Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791411

ABSTRACT

Melon (Cucumis melo L.) is a global commercial crop that is sensitive to seed-borne wilt infections caused by Fusarium oxysporum f. sp. melonis (Fom). To address the challenge of detecting Fom contamination, we designed a probe-based real-time PCR method, TDCP2, in combination with rapid or column-based DNA extraction protocols to develop reliable molecular detection methods. Utilizing TDCP2, the detection rate reached 100% for both artificially Fom-inoculated (0.25-25%) and pod-inoculated melon seeds in conjunction with DNA samples from either the rapid or column-based extraction protocol. We performed analyses of precision, recall, and F1 scores, achieving a maximum F1 score of 1 with TDCP2, which highlights the robustness of the method. Additionally, intraday and interday assays were performed, which revealed the high reproducibility and stability of column-based DNA extraction protocols combined with TDCP2. These metrics confirm the reliability of our developed protocols, setting a foundation for future enhancements in seed pathology diagnostics and potentially broadening their applicability across various Fom infection levels. In the future, we hope that these methods will reduce food loss by improving the control and management of melon diseases.


Subject(s)
Fusarium , Plant Diseases , Real-Time Polymerase Chain Reaction , Seeds , Fusarium/genetics , Fusarium/isolation & purification , Seeds/microbiology , Plant Diseases/microbiology , Real-Time Polymerase Chain Reaction/methods , Cucurbitaceae/microbiology , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , Cucumis melo/microbiology , Reproducibility of Results
2.
Curr Microbiol ; 81(7): 184, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771325

ABSTRACT

Agriculture and livestock management practices known as organic farming rely more on internal processes than external inputs. Natural environments depend heavily on diversity, and organic farming incorporates both the stated purpose of fostering diversity as well as the use of diversity as a management tool. A more complete understanding of agriculture in terms of agro-ecology has begun to be questioned by the traditional reductionist approach to the study of agriculture. Therefore it is necessary to be aware more about the significance of microbes in processes including soil growth, plant nourishment, and the eradication of plant disease, pest, and weeds. In this study, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were studied for antifungal and antibacterial activity against four common root rot fungi and four common laboratory bacteria in vitro experiments. Furthermore, soil-borne disease surveillance and nutritional quality of Lagenaria siceraria, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were combined with neem cake and cotton cake to check their efficacy. Through the application of organic soil amendments in combination with biocontrol agents improved the quality of vegetables and their nutritional value by raising their polyphenol, carbohydrate, and protein content as well as enhancing antioxidant scavenging status. The experiments were conducted in pots and in fields to confirm their efficacy rate. The final outcomes also revealed greater induction of defense system, disease lessening and enriched fruit quality. Consortium of neem cake and cotton cake with bio-stimulants can regulate biotic as well as abiotic stress.


Subject(s)
Endophytes , Pseudomonas , Soil Microbiology , Endophytes/physiology , Pseudomonas/physiology , Cucurbitaceae/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hypocreales/physiology , Fungi/physiology , Fungi/drug effects , Bacteria/classification , Bacteria/drug effects , Biological Control Agents , Plant Roots/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism
3.
PLoS One ; 19(4): e0293861, 2024.
Article in English | MEDLINE | ID: mdl-38603714

ABSTRACT

The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.


Subject(s)
Bacillaceae , Cucumis melo , Cucurbitaceae , United States , Cucurbitaceae/microbiology , Cucumis melo/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Enterobacteriaceae
4.
Microb Biotechnol ; 17(3): e14437, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465735

ABSTRACT

Escherichia coli O157:H7 causes >73,000 foodborne illnesses in the United States annually, many of which have been associated with fresh ready-to-eat produce including cantaloupe melons. In this study, we created a produce-associated bacterial (PAB) library containing >7500 isolates and screened them for the ability to inhibit the growth of E. coli O157:H7 using an in vitro fluorescence-based growth assay. One isolate, identified by 16S and whole-genome sequence analysis as Enterobacter asburiae, was able to inhibit the growth of E. coli by ~30-fold in vitro and produced zones of inhibition between 13 and 21 mm against 12 E. coli outbreak strains in an agar spot assay. We demonstrated that E. asburiae AEB30 was able to grow, persist and inhibit the growth of E. coli on cantaloupe melons under simulated pre- and post-harvest conditions. Analysis of the E. asburiae AEB30 genome revealed an operon encoding a contact-dependent growth inhibition (CDI) system that when mutated resulted in the loss of E. coli growth inhibition. These data suggest that E. asburiae AEB30 is a potential biocontrol agent to prevent E. coli contamination of cantaloupe melons in both pre- and post-harvest environments and that its mode of action is via a CDI system.


Subject(s)
Cucumis melo , Cucurbitaceae , Enterobacter , Escherichia coli O157 , Food Microbiology , Cucumis melo/microbiology , Cucurbitaceae/microbiology , Colony Count, Microbial
5.
Plant Cell Environ ; 47(6): 1997-2010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379450

ABSTRACT

Gummy stem blight (GSB), a widespread disease causing great loss to cucurbit production, has become a major threat to melon cultivation. However, the melon-GSB interaction remains largely unknown. Here, full-length transcriptome and widely targeted metabolome were used to investigate the defence responses of resistant (PI511089) and susceptible (Payzawat) melon accessions to GSB pathogen infection at 24 h. The biosynthesis of secondary metabolites and MAPK signalling pathway were specifically enriched for differentially expressed genes in PI511890, while carbohydrate metabolism and amino acid metabolism were specifically enriched in Payzawat. More than 1000 novel genes were identified and MAPK signalling pathway was specifically enriched for them in PI511890. There were 11 793 alternative splicing events involving in the defence response to GSB. Totally, 910 metabolites were identified in Payzawat and PI511890, and flavonoids were the dominant metabolites. Integrated full-length transcriptome and metabolome analysis showed eriodictyol and oxalic acid were the potential marker metabolites for GSB resistance in melon. Moreover, posttranscription regulation was widely involved in the defence response of melon to GSB pathogen infection. These results not only improve our understanding on the interaction between melon and GSB, but also facilitate the genetic improvement of melon with GSB resistance.


Subject(s)
Cucurbitaceae , Disease Resistance , Gene Expression Regulation, Plant , Metabolome , Plant Diseases , Transcriptome , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Cucurbitaceae/microbiology , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Gene Expression Profiling
6.
Molecules ; 28(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37175142

ABSTRACT

The cliff rose (Armeria maritima), like other halophytes, has a phenolics-based antioxidant system that allows it to grow in saline habitats. Provided that antioxidant properties are usually accompanied by antimicrobial activity, in this study we investigated the phytochemicals present in a hydromethanolic extract of A. maritima flowers and explored its antifungal potential. The main phytocompounds, identified by gas chromatography-mass spectrometry, were: hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, 3-(3,4-dihydroxy-phenyl)-acrylic acid ethyl ester, and benzeneacetaldehyde. The antifungal activity of the extract and its main constituents-alone and in combination with chitosan oligomers-was tested against six pathogenic taxa associated with soil-borne diseases of plant hosts in the family Cucurbitaceae: Fusarium equiseti, F. oxysporum f. sp. niveum, Macrophomina phaseolina, Neocosmospora falciformis, N. keratoplastica, and Sclerotinia sclerotiorum. In in vitro tests, EC90 effective concentrations in the 166-865 µg·mL-1 range were obtained for the chitosan oligomers-A. maritima extract conjugate complexes, lower than those obtained for fosetyl-Al and azoxystrobin synthetic fungicides tested for comparison purposes, and even outperforming mancozeb against F. equiseti. In ex situ tests against S. sclerotiorum conducted on artificially inoculated cucumber slices, full protection was achieved at a dose of 250 µg·mL-1. Thus, the reported results support the valorization of A. maritima as a source of biorationals for Cucurbitaceae pathogens protection, suitable for both organic and conventional agriculture.


Subject(s)
Chitosan , Cucurbitaceae , Fusarium , Mycoses , Plumbaginaceae , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Cucurbitaceae/microbiology , Antioxidants/pharmacology , Chitosan/pharmacology , Flowers , Plant Extracts/pharmacology , Plant Diseases/prevention & control , Plant Diseases/microbiology
7.
New Phytol ; 238(4): 1578-1592, 2023 05.
Article in English | MEDLINE | ID: mdl-36939621

ABSTRACT

The hemibiotrophic fungal plant pathogen Colletotrichum orbiculare is predicted to secrete hundreds of effector proteins when the pathogen infects cucurbit crops, such as cucumber and melon, and tobacco (Nicotiana benthamiana), a distantly related Solanaceae species. Here, we report the identification of sets of C. orbiculare effector genes that are differentially required for fungal virulence to two phylogenetically distant host species. Through targeted gene knockout screening of C. orbiculare 'core' effector candidates defined based on in planta gene expression, we identified: four host-specific virulence effectors (named effector proteins for cucurbit infection, or EPCs) that are required for full virulence of C. orbiculare to cucurbit hosts, but not to the Solanaceae host N. benthamiana; and five host-nonspecific virulence effectors, which collectively contribute to fungal virulence to both hosts. During host infection, only a small subset of genes, including the host-specific EPC effector genes, showed preferential expression on one of the hosts, while gene expression profiles of the majority of other genes, including the five host-nonspecific effector genes, were common to both hosts. This work suggests that C. orbiculare adopts a host-specific effector deployment strategy, in addition to general host-blind virulence mechanisms, for adaptation to cucurbit hosts.


Subject(s)
Cucumis sativus , Cucurbitaceae , Virulence/genetics , Host Specificity , Cucumis sativus/microbiology , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Cucurbitaceae/microbiology , Transcriptome , Nicotiana/genetics , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism
8.
Food Res Int ; 164: 112372, 2023 02.
Article in English | MEDLINE | ID: mdl-36737959

ABSTRACT

This study aimed to evaluate the influence of chitosan on the antibacterial efficacy of 405 nm LED illumination against Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on fresh-cut melons. The antibacterial efficacy of LED illumination (a total dose of 1.3 kJ/cm2) with or without chitosan (0.5 and 1.0 %) against these three pathogens was determined at 4 and 10 °C, respectively. Non-illuminated and chitosan-treated fruits were stored in the dark for 36 h under the same temperature. Color changes, ascorbic acid content, and total flavonoid content of illuminated and non-illuminated fruits were also analyzed. The results showed that the populations of all three pathogens on the non-illuminated and chitosan-treated fruits remained unchanged during storage. Regardless of bacterial species and chitosan concentrations, LED illumination in combination with chitosan greatly reduced the bacterial populations by 1.5 - 3.5 log/cm2, which was greater than LED illumination alone. Among the three pathogens, L. monocytogenes was the most susceptible to chitosan-mediated LED illumination. However, the whiteness index of illuminated fruits significantly increased by 1.3-fold compared to that of non-illuminated fruits, regardless of the presence of chitosan. Unlike color, no significant difference was observed in ascorbic acid and total flavonoid contents between illuminated and non-illuminated fruits. Although the fruit color was changed by LED illumination, these results indicate that adding chitosan could enhance the antibacterial efficacy of 405 nm LED illumination against major foodborne pathogens on fresh-cut melons without changing nutritional quality.


Subject(s)
Chitosan , Cucurbitaceae , Escherichia coli O157 , Listeria monocytogenes , Chitosan/pharmacology , Colony Count, Microbial , Cucurbitaceae/microbiology , Lighting , Light , Salmonella , Anti-Bacterial Agents/pharmacology
9.
Plant Dis ; 107(3): 886-892, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35926521

ABSTRACT

Brazil is one of the largest melon (Cucumis melo) producers in the world and most of the production is exported to international markets. Currently, over 15% of Brazilian melon shipments are lost during export transportation due to Fusarium fruit rot, which is jeopardizing the livelihood of Brazilian melon producers. We focused on understanding the aggressivity of five species of Fusarium causing fruit rot on the main types of melon produced in Brazil. We also investigated the correlation between pathogenicity and fruit quality. Experiments were performed under a completely randomized experimental design, in a 5 × 8 factorial scheme, using two methods for inoculation: deposition of discs of culture media containing fungal structures and deposition of spore suspensions in needle-punctured lesions. The fungal species used were Fusarium falciforme, F. sulawesiense, F. pernambucanum, F. kalimantanense, and Fusarium sp. Fruits of two hybrids from four types of melons, canary (Goldex and Gold Mine), piel de sapo (Grand Prix and Flecha Verde), galia (McLaren and DRG3228), and cantaloupe (SV1044MF and Bonsai), were used. Disease severity was assessed by measuring the lesions, disease severity index, fruit firmness, and degrees Brix of fruits. The five Fusarium species caused rot in the fruits of all melon hybrids studied and the aggressivity of those fungal species varied with the type and hybrid. Fruits of the hybrids McLaren and Bonsai presented the largest lesions among all melon hybrids, and hybrids of canary type (Gold Mine and Goldex) were the most tolerant to rot caused by the Fusarium species investigated. Furthermore, the greater the severity of Fusarium fruit rot, the lower the pulp firmness of the fruits, but degrees Brix did not correlate with the onset of the disease.


Subject(s)
Cucumis melo , Cucurbitaceae , Fusarium , Cucurbitaceae/microbiology , Fruit/chemistry , Brazil , Fusarium/genetics
10.
Nat Microbiol ; 7(7): 1001-1015, 2022 07.
Article in English | MEDLINE | ID: mdl-35668112

ABSTRACT

Beneficial microorganisms are used to stimulate the germination of seeds; however, their growth-promoting mechanisms remain largely unexplored. Bacillus subtilis is commonly found in association with different plant organs, providing protection against pathogens or stimulating plant growth. We report that application of B. subtilis to melon seeds results in genetic and physiological responses in seeds that alter the metabolic and developmental status in 5-d and 1-month-old plants upon germination. We analysed mutants in different components of the extracellular matrix of B. subtilis biofilms in interaction with seeds and found cooperation in bacterial colonization of seed storage tissues and growth promotion. Combining confocal microscopy with fluorogenic probes, we found that two specific components of the extracellular matrix, amyloid protein TasA and fengycin, differentially increased the concentrations of reactive oxygen species inside seeds. Further, using electron and fluorescence microscopy and metabolomics, we showed that both TasA and fengycin targeted the oil bodies in the seed endosperm, resulting in specific changes in lipid metabolism and accumulation of glutathione-related molecules. In turn, this results in two different plant growth developmental programmes: TasA and fengycin stimulate the development of radicles, and fengycin alone stimulate the growth of adult plants and resistance in the phylloplane to the fungus Botrytis cinerea. Understanding mechanisms of bacterial growth promotion will enable the design of bespoke growth promotion strains.


Subject(s)
Bacillus subtilis , Cucurbitaceae , Bacillus subtilis/metabolism , Cucurbitaceae/microbiology , Extracellular Polymeric Substance Matrix , Lipid Droplets , Seeds/microbiology
11.
Food Microbiol ; 101: 103876, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34579844

ABSTRACT

The efficacy of plant-based antimicrobials against Salmonella Newport and Listeria monocytogenes on melon rinds was evaluated. Four cantaloupe and 3 honeydew melon varieties grown in Georgia, Arizona, Texas, North Carolina, Indiana and California were tested. Melon rinds (10 g pieces) were inoculated with 5-6 log CFU/10 g rind of S. Newport or L. monocytogenes. Samples were then immersed in 5 % olive extract or 0.5 % oregano oil antimicrobial solution and gently agitated for 2 min. Samples were stored at 4 °C and surviving populations of both bacteria were enumerated at days 0 and 3. Plant-based antimicrobials reduced S. Newport and L.monocytogenes population on all rind samples, regardless of the melon types, varieties or growing locations. Compared to the control, antimicrobial treatments caused up to 3.6 and 4.0 log reductions in populations of Salmonella and L. monocytogenes, respectively. In most cases, plant-based antimicrobial treatments reduced pathogen populations to below the detection limit (1 log CFU/g) at day 3. In general, oregano oil had better antimicrobial activity than olive extract and the antimicrobial treatments were more effective on Salmonella than on L. monocytogenes. The plant-based antimicrobial treatments exhibited better microbial reductions on honeydews than on cantaloupes. These antimicrobials could potentially be used as sanitizers for decontaminating melons.


Subject(s)
Anti-Infective Agents , Cucurbitaceae , Food Contamination/prevention & control , Listeria monocytogenes , Salmonella enterica , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Consumer Product Safety , Cucurbitaceae/microbiology , Food Handling , Food Microbiology , Listeria monocytogenes/drug effects , Salmonella enterica/drug effects , United States
12.
Food Microbiol ; 102: 103930, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34809956

ABSTRACT

The growth behavior of Listeria monocytogenes low population (1-4 cells/sample) on fresh-cut mango, melon, papaya and fruit mix stored at 4, 8, 12 and 16 °C was evaluated over 10 days. Mango showed the lowest counts for L. monocytogenes during 10 days regardless of storage temperature (<1.7 log cfu.g-1). Melon supported high bacterial growth over 10 days, reaching 5 log cfu.g-1 at 16 °C. Both the fruit and storage temperature influenced the Listeria low population growth potential (δ). Cumulative frequency distribution of L. monocytogenes showed that after 10 days, 100% of fresh-cut fruits and fruit mix stored at 4 °C remained ≤2 log cfu.g-1, while at 12 and 16 °C 100% of melon, papaya and fruit mix samples exceeded this limit. At 8 °C, 100% of mango and fruit mix samples remained below this limit after 10 days, whereas 100% of melon and papaya reached it after 7 days. Results indicate 4 °C as the ideal to store safely fresh-cut mango, melon, papaya and fruit mix for 10 days. Besides, 8 °C can also be an option, but not for melon and papaya. Findings highlight the ability of L. monocytogenes to survive and grow in fresh-cut fruits even at a very low initial population levels.


Subject(s)
Carica , Cucurbitaceae , Listeria monocytogenes , Mangifera , Temperature , Carica/microbiology , Colony Count, Microbial , Cucurbitaceae/microbiology , Food Contamination , Food Microbiology , Food Storage , Fruit/microbiology , Listeria monocytogenes/growth & development , Mangifera/microbiology
13.
Plant Dis ; 105(12): 3809-3815, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34253041

ABSTRACT

Powdery mildew, caused by the fungus Podosphaera xanthii, is one of the most important diseases of melon. Although there are several pathogenic races of P. xanthii, race 1 is the predominant race in South Carolina and in other parts of the United States. We used a densely genotyped recombinant inbred line melon population for traditional quantitative trait loci (QTL) mapping, to identify two major (qPx1-5 and qPx1-12) and two minor (qPx1-4 and qPx1-10) QTLs (named according to race - chromosome number) associated with resistance to P. xanthii race 1. QTL mapping of disease severity in multiple tissues (hypocotyl, cotyledons, true leaves, and stems) identified the same genetic basis of resistance in all tissue types. Whole-genome resequencing of the parents was used for marker development across the major QTLs and functional annotation of single nucleotide polymorphisms (SNPs) for candidate gene analysis. Kompetitive allele-specific PCR (KASP) markers were tightly linked to the QTL peaks of qPx1-5 (pm1-5_25329892, pm1-5_25461503 and pm1-5_25625375) and qPx1-12 (pm1-12_22848920 and pm1-12_22904659) in the population and will enable efficient marker-assisted introgression of powdery mildew resistance into improved germplasm. Candidate genes were identified in both major QTL intervals that encode putative R genes with missense mutations between the parents. The candidate genes provide targets for future breeding efforts and a fundamental examination of resistance to powdery mildew in melon.


Subject(s)
Cucurbitaceae , Disease Resistance/genetics , Plant Diseases , Quantitative Trait Loci , Ascomycota/pathogenicity , Chromosome Mapping , Cucurbitaceae/genetics , Cucurbitaceae/microbiology , Genotype , Plant Diseases/genetics , Plant Diseases/microbiology
14.
Plant Sci ; 309: 110954, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34134849

ABSTRACT

Powdery mildew caused by Podosphaera xanthii (P. xanthii) severely endangers melon (Cucumis melo L.) production, while the mechanistic understanding about its resistance to powdery mildew remains largely limited. In this study, we integrated transcriptomic and methylomic analyses to explore whether DNA methylation was involved in modulating transcriptional acclimation of melon to P. xanthii infection. Net photosynthetic rate (Pn), stomatal conductance (Gs), actual photochemical efficiency (ФPSII) and maximum PSII quantum yield (Fv/Fm) were significantly decreased in P. xanthii-infected plants relative to uninfected ones (Control), revealing apparent physiological disorders. Totally 4808 differentially expressed genes (DEGs) were identified by global analysis of gene expression in Control and P. xanthii-infected plants. Comparative methylome uncovered that 932 DEGs were associated with hypermethylation, while 603 DEGs were associated with hypomethylation in melon upon P. xanthii infection. Among these differential methylation-involved DEGs, a set of resistance-related genes including R genes and candidate genes in metabolic and defense pathways were further identified, demonstrating that DNA methylation might function as a new regulatory layer for melon resistance to P. xanthii infection. Altogether our study sheds new insights into the molecular mechanisms of melon against powdery mildew and provides some potential targets for improving melon disease resistance in future.


Subject(s)
Ascomycota/physiology , Cucurbitaceae/genetics , Epigenome , Plant Diseases/immunology , Cucurbitaceae/immunology , Cucurbitaceae/microbiology , DNA Methylation , Plant Diseases/microbiology
15.
Genes (Basel) ; 12(3)2021 02 24.
Article in English | MEDLINE | ID: mdl-33668231

ABSTRACT

Dirigent (DIR) proteins are induced under various stress conditions and involved in sterio- and regio-selective coupling of monolignol. A striking lack of information about dirigent genes in cucurbitaceae plants underscores the importance of functional characterization. In this study, 112 DIR genes were identified in six species, and 61 genes from major cultivated species were analyzed. DIRs were analyzed using various bioinformatics tools and complemented by expression profiling. Phylogenetic analysis segregated the putative DIRs into six distinctively known subgroups. Chromosomal mapping revealed uneven distribution of genes, whereas synteny analysis exhibited that duplication events occurred during gene evolution. Gene structure analysis suggested the gain of introns during gene diversification. Gene ontology (GO) enrichment analysis indicates the participation of proteins in lignification and pathogen resistance activities. We also determined their organ-specific expression levels in three species revealing preferential expression in root and leaves. Furthermore, the number of CmDIR (CmDIR1, 6, 7 and 12) and ClDIR (ClDIR2, 5, 8, 9 and 17) genes exhibited higher expression in resistant cultivars after powdery mildew (PM) inoculation. In summary, based on the expression and in-silico analysis, we propose a role of DIRs in disease resistance mechanisms.


Subject(s)
Cucurbitaceae , Disease Resistance , Phylogeny , Plant Diseases , Plant Leaves , Plant Proteins , Plant Roots , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Cucurbitaceae/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/microbiology
16.
Mol Plant Pathol ; 22(1): 108-116, 2021 01.
Article in English | MEDLINE | ID: mdl-33146465

ABSTRACT

Fusarium oxysoporum f. sp. radicis-cucumerinum (Forc) is able to cause disease in cucumber, melon, and watermelon, while F. oxysporum f. sp. melonis (Fom) can only infect melon plants. Earlier research showed that mobile chromosomes in Forc and Fom determine the difference in host range between Forc and Fom. By closely comparing these pathogenicity chromosomes combined with RNA-sequencing data, we selected 11 candidate genes that we tested for involvement in the difference in host range between Forc and Fom. One of these candidates is a putative effector gene on the Fom pathogenicity chromosome that has nonidentical homologs on the Forc pathogenicity chromosome. Four independent Forc transformants with this gene from Fom showed strongly reduced or no pathogenicity towards cucumber, while retaining pathogenicity towards melon and watermelon. This suggests that the protein encoded by this gene is recognized by an immune receptor in cucumber plants. This is the first time that a single gene has been demonstrated to determine a difference in host specificity between formae speciales of F. oxysporum.


Subject(s)
Citrullus/microbiology , Cucumis sativus/microbiology , Cucurbitaceae/microbiology , Fungal Proteins/metabolism , Fusarium/genetics , Host Specificity/genetics , Plant Diseases/microbiology , Citrullus/immunology , Cucumis sativus/immunology , Cucurbitaceae/immunology , Fungal Proteins/genetics , Fusarium/pathogenicity , Plant Diseases/immunology , Plant Immunity
17.
Food Microbiol ; 92: 103569, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32950154

ABSTRACT

This study investigated the antimicrobial activities of organic acid vapors against a phytopathogen (Acidovorax citrulli) and foodborne pathogens (Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes) on the surface of Cucurbitaceae seeds. Germination percentages of cucumber, honeydew melon and watermelon seeds treated with acetic and propionic acid vapors (100 mg/L) at 50 °C and 43% or 85% relative humidity (RH) for up to 2 h did not significantly (P > 0.05) decrease. Treatment with formic acid significantly (P ≤ 0.05) decreased the germination percentage. The antimicrobial activities of acetic and propionic acid vapors (100 mg/L; 50 °C; 43% or 85% RH) were determined. A. citrulli was inactivated within 1 h on cucumber and watermelon seeds, regardless of type of organic acid or RH. The phytopathogen was reduced to levels below the detection limit (-0.5 log CFU/g) for enrichment on honeydew melon seeds treated with acetic acid vapor. S. enterica and L. monocytogenes were inactivated within 2 h at 85% RH on honeydew melon and watermelon seeds treated with acetic acid and propionic acid vapors. E. coli O157: H7 was inactivated by treatment with acetic acid vapor at 85% RH. This study provides useful information for developing a method to decontaminate Curcurbitaceae seeds using organic acid vapors as lethal agents.


Subject(s)
Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Cucurbitaceae/microbiology , Escherichia coli O157/drug effects , Listeria monocytogenes/drug effects , Salmonella enterica/drug effects , Acetic Acid/chemistry , Acetic Acid/pharmacology , Acids/chemistry , Anti-Bacterial Agents/chemistry , Comamonadaceae/drug effects , Comamonadaceae/growth & development , Cucurbitaceae/growth & development , Escherichia coli O157/growth & development , Formates/chemistry , Formates/pharmacology , Germination , Listeria monocytogenes/growth & development , Propionates/chemistry , Propionates/pharmacology , Salmonella enterica/growth & development , Seeds/growth & development , Seeds/microbiology
18.
BMC Genet ; 21(1): 80, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32698865

ABSTRACT

BACKGROUND: Bacterial fruit blotch (BFB), a disease caused by Acidovorax citrulli, results in significant economic losses in melon. The causal QTLs and genes for resistance to this disease have yet to be identified. Resistance (R)-genes play vital roles in resistance to plant diseases. Since the complete genome sequence of melon is available and genome-wide identification of R-genes has been performed for this important crop, comprehensive expression profiling may lead to the identification of putative candidate genes that function in the response to BFB. RESULTS: We identified melon accessions that are resistant and susceptible to BFB through repeated bioassays and characterized all 70 R-genes in melon, including their gene structures, chromosomal locations, domain organizations, motif distributions, and syntenic relationships. Several disease resistance-related domains were identified, including NBS, TIR, LRR, CC, RLK, and DUF domains, and the genes were categorized based on the domains of their encoded proteins. In addition, we profiled the expression patterns of the genes in melon accessions with contrasting levels of BFB resistance at 12 h, 1 d, 3 d, and 6 d after inoculation with A. citrulli. Six R-genes exhibited consistent expression patterns (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146, MELO3C025518, and MELO3C004303), with higher expression levels in the resistant vs. susceptible accession. CONCLUSION: We identified six putative candidate R-genes against BFB in melon. Upon functional validation, these genes could be targeted for manipulation via breeding and biotechnological approaches to improve BFB resistance in melon in the future.


Subject(s)
Comamonadaceae/pathogenicity , Cucurbitaceae/genetics , Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Cucurbitaceae/microbiology , Fruit , Plant Diseases/microbiology
19.
Mycotoxin Res ; 36(4): 361-369, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32666399

ABSTRACT

In this study, melon (n = 60) and sesame (n = 60) seeds purchased from markets within Benue and Nasarawa states, respectively, in Nigeria, during two seasons (dry and wet), were analysed for fungal and mycotoxin contamination in order to determine the safety of these foods for human consumption. Molecular analysis revealed the following seven fungal taxonomic groups in the foods: Aspergillus section Candidi, Aspergillus section Flavi, Aspergillus section Nigri, Cladosporium, Fusarium fujikuroi species group, Penicillium, and Pleosporales/Didymellaceae. A total of 78 microbial metabolites, including several mycotoxins, occurred in the foods. The most frequent mycotoxins in melon and sesame were aflatoxin B1 (occurrence: 76%) and alternariol monomethyl ether (occurrence: 59%), respectively. However, higher mean total aflatoxin levels occurred in sesame (17 µg kg-1) than in melon (11 µg kg-1). About 28 and 5% of melon and sesame, respectively, exceeded the 4 µg kg-1 total aflatoxin limit for oilseeds intended for direct human consumption in the European Union. Additionally, fumonisin B1 and moniliformin occurred only in sesame, whilst ochratoxins A and B occurred only in melon; ochratoxin B being reported for the first time in this food. Our data indicated seasonal variations in the fungal and mycotoxin contamination levels in both foods.


Subject(s)
Cucurbitaceae/microbiology , Food Contamination/analysis , Fungi/metabolism , Mycotoxins/analysis , Seeds/microbiology , Sesamum/microbiology , Aflatoxin B1/analysis , Aflatoxins/analysis , Fungi/classification , Mycotoxins/classification , Nigeria , Seasons
20.
Microb Ecol ; 80(3): 643-655, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32514604

ABSTRACT

Grafting is a basic technique which is widely used to increase yield and enhance biotic and abiotic stress tolerance in plant production. The diversity and interactions of rhizobacterial assemblages shaped by grafting are important for the growth of their hosts but remain poorly understood. To test the hypothesis that plant grafting shapes complexity and co-occurrence of rhizobacterial assemblage, four types of plants, including ungrafted bottle gourd (B), ungrafted watermelon (W), grafted watermelon with bottle gourd rootstock (W/B), and grafted bottle gourd with watermelon rootstock (B/W), were cultivated in two soil types in a greenhouse, and the rhizosphere bacterial communities were analyzed by 16S rRNA gene high-throughput sequencing. Both the soil type and grafting significantly influenced the bacterial community composition. Grafting increased bacterial within-sample diversity in both soils. Core enriched operational taxonomic units (OTUs) in the W/B rhizosphere compared with the other three treatments (B, W, and B/W) were mainly affiliated with Alphaproteobacteria, Deltaproteobacteria, and Bacteroidetes, which are likely related to methanol oxidation, methylotrophy, fermentation, and ureolysis. Co-occurrence network analysis proved that grafting increased network complexity, including the number of nodes, edges, and modules. Moreover, grafting strengthened the structural robustness of the network in the rhizosphere, while ungrafted watermelon had the lowest network robustness. Homogeneous selection played a predominant role in bacterial community assembly, and the contribution of dispersal limitation was increased in grafted watermelon with bottle gourd rootstock. Grafting increased the diversity and transformed the network topology of the bacterial community, which indicated that grafting could improve species coexistence in the watermelon rhizosphere.


Subject(s)
Bacteria/isolation & purification , Cucurbitaceae/microbiology , Microbiota/physiology , Plant Roots/microbiology , Rhizosphere , Soil Microbiology , Citrullus/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...