is exploited by as a strategy for host cell escape for dissemination of C. neoformansIMPORTANCE We previously reported that the outer mannose chains of N-glycans are dispensable for the virulence of C. neoformans, which is in stark contrast to findings for the other human-pathogenic yeast, Candida albicans Here, we present evidence that an intact core N-glycan structure is required for C. neoformans pathogenicity by systematically analyzing alg3Δ, alg9Δ, and alg12Δ strains that have defects in lipid-linked N-glycan assembly and in in vivo virulence. The alg null mutants producing truncated core N-glycans were defective in inducing host cell death after phagocytosis, which is triggered as a mechanism of pulmonary escape and dissemination of C. neoformans, thus becoming inactive in causing fatal infection. The results clearly demonstrated the critical features of the N-glycan structure in mediating the interaction with host cells during fungal infection. The delineation of the roles of protein glycosylation in fungal pathogenesis not only provides insight into the glycan-based fungal infection mechanism but also will aid in the development of novel antifungal agents.


Subject(s)
Cell Death , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , Host-Pathogen Interactions , Polysaccharides/chemistry , A549 Cells , Animals , Cryptococcosis/blood , Cryptococcus neoformans/chemistry , Disease Models, Animal , Female , Glycosylation , Humans , Macrophages/microbiology , Macrophages/pathology , Mannose/chemistry , Mice , Mutation , Virulence
15.
mSphere ; 5(2)2020 04 29.
Article in English | MEDLINE | ID: mdl-32350094

ABSTRACT

Cryptococcus neoformans and Cryptococcus gattii are pathogenic fungi that cause significant morbidity and mortality. Cell surface hydrophobicity (CSH) is a biophysical parameter that influences the adhesion of fungal cells or spores to biotic and abiotic surfaces. C. neoformans is encased by polysaccharide capsule that is highly hydrophilic and is a critical determinant of virulence. In this study, we report large differences in the CSH of some C. neoformans and C. gattii strains. The capsular polysaccharides of C. neoformans strains differ in repeating motifs and therefore vary in the number of hydroxyl groups, which, along with higher-order structure of the capsule, may contribute to the variation in hydrophobicity that we observed. We found that cell wall composition, in the context of chitin-chitosan content, does not influence CSH. For C. neoformans, CSH correlated with phagocytosis by natural soil predator Acanthamoeba castellanii Furthermore, capsular binding of the protective antibody (18B7), but not the nonprotective antibody (13F1), altered the CSH of C. neoformans strains. Variability in CSH could be an important characteristic in comparing the biological properties of cryptococcal strains.IMPORTANCE The interaction of a microbial cell with its environment is influenced by the biophysical properties of a cell. The affinity of the cell surface for water, defined by the cell surface hydrophobicity (CSH), is a biophysical parameter that varies among different strains of Cryptococcus neoformans The CSH influences the phagocytosis of the yeast by its natural predator in the soil, the amoeba. Studying variation in biophysical properties like CSH gives us insight into the dynamic host-predator interaction and host-pathogen interaction in a damage-response framework.


Subject(s)
Acanthamoeba castellanii/physiology , Cell Wall/chemistry , Cryptococcus neoformans/physiology , Hydrophobic and Hydrophilic Interactions , Microbial Interactions , Acanthamoeba castellanii/microbiology , Chitin/analysis , Chitosan/analysis , Cryptococcus neoformans/chemistry , Phagocytosis
16.
Mycoses ; 63(7): 644-652, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32401381

ABSTRACT

Invasive fungal diseases are associated with significant morbidity and mortality, particularly in immunocompromised individuals. Early and accurate diagnosis is crucial for effective treatment. Despite traditional methods such as microbiological culture, histopathology, radiology and direct microscopy are available, antigen/antibody-based diagnostics are emerging for diagnosis of invasive fungal infections (IFI). Fungal cell wall is a unique structure composed of polysaccharides that are well correlated with fungal burden during fungal infections. Based on this feature, cell wall polysaccharides have been explored as antigens in IFIs diagnostics such as the galactomannan assay, mannan test, ß-glucan assay and cryptococcal CrAg test. Herein, we provide an overview on the cell wall polysaccharides from three opportunistic pathogens: Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans, and their applications for IFIs diagnosis. The clinical outcome of newly developed cell wall polysaccharides-based diagnostics is also discussed.


Subject(s)
Cell Wall/chemistry , Fungal Polysaccharides/chemistry , Invasive Fungal Infections/diagnosis , Antigens, Fungal/blood , Aspergillus fumigatus/chemistry , Candida albicans/chemistry , Cryptococcus neoformans/chemistry , Galactose/analogs & derivatives , Humans , Invasive Fungal Infections/blood , Invasive Fungal Infections/microbiology , Mannans/blood
17.
J Biol Chem ; 295(13): 4327-4340, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32005661

ABSTRACT

Chemical biology is an emerging field that enables the study and manipulation of biological systems with probes whose reactivities provide structural insights. The opportunistic fungal pathogen Cryptococcus neoformans possesses a polysaccharide capsule that is a major virulence factor, but is challenging to study. We report here the synthesis of a hydroxylamine-armed fluorescent probe that reacts with reducing glycans and its application to study the architecture of the C. neoformans capsule under a variety of conditions. The probe signal localized intracellularly and at the cell wall-membrane interface, implying the presence of reducing-end glycans at this location where the capsule is attached to the cell body. In contrast, no fluorescence signal was detected in the capsule body. We observed vesicle-like structures containing the reducing-end probe, both intra- and extracellularly, consistent with the importance of vesicles in capsular assembly. Disrupting the capsule with DMSO, ultrasound, or mechanical shear stress resulted in capsule alterations that affected the binding of the probe, as reducing ends were exposed and cell membrane integrity was compromised. Unlike the polysaccharides in the assembled capsule, isolated exopolysaccharides contained reducing ends. The reactivity of the hydroxylamine-armed fluorescent probe suggests a model for capsule assembly whereby reducing ends localize to the cell wall surface, supporting previous findings suggesting that this is an initiation point for capsular assembly. We propose that chemical biology is a promising approach for studying the C. neoformans capsule and its associated polysaccharides to unravel their roles in fungal virulence.


Subject(s)
Capsules/chemistry , Cryptococcus neoformans/chemistry , Fluorescent Dyes/chemistry , Hydroxylamines/chemistry , Cell Wall/drug effects , Cell Wall/ultrastructure , Cryptococcosis/genetics , Cryptococcosis/microbiology , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/ultrastructure , Fluorescent Dyes/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/ultrastructure , Humans , Hydroxylamines/chemical synthesis , Polysaccharides/chemistry , Virulence/genetics , Virulence Factors/chemistry
18.
Proc Natl Acad Sci U S A ; 117(7): 3551-3559, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015121

ABSTRACT

Cryptococcus neoformans is an opportunistic fungal pathogen that infects ∼280,000 people every year, causing >180,000 deaths. The human immune system recognizes chitin as one of the major cell-wall components of invading fungi, but C. neoformans can circumvent this immunosurveillance mechanism by instead exposing chitosan, the partly or fully deacetylated form of chitin. The natural production of chitosans involves the sequential action of chitin synthases (CHSs) and chitin deacetylases (CDAs). C. neoformans expresses four putative CDAs, three of which have been confirmed as functional enzymes that act on chitin in the cell wall. The fourth (CnCda4/Fpd1) is a secreted enzyme with exceptional specificity for d-glucosamine at its -1 subsite, thus preferring chitosan over chitin as a substrate. We used site-specific mutagenesis to reduce the subsite specificity of CnCda4 by converting an atypical isoleucine residue in a flexible loop region to the bulkier or charged residues tyrosine, histidine, and glutamic acid. We also investigated the effect of CnCda4 deacetylation products on human peripheral blood-derived macrophages, leading to a model explaining the function of CnCda4 during infection. We propose that CnCda4 is used for the further deacetylation of chitosans already exposed on the C. neoformans cell wall (originally produced by CnChs3 and CnCda1 to 3) or released from the cell wall as elicitors by human chitinases, thus making the fungus less susceptible to host immunosurveillance. The absence of CnCda4 during infection could therefore promote the faster recognition and elimination of this pathogen.


Subject(s)
Amidohydrolases/metabolism , Chitosan/metabolism , Cryptococcus neoformans/enzymology , Fungal Proteins/metabolism , Amidohydrolases/genetics , Cell Wall/enzymology , Cell Wall/genetics , Chitin/chemistry , Chitin/metabolism , Chitosan/chemistry , Cryptococcosis/microbiology , Cryptococcus neoformans/chemistry , Cryptococcus neoformans/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Humans , Substrate Specificity
19.
Curr Protoc Microbiol ; 55(1): e94, 2019 12.
Article in English | MEDLINE | ID: mdl-31797572

ABSTRACT

Cryptococcus neoformans is an opportunistic human fungal pathogen commonly associated with infection in immunocompromised individuals (e.g., patients with HIV/AIDS). Important virulence determinants include the production of a polysaccharide capsule, melanin, and extracellular enzymes, as well as the ability to grow at 37°C. C. neoformans controls a plethora of host defense and evasion mechanisms to survive during infection and to proliferate within the host, causing meningoencephalitis and death. Traditionally, characterization of C. neoformans under different environmental conditions and stresses has relied on genetic and phenotypic analyses, as well as biochemical assays. However, advances in mass spectrometry instrumentation, sample preparation protocols, and bioinformatic tools and databases promote comprehensive profiling of fungal cellular processes, secretion or protein release into the extracellular environment, and vesicle contents. Moreover, proteomics provides insight into regulatory mechanisms influencing signal transduction cascades and protein complexes or networks through profiling of post-translational modifications and protein-protein interactions. Given the medical impact of C. neoformans infections and the recent emergence of antifungal-resistant strains, defining proteins produced in response to unique environments provides an opportunity to uncover antivirulence strategies and alternative therapeutic options to combat infection. Here, we describe culturing and sample preparation of C. neoformans and outline protocols for comprehensively profiling changes in protein abundance within the cellular proteome and secretome. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Growth and sample preparation of Cryptococcus neoformans Basic Protocol 2: Protein extraction from supernatant Basic Protocol 3: Protein extraction from cell pellet Basic Protocol 4: Proteomic profiling and bioinformatics.


Subject(s)
Cryptococcus neoformans/chemistry , Fungal Proteins/analysis , Proteome/analysis , Proteomics/methods , Computational Biology/methods , Cryptococcus neoformans/growth & development , Mass Spectrometry/methods , Microbiological Techniques/methods , Specimen Handling/methods
20.
mBio ; 10(6)2019 11 26.
Article in English | MEDLINE | ID: mdl-31772051

ABSTRACT

Cryptococcus neoformans is a fungal pathogen that infects the lungs and then often disseminates to the central nervous system, causing meningitis. How Cryptococcus is able to suppress host immunity and escape the antifungal activity of macrophages remains incompletely understood. We reported that the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase, promotes Cryptococcus virulence by regulating host-Cryptococcus interactions. Our recent studies demonstrated that the fbp1Δ mutant elicited superior protective Th1 host immunity in the lungs and that the enhanced immunogenicity of heat-killed fbp1Δ yeast cells can be harnessed to confer protection against a subsequent infection with the virulent parental strain. We therefore examined the use of heat-killed fbp1Δ cells in several vaccination strategies. Interestingly, the vaccine protection remains effective even in mice depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that vaccinating mice with heat-killed fbp1Δ induces significant cross-protection against challenge with diverse invasive fungal pathogens, including C. neoformans, C. gattii, and Aspergillus fumigatus, as well as partial protection against Candida albicans Thus, our data suggest that the heat-killed fbp1Δ strain has the potential to be a suitable vaccine candidate against cryptococcosis and other invasive fungal infections in both immunocompetent and immunocompromised populations.IMPORTANCE Invasive fungal infections kill more than 1.5 million people each year, with limited treatment options. There is no vaccine available in clinical use to prevent and control fungal infections. Our recent studies showed that a mutant of the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase in Cryptococcus neoformans, elicited superior protective Th1 host immunity. Here, we demonstrate that the heat-killed fbp1Δ cells (HK-fbp1) can be harnessed to confer protection against a challenge by the virulent parental strain, even in animals depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that HK-fbp1 vaccination induces significant cross-protection against challenge with diverse invasive fungal pathogens. Thus, our data suggest that HK-fbp1 has the potential to be a broad-spectrum vaccine candidate against invasive fungal infections in both immunocompetent and immunocompromised populations.


Subject(s)
Cryptococcosis/prevention & control , Cryptococcus neoformans/immunology , Fungal Vaccines/administration & dosage , Invasive Fungal Infections/prevention & control , Animals , Aspergillus fumigatus/immunology , Aspergillus fumigatus/physiology , Cross Protection , Cryptococcosis/immunology , Cryptococcosis/microbiology , Cryptococcus gattii/immunology , Cryptococcus gattii/physiology , Cryptococcus neoformans/chemistry , Cryptococcus neoformans/genetics , Female , Fungal Proteins/administration & dosage , Fungal Proteins/genetics , Fungal Proteins/immunology , Fungal Vaccines/genetics , Fungal Vaccines/immunology , Hot Temperature , Humans , Invasive Fungal Infections/immunology , Invasive Fungal Infections/microbiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...