Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 881
Filter
1.
PLoS Pathog ; 20(4): e1012174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630801

ABSTRACT

As a type of parasitic agent, satellite RNAs (satRNAs) rely on cognate helper viruses to achieve their replication and transmission. During the infection of satRNAs, helper virus RNAs serve as templates for synthesizing viral proteins, including the replication proteins essential for satRNA replication. However, the role of non-template functions of helper virus RNAs in satRNA replication remains unexploited. Here we employed the well-studied model that is composed of cucumber mosaic virus (CMV) and its associated satRNA. In the experiments employing the CMV trans-replication system, we observed an unexpected phenomenon the replication proteins of the mild strain LS-CMV exhibited defective in supporting satRNA replication, unlike those of the severe strain Fny-CMV. Independent of translation products, all CMV genomic RNAs could enhance satRNA replication, when combined with the replication proteins of CMV. This enhancement is contingent upon the recruitment and complete replication of helper virus RNAs. Using the method developed for analyzing the satRNA recruitment, we observed a markedly distinct ability of the replication proteins from both CMV strains to recruit the positive-sense satRNA-harboring RNA3 mutant for replication. This is in agreement with the differential ability of both 1a proteins in binding satRNAs in plants. The discrepancies provide a convincing explanation for the variation of the replication proteins of both CMV strains in replicating satRNAs. Taken together, our work provides compelling evidence that the non-template functions of helper virus RNAs create an optimal replication environment to enhance satRNA proliferation.


Subject(s)
Cucumovirus , Helper Viruses , RNA, Satellite , RNA, Viral , Virus Replication , Helper Viruses/genetics , Helper Viruses/physiology , Cucumovirus/genetics , Cucumovirus/metabolism , Cucumovirus/physiology , RNA, Satellite/metabolism , RNA, Satellite/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Plant Diseases/virology , Nicotiana/virology , Nicotiana/metabolism , Nicotiana/genetics , Viral Proteins/metabolism , Viral Proteins/genetics
2.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474557

ABSTRACT

This study involved the design and synthesis of a series of novel 4-chromanone-derived compounds. Their in vivo anti-cucumber mosaic virus (CMV) activity in field trials against CMV disease in Passiflora spp. was then assessed. Bioassay results demonstrated that compounds 7c and 7g exhibited remarkable curative effects and protection against CMV, with inhibition rates of 57.69% and 51.73% and 56.13% and 52.39%, respectively, surpassing those of dufulin and comparable to ningnanmycin. Field trials results indicated that compound 7c displayed significant efficacy against CMV disease in Passiflora spp. (passion fruit) after the third spraying at a concentration of 200 mg/L, with a relative control efficiency of 47.49%, surpassing that of dufulin and comparable to ningnanmycin. Meanwhile, nutritional quality test results revealed that compound 7c effectively enhanced the disease resistance of Passiflora spp., as evidenced by significant increases in soluble protein, soluble sugar, total phenol, and chlorophyll contents in Passiflora spp. leaves as well as improved the flavor and taste of Passiflora spp. fruits, as demonstrated by notable increases in soluble protein, soluble sugar, soluble solid, and vitamin C contents in Passiflora spp. fruits. Additionally, a transcriptome analysis revealed that compound 7c primarily targeted the abscisic acid (ABA) signaling pathway, a crucial plant hormone signal transduction pathway, thereby augmenting resistance against CMV disease in Passiflora spp. Therefore, this study demonstrates the potential application of these novel 4-chromanone-derived compounds as effective inducers of plant immunity for controlling CMV disease in Passiflora spp. in the coming decades.


Subject(s)
Chromones , Cucumovirus , Cytomegalovirus Infections , Passiflora , Fruit , Disease Resistance , Sugars/metabolism
3.
Arch Virol ; 169(3): 61, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441697

ABSTRACT

The coat protein (CP) of the cucumber mosaic virus (CMV) yellow strain [CMV(Y)], but not the CMV B2 strain [CMV(B2)], serves as an avirulence determinant against the NB-LRR class RCY1 of Arabidopsis thaliana. To investigate the avirulence function, a series of binary vectors were constructed by partially exchanging the CP coding sequence between CMV(Y) and CMV(B2) or introducing nucleotide substitutions. These vectors were transiently expressed in Nicotiana benthamiana leaves transformed with modified RCY1 cDNA. Analysis of hypersensitive resistance-cell death (HCD), CP accumulation, and defense gene expression at leaf sites infiltrated with Agrobacterium indicated that a single amino acid at position 31 of the CP seems to determine the avirulence function.


Subject(s)
Arabidopsis , Cucumovirus , Cytomegalovirus Infections , Humans , Amino Acids , Arabidopsis/genetics , Cucumovirus/genetics , DNA, Complementary
4.
Int J Biol Macromol ; 262(Pt 2): 130100, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350582

ABSTRACT

Cucumber mosaic virus (CMV) causes huge economic losses to agriculture every year; thus, understanding the mechanism of plant resistance to CMV is imperative. In this study, an integrated analysis of transmission electron microscopy (TEM) observations and proteomic results was used to identify cytoarchitectural differences in Nicotiana tabacum cv. NC82 (susceptible) and cv. Taiyan 8 (T.T.8; resistant) following infection with CMV. The TEM observations showed that the structure of the chloroplasts and mitochondria was severely damaged at the late stage of infection in NC82. Moreover, the chloroplast stroma and mitochondrial cristae were reduced and disaggregated. However, in T.T.8, organelle structure remained largely intact Selective autophagy predominated in T.T.8, whereas non-selective autophagy dominated in NC82, resembling cellular disorder. Proteomic analysis of T.T.8 revealed differentially expressed proteins (DEPs) mostly associated with photosynthesis, respiration, reactive oxygen species (ROS) scavenging, and cellular autophagy. Biochemical analyses revealed that ROS-related catalase, autophagy-related disulfide isomerase, and jasmonic acid and antioxidant secondary metabolite synthesis-related 4-coumarate:CoA ligase (Nt4CL) exhibited different trends and significant differences in expression in the two cultivars after CMV inoculation. Furthermore, mutant phenotyping verified that reduced Nt4CL expression impaired resistance in T.T.8. The identified DEPs are crucial for maintaining intracellular homeostatic balance and likely contribute to the mechanism of CMV resistance in tobacco. These findings increase our understanding of plant cytological mechanisms conferring resistance to CMV infection.


Subject(s)
Cucumovirus , Cytomegalovirus Infections , Cucumovirus/metabolism , Reactive Oxygen Species/metabolism , Nicotiana , Proteomics/methods , Plant Diseases
5.
Virology ; 591: 109983, 2024 03.
Article in English | MEDLINE | ID: mdl-38237218

ABSTRACT

As an important medicinal plant, Panax notoginseng often suffers from various abiotic and biotic stresses during its growth, such as drought, heavy metals, fungi, bacteria and viruses. In this study, the symptom and physiological parameters of cucumber mosaic virus (CMV)-infected P. notoginseng were analyzed and the RNA-seq was performed. The results showed that CMV infection affected the photosynthesis of P. notoginseng, caused serious oxidative damage to P. notoginseng and increased the activity of several antioxidant enzymes. Results of transcriptome analysis and corresponding verification showed that CMV infection changed the expression of genes related to plant defense and promoted the synthesis of P. notoginseng saponins to a certain extent, which may be defensive ways of P. notoginseng against CMV infection. Furthermore, pretreatment plants with saponins reduced the accumulation of CMV. Thus, our results provide new insights into the role of saponins in P. notoginseng response to virus infection.


Subject(s)
Cucumovirus , Cytomegalovirus Infections , Panax notoginseng , Saponins , Saponins/pharmacology , Panax notoginseng/genetics , Panax notoginseng/metabolism , Cucumovirus/genetics , Cucumovirus/metabolism , Plant Roots , Homeostasis , Cytomegalovirus Infections/metabolism
6.
Viruses ; 16(1)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257844

ABSTRACT

Here, we review the research undertaken since the 1950s in Australia's grain cropping regions on seed-borne virus diseases of cool-season pulses caused by alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). We present brief background information about the continent's pulse industry, virus epidemiology, management principles and future threats to virus disease management. We then take a historical approach towards all past investigations with these two seed-borne pulse viruses in the principal cool-season pulse crops grown: chickpea, faba bean, field pea, lentil, narrow-leafed lupin and white lupin. With each pathosystem, the main focus is on its biology, epidemiology and management, placing particular emphasis on describing field and glasshouse experimentation that enabled the development of effective phytosanitary, cultural and host resistance control strategies. Past Australian cool-season pulse investigations with AMV and CMV in the less commonly grown species (vetches, narbon bean, fenugreek, yellow and pearl lupin, grass pea and other Lathyrus species) and those with the five less important seed-borne pulse viruses also present (broad bean stain virus, broad bean true mosaic virus, broad bean wilt virus, cowpea mild mottle virus and peanut mottle virus) are also summarized. The need for future research is emphasized, and recommendations are made regarding what is required.


Subject(s)
Alfalfa mosaic virus , Comovirus , Cucumovirus , Cytomegalovirus Infections , Medicago sativa , Seasons , Australia , Seeds
7.
Planta ; 259(2): 38, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227024

ABSTRACT

MAIN CONCLUSION: Silencing of an ascorbate oxidase (AO) gene in N. benthamiana enhanced disease severity from cucumber mosaic virus (CMV), showing higher accumulation and expansion of the spreading area of CMV. A Nicotiana benthamiana ascorbate oxidase (NbAO) gene was found to be induced upon cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was employed to elucidate the function of AO in N. benthamiana. The tobacco rattle virus (TRV)-mediated VIGS resulted in an efficient silencing of the NbAO gene, i.e., 97.5% and 78.8% in relative quantification as compared to the control groups (TRV::eGFP- and the mock-inoculated plants), respectively. In addition, AO enzymatic activity decreased in the TRV::NtAO-silenced plants as compared to control. TRV::NtAO-mediated NbAO silencing induced a greater reduction in plant height by 15.2% upon CMV infection. CMV titer at 3 dpi was increased in the systemic leaves of NbAO-silenced plants (a 35-fold change difference as compared to the TRV::eGFP-treated group). Interestingly, CMV and TRV titers vary in different parts of systemically infected N. benthamiana leaves. In TRV::eGFP-treated plants, CMV accumulated only at the top half of the leaf, whereas the bottom half of the leaf was "occupied" by TRV. In contrast, in the NbAO-silenced plants, CMV accumulated in both the top and the bottom half of the leaf, suggesting that the silencing of the NbAO gene resulted in the expansion of the spreading area of CMV. Our data suggest that the AO gene might function as a resistant factor against CMV infection in N. benthamiana.


Subject(s)
Cucumovirus , Cytomegalovirus Infections , Nicotiana/genetics , Ascorbate Oxidase , Plant Leaves/genetics
8.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958540

ABSTRACT

Aconitum carmichaelii is a herbaceous herb indigenous to China that has been cultivated for traditional medicine for centuries. Virus-like symptoms of A. carmichaelii plants were observed on leaves in some A. carmichaelii plantations in Zhanyi and Wuding Counties, Yunnan Province, southwest China. High-throughput sequencing (HTS) was performed on 28 symptomatic plants, and the results revealed infection with 11 viruses, including 2 novel viruses and 9 previously described viruses: Aconitum amalgavirus 1 (AcoAV-1), aconite virus A (AcVA), cucumber mosaic virus (CMV), currant latent virus (CuLV), apple stem grooving virus (ASGV), chilli veinal mottle virus (ChiVMV), tomato spotted wilt orthotospovirus (TSWV), tobacco vein distorting virus (TVDV), and potato leafroll virus (PLRV). Two novel viruses tentatively named Aconitum potyvirus 1 and Aconitum betapartitivirus 1, were supported by sequence and phylogenetic analysis results of their genomes. We proposed the names Potyvirus aconiti and Betapartitivirus aconiti. RT-PCR assays of 142 plants revealed the predominance and widespread distribution of CMV, AcVA, and AcoPV-1 in plantations. The detection of isolates of CuLV, ASGV, ChiVMV, TSWV, TVDV, and PLRV infections for the first time in A. carmichaelii expands their known host ranges.


Subject(s)
Aconitum , Cucumovirus , Cytomegalovirus Infections , Potyvirus , Secoviridae , Viruses , Phylogeny , Virome , China
9.
Viruses ; 15(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38005837

ABSTRACT

In the past decade, severe epidemics of cucumber mosaic virus (CMV) have caused significant damage to Espelette pepper crops. This virus threatens the production of Espelette pepper, which plays a significant role in the local economy and touristic attractiveness of the French Basque Country, located in southwestern France. In 2021 and 2022, CMV was detected via double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) in Gorria pepper seed lots harvested from naturally infected fields scattered throughout the entire Espelette pepper production area. These seed lots were used in greenhouse grow-out tests to determine whether CMV could be transmitted to seedlings from contaminated seeds, using visual symptom assessment, DAS-ELISAs, and reverse transcription-polymerase chain reaction (RT-PCR). Despite the widespread occurrence of CMV in seeds of field samples, the grow-out experiments on a total of over 5000 seedlings yielded no evidence of seed transmission of local CMV isolates in Gorria pepper. Therefore, rather than seeds from infected pepper plants, sources of CMV inoculum in Espelette are more likely to be alternative hosts present in and around pepper fields that can allow for the survival of CMV during the off-season. These results have important epidemiological implications and will guide the choice of effective measures to control current epidemics.


Subject(s)
Cucumovirus , Cytomegalovirus Infections , Cucumovirus/genetics , Seeds , Crops, Agricultural , France/epidemiology
10.
Viruses ; 15(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37896816

ABSTRACT

Previously, we identified a highly conserved, γ-shaped RNA element (γRE) from satellite RNAs of cucumber mosaic virus (CMV), and we determined γRE to be structurally required for satRNA survival and the inhibition of CMV replication. It remains unknown how γRE biologically functions. In this work, pull-down assays were used to screen candidates of host factors from Nicotiana benthamiana plants using biotin-labeled γRE as bait. Nine host factors were found to interact specifically with γRE. Then, all of these host factors were down-regulated individually in N. benthamiana plants via tobacco rattle virus-induced gene silencing and tested with infection by GFP-expressing CMV (CMV-gfp) and the isolate T1 of satRNA (sat-T1). Out of nine candidates, three host factors, namely histone H3, GTPase Ran3, and eukaryotic translation initiation factor 4A, were extremely important for infection by CMV-gfp and sat-T1. Moreover, we found that cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 contributed to the replication of CMV and sat-T1, but also negatively regulated CMV 2b activity. Collectively, our work provides essential clues for uncovering the mechanism by which satRNAs inhibit CMV replication.


Subject(s)
Cucumovirus , Cytomegalovirus Infections , Plant Viruses , RNA, Satellite/genetics , RNA , RNA, Plant , Plants , Cucumovirus/genetics , Nicotiana , Plant Viruses/genetics , Plant Diseases , RNA, Viral/genetics
11.
Mol Biol (Mosk) ; 57(5): 797-806, 2023.
Article in Russian | MEDLINE | ID: mdl-37752645

ABSTRACT

Tomato aspermy virus (TAV, genus Cucumovirus from the family Bromoviridae) is one of the most common and harmful chrysanthemum viruses, causing severe flower distortion, size reduction, and color breaking. Metatranscriptome sequencing of chrysanthemum plants of the Ribonette and Golden Standard cultivars from the collection of the Nikita Botanical Garden (Yalta, Republic of Crimea) generated TAV-related RNA reads. The complete genomes of two Russian isolates of the virus were assembled from the reads. This is the first report of full-length TAV genomes from Russia. Typically of cucumoviruses, the segmented TAV genome is represented by three single-stranded positive-sense linear RNA molecules of 3412 (RNA1), 3097 (RNA2) and 2219 (RNA3) nucleotides. Five open reading frames (ORF) have been identified that encode replicase (ORF1), RNA-dependent RNA polymerase (ORF2a), silencing suppressor protein (OFR2b), movement protein (OFR3a) and the coat protein (ORF3b). The identity of TAV genomes from the two chrysanthemum cultivars was 99.8% for all three viral RNAs; with other TAV isolates from GenBank it was 97.5-99.7% (RNA1), 93.8-99.8% (RNA2), and 89.3-99.3% (RNA3). Phylogenetic analysis showed that RNA1 and RNA3 of the Russian isolates were assigned to heterogeneous groups of TAV isolates found on various plant species in different regions of the world. At the same time, RNA2 clearly clustered with tomato isolates SKO20ST2 from Slovenia and PV-0220 from Bulgaria and, to a lesser extent, with the Iranian isolate Ker.Mah.P from petunia and the Chinese isolate Henan from chrysanthemum. The incongruence of phylogenetic trees reconstructed from different genome segments suggests pseudo-recombination (reassortment) in the Russian TAV isolates.


Subject(s)
Chrysanthemum , Cucumovirus , Cucumovirus/genetics , Phylogeny , Chrysanthemum/genetics , Iran , RNA, Viral/genetics
12.
Virol J ; 20(1): 216, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37737192

ABSTRACT

BACKGROUND: Plant viruses of the genus Alphaendornavirus are transmitted solely via seed and pollen and generally cause no apparent disease. It has been conjectured that certain plant endornaviruses may confer advantages on their hosts through improved performance (e.g., seed yield) or resilience to abiotic or biotic insult. We recently characterised nine common bean (Phaseolus vulgaris L.) varieties that harboured either Phaseolus vulgaris endornavirus (PvEV1) alone, or PvEV1 in combination with PvEV2 or PvEV1 in combination with PvEV2 and PvEV3. Here, we investigated the interactions of these endornaviruses with each other, and with three infectious pathogenic viruses: cucumber mosaic virus (CMV), bean common mosaic virus (BCMV), and bean common mosaic necrosis virus (BCMNV). RESULTS: In lines harbouring PvEV1, PvEV1 and PvEV2, or PvEV1, PvEV2 plus PvEV3, the levels of PvEV1 and PvEV3 RNA were very similar between lines, although there were variations in PvEV2 RNA accumulation. In plants inoculated with infectious viruses, CMV, BCMV and BCMNV levels varied between lines, but this was most likely due to host genotype differences rather than to the presence or absence of endornaviruses. We tested the effects of endornaviruses on seed production and seedborne transmission of infectious pathogenic viruses but found no consistent relationship between the presence of endornaviruses and seed yield or protection from seedborne transmission of infectious pathogenic viruses. CONCLUSIONS: It was concluded that endornaviruses do not interfere with each other's accumulation. There appears to be no direct synergy or competition between infectious pathogenic viruses and endornaviruses, however, the effects of host genotype may obscure interactions between endornaviruses and infectious viruses. There is no consistent effect of endornaviruses on seed yield or susceptibility to seedborne transmission of other viruses.


Subject(s)
Cucumovirus , Cytomegalovirus Infections , Phaseolus , Potyvirus , RNA
13.
Viruses ; 15(9)2023 08 23.
Article in English | MEDLINE | ID: mdl-37766198

ABSTRACT

Resistance to cucumber mosaic virus (CMV) strain LS in melon is controlled by the gene cmv1, which restricts phloem entry. In nature, CMV is commonly found in mixed infections, particularly with potyviruses, where a synergistic effect is frequently produced. We have explored the possibility that this synergism could help CMV-LS to overcome cmv1-mediated resistance. We demonstrate that during mixed infection with a potyvirus, CMV-LS is able to overcome cmv1-controlled resistance and develop a systemic infection and that this ability does not depend on an increased accumulation of CMV-LS in mechanically inoculated cotyledons. Likewise, during a mixed infection initiated by aphids, the natural vector of both cucumoviruses and potyviruses that can very efficiently inoculate plants with a low number of virions, CMV-LS also overcomes cmv1-controlled resistance. This indicates that in the presence of a potyvirus, even a very low amount of inoculum, can be sufficient to surpass the resistance and initiate the infection. These results indicate that there is an important risk for this resistance to be broken in nature as a consequence of mixed infections, and therefore, its deployment in elite cultivars would not be enough to ensure a long-lasting resistance.


Subject(s)
Coinfection , Cucumovirus , Cucurbitaceae , Cytomegalovirus Infections , Potyvirus , Cucumovirus/genetics , Plant Diseases
14.
FEBS Open Bio ; 13(11): 2005-2019, 2023 11.
Article in English | MEDLINE | ID: mdl-37596957

ABSTRACT

Y-satellite RNA (Y-sat) of cucumber mosaic virus upregulates the expression of the aphid ABCG4 gene, which promotes aphid wing formation. We used ABCG4 virus-induced gene silencing (VIGS) to prevent the wing-induction mechanism of Y-sat and thus inhibited aphid wing formation. Of the aphids on plants with VIGS of ABCG4, only about 30% had wings, and 60-70% of the winged aphids were small and likely impaired in flying ability. In addition, we showed that double-stranded RNAs (dsRNAs) and small RNAs were transferred from the plant to the aphid to adequately silence aphid genes. Supplying ABCG4 dsRNA by VIGS to aphids is thus a potential strategy to inhibit aphid wing formation.


Subject(s)
Aphids , Cucumovirus , Animals , RNA, Satellite/metabolism , Aphids/genetics , Cucumovirus/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism
15.
Virus Res ; 334: 199179, 2023 09.
Article in English | MEDLINE | ID: mdl-37481165

ABSTRACT

The argonaute (AGO) family proteins play a crucial role in preventing viral invasions through the plant antiviral RNA silencing pathway, with distinct AGO proteins recruited for specific antiviral mechanisms. Our previous study revealed that Nicotiana benthamiana AGO5 (NbAGO5) expression was significantly upregulated in response to bamboo mosaic virus (BaMV) infection. However, the roles of NbAGO5 in antiviral mechanisms remained to be explored. In this research, we examined the antiviral functions of NbAGO5 in the infections of different viruses. It was found that the accumulation of NbAGO5 was induced not only at the RNA but also at the protein level following the infections of BaMV, potato virus X (PVX), tobacco mosaic virus (TMV), and cucumber mosaic virus (CMV) in N. benthamiana. To explore the antiviral mechanism and regulatory function of NbAGO5, we generated NbAGO5 overexpression (OE-NbAGO5) and knockout (nbago5) transgenic N. benthamiana lines. Our findings reveal that NbAGO5 provides defense against BaMV, PVX, TMV, and a mutant CMV deficient in 2b gene, but not against the wild-type CMV and turnip mosaic virus (TuMV). Through affinity purification and small RNA northern blotting, we demonstrated that NbAGO5 exerts its antiviral function by binding to viral small interfering RNAs (vsiRNAs). Moreover, we observed that CMV 2b and TuMV HC-Pro interact with NbAGO5, triggering its degradation via the 26S proteasome and autophagy pathways, thereby allowing these viruses to overcome NbAGO5-mediated defense. In addition, TuMV HC-Pro provides another line of counter-defense by interfering with vsiRNA binding by NbAGO5. Our study provides further insights into the antiviral RNA interference mechanism and the complex interplay between NbAGO5 and plant viruses.


Subject(s)
Cucumovirus , Cytomegalovirus Infections , Nicotiana , Antiviral Agents/metabolism , RNA Interference , Cucumovirus/genetics , RNA/metabolism , Plant Diseases
16.
Nat Commun ; 14(1): 3852, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37385991

ABSTRACT

Selective autophagy is a double-edged sword in antiviral immunity and regulated by various autophagy receptors. However, it remains unclear how to balance the opposite roles by one autophagy receptor. We previously identified a virus-induced small peptide called VISP1 as a selective autophagy receptor that facilitates virus infections by targeting components of antiviral RNA silencing. However, we show here that VISP1 can also inhibit virus infections by mediating autophagic degradation of viral suppressors of RNA silencing (VSRs). VISP1 targets the cucumber mosaic virus (CMV) 2b protein for degradation and attenuates its suppression activity on RNA silencing. Knockout and overexpression of VISP1 exhibit compromised and enhanced resistance against late infection of CMV, respectively. Consequently, VISP1 induces symptom recovery from CMV infection by triggering 2b turnover. VISP1 also targets the C2/AC2 VSRs of two geminiviruses and enhances antiviral immunity. Together, VISP1 induces symptom recovery from severe infections of plant viruses through controlling VSR accumulation.


Subject(s)
Craniocerebral Trauma , Cucumovirus , Cytomegalovirus Infections , Humans , Macroautophagy , Autophagy/genetics , Antiviral Agents , Cucumovirus/genetics
17.
Sci Rep ; 13(1): 8721, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253808

ABSTRACT

Aphis gossypii (Sternorrhyncha: Aphididae) aphids are vectors of important plant viruses among which cucumber mosaic virus (CMV) and potato virus Y (PVY). Virus-infected plants attract aphid vectors and affect their behavior and growth performance either positively or negatively depending on mode of transmission. Viruses cause changes in the composition and the amount of volatile organic compounds (VOCs) released by the plant that attract aphids. The aphid parasitoid Aphidius colemani (Hymenoptera: Aphelinidae) has been shown to have higher parasitism and survival rates on aphids fed on virus-infected than aphids fed on non-infected plants. We hypothesized that parasitoids distinguish virus-infected plants and are attracted to them regardless of the presence of their aphid hosts. Herein, we examined the attraction of the A. colemani parasitoid to infected pepper plants with each of CMV or PVY without the presence of aphids. The dynamic headspace technique was used to collect VOCs from non-infected and CMV or PVY-infected pepper plants. Identification was performed with gas chromatography-mass spectrometry (GC-MS). The response of the parasitoids on virus-infected vs non-infected pepper plants was tested by Y-tube olfactometer assays. The results revealed that parasitoids displayed a preference to CMV and PVY infected plants compared to those that were not infected.


Subject(s)
Aphids , Cucumovirus , Cytomegalovirus Infections , Hymenoptera , Plant Viruses , Volatile Organic Compounds , Animals , Aphids/physiology , Cucumovirus/physiology , Plant Diseases
18.
Sci Rep ; 13(1): 7261, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37142679

ABSTRACT

Cucumber mosaic virus (CMV) is one of the most prevalent plant viruses in the world, and causes severe damage to various crops. CMV has been studied as a model RNA virus to better understand viral replication, gene functions, evolution, virion structure, and pathogenicity. However, CMV infection and movement dynamics remain unexplored due to the lack of a stable recombinant virus tagged with a reporter gene. In this study, we generated a CMV infectious cDNA construct tagged with a variant of the flavin-binding LOV photoreceptor (iLOV). The iLOV gene was stably maintained in the CMV genome after more than four weeks of three serial passages between plants. Using the iLOV-tagged recombinant CMV, we visualized CMV infection and movement dynamics in living plants in a time course manner. We also examined whether CMV infection dynamics is influenced by co-infection with broad bean wilt virus 2 (BBWV2). Our results revealed that no spatial interference occurred between CMV and BBWV2. Specifically, BBWV2 facilitated the cell-to-cell movement of CMV in the upper young leaves. In addition, the BBWV2 accumulation level increased after co-infection with CMV.


Subject(s)
Coinfection , Cucumovirus , Cytomegalovirus Infections , Vicia faba , Virus Diseases , Plants/genetics , Vicia faba/genetics , RNA, Viral/genetics , Plant Diseases
19.
J Exp Bot ; 74(15): 4401-4414, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37210666

ABSTRACT

Plasmodesmata (PD) are plasma membrane-lined cytoplasmic nanochannels that mediate cell-to-cell communication across the cell wall. A range of proteins are embedded in the PD plasma membrane and endoplasmic reticulum (ER), and function in regulating PD-mediated symplasmic trafficking. However, knowledge of the nature and function of the ER-embedded proteins in the intercellular movement of non-cell-autonomous proteins is limited. Here, we report the functional characterization of two ER luminal proteins, AtBiP1/2, and two ER integral membrane proteins, AtERdj2A/B, which are located within the PD. These PD proteins were identified as interacting proteins with cucumber mosaic virus (CMV) movement protein (MP) in co-immunoprecipitation studies using an Arabidopsis-derived plasmodesmal-enriched cell wall protein preparation (PECP). The AtBiP1/2 PD location was confirmed by TEM-based immunolocalization, and their AtBiP1/2 signal peptides (SPs) function in PD targeting. In vitro/in vivo pull-down assays revealed the association between AtBiP1/2 and CMV MP, mediated by AtERdj2A, through the formation of an AtBiP1/2-AtERdj2-CMV MP complex within PD. The role of this complex in CMV infection was established, as systemic infection was retarded in bip1/bip2w and erdj2b mutants. Our findings provide a model for a mechanism by which the CMV MP mediates cell-to-cell trafficking of its viral ribonucleoprotein complex.


Subject(s)
Arabidopsis , Cucumovirus , Cytomegalovirus Infections , Arabidopsis/metabolism , Plasmodesmata/metabolism , Cucumovirus/metabolism , Endoplasmic Reticulum/metabolism , Cytomegalovirus Infections/metabolism , Plant Viral Movement Proteins/genetics , Plant Viral Movement Proteins/metabolism , Nicotiana/metabolism
20.
Pest Manag Sci ; 79(7): 2571-2580, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36866809

ABSTRACT

BACKGROUND: The cucumber mosaic virus (CMV) is well-known for its expansive host range and distribution, resulting in a detrimental effect on agricultural production, thus making it imperative to implement measures for its control. RESULTS: Novel compounds S1-S28 were synthesized by connecting trifluoromethyl pyridine, amide and piperazine scaffolds. Bioassays indicated that most of the synthesized compounds exhibited good curative effects against CMV, with half maximal effective concentration (EC50 ) values of compounds S1, S2, S7, S8, S10, S11, S15, and S28 being 119.6, 168.9, 197.6, 169.1, 97.9, 73.9, 224.4, and 125.2 µg mL-1 , respectively, which were lower than the EC50 of ningnanmycin (314.7 µg mL-1 ). Compounds S5 and S8 exhibited protective activities with EC50 of 170.8 and 95.0 µg mL-1 , respectively, which were lower than ningnanmycin at 171.4 µg mL-1 . The inactivation activities of S6 and S8 at 500 µg mL-1 were remarkably high at 66.1% and 78.3%, respectively, surpassing that of ningnanmycin (63.5%). Additionally, their EC50 values were more favorable at 22.2 and 18.1 µg mL-1 , respectively, than ningnanmycin (38.4 µg mL-1 ). And molecular docking and molecular dynamics simulation showed compound S8 had better binding with CMV-coat protein, providing a possible explanation for the anti-CMV activity of compound S8. CONCLUSIONS: Compound S8 showed a strong binding affinity to CMV-coat protein and impacted the self-assemble of CMV particles. Compound S8 could be a potential lead compound for discovering a new anti-plant virus candidate. © 2023 Society of Chemical Industry.


Subject(s)
Cucumovirus , Plant Viruses , Tobacco Mosaic Virus , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Pyridines/pharmacology , Piperazines/pharmacology , Structure-Activity Relationship , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL
...