Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 13(6)2021 05 21.
Article in English | MEDLINE | ID: mdl-34064219

ABSTRACT

In recent years, conjugated mycotoxins have gained increasing interest in food safety, as their hydrolysis in human and animal intestines leads to an increase in toxicity. For the production of zearalenone (ZEN) glycosides reference standards, we applied Cunninghamellaelegans and Cunninghamella echinulata fungal strains. A sulphate-depleted medium was designed for the preferred production of ZEN glycosides. Both Cunninghamella strains were able to produce zearalenone-14-ß-D-glucopyranoside (Z14G), zearalenone-16-ß-D-glucopyranoside (Z16G) and zearalenone-14-sulphate (Z14S). In a rich medium, Cunninghamellaelegans preferably produced Z14S, while Cunninghamellaechinulata preferably produced Z14G. In the sulphate-depleted medium a dramatic change was observed for Cunninghamellaelegans, showing preferred production of Z14G and Z16G. From 2 mg of ZEN in sulphate-depleted medium, 1.94 mg of Z14G and 0.45 mg of Z16G were produced. Following preparative Liquid Chromatography-Mass Spectrometry (LC-MS) purification, both fractions were submitted to 1H and 13C NMR and High-Resolution Mass Spectrometry (HRMS). These analyses confirmed that the purified fractions were indeed Z14G and Z16G. In conclusion, the presented research shows that a single Cunninghamella strain can be an effective and efficient tool for the controlled biotransformation of ZEN glycosides and other ZEN metabolites. Additionally, the biotransformation method was extended to zearalanone, ß-zearalenol and other mycotoxins.


Subject(s)
Cunninghamella/metabolism , Glycosides/biosynthesis , Zearalenone/metabolism , Biotransformation , Chromatography, Liquid , Cunninghamella/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Zearalenone/chemistry
2.
Bioorg Chem ; 104: 104246, 2020 11.
Article in English | MEDLINE | ID: mdl-32911197

ABSTRACT

Cryptotanshinone (1), a major bioactive constituent in the traditional Chinese medicinal herb Dan-Shen Salvia miltiorrhiza Bunge, has been reported to possess remarkable pharmacological activities. To improve its bioactivities and physicochemical properties, in the present study, cryptotanshinone (1) was biotransformed with the fungus Cunninghamella elegans AS3.2028. Three oxygenated products (2-4) at C-3 of cryptotanshinone (1) were obtained, among them 2 was a new compound. Their structures were elucidated by comprehensive spectroscopic analysis including HRESIMS, NMR and ECD data. All of the biotransformation products (2-4) were found to inhibit significantly lipopolysaccharide-induced nitric oxide production in BV2 microglia cells with the IC50 values of 0.16-1.16 µM, approximately 2-20 folds stronger than the substrate (1). These biotransformation products also displayed remarkably improved inhibitory effects on the production of inflammatory cytokines (IL-1ß, IL-6, TNF-α, COX-2 and iNOS) in BV-2 cells via targeting TLR4 compared to substrate (1). The underlying mechanism of 2 was elucidated by comparative transcriptome analysis, which suggested that it reduced neuroinflammatory mainly through mitogen-activated protein kinase (MAPK) signaling pathway. Western blotting results revealed that 2 downregulated LPS-induced phosphorylation of JNK, ERK, and p38 in MAPK signaling pathway. These findings provide a basal material for the discovery of candidates in treating Alzheimer's disease.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cholinesterase Inhibitors/pharmacology , Cunninghamella/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Phenanthrenes/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Acetylcholinesterase/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Biotransformation , Cell Line , Cell Survival/drug effects , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cunninghamella/chemistry , Dose-Response Relationship, Drug , Electrophorus , Mice , Mitogen-Activated Protein Kinases/metabolism , Molecular Structure , Oxygen/metabolism , Phenanthrenes/chemistry , Phenanthrenes/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Toll-Like Receptor 4/metabolism
3.
Chem Biodivers ; 17(6): e2000178, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32452652

ABSTRACT

Biotransformation of ent-kaur-16-en-19-oic acid using fungus Cunninghamella echinulata resulted in two novel hydroxylated metabolites together with five known compounds. Their structures were elucidated by means of extensive NMR and HR-ESI-MS data analysis. The eight compounds were measured for their cytotoxicity against the human breast carcinoma (MCF-7) and human hepatoblastoma (HepG-2) cell lines. Seven compounds showed no cytotoxicity to the two cell lines. One compound displayed moderate cytotoxicity against HepG-2 and MCF-7 with the IC50 values of 12.6 and 27.1 µM, respectively.


Subject(s)
Cunninghamella/metabolism , Cell Survival/drug effects , Cunninghamella/chemistry , Diterpenes/chemistry , Diterpenes/metabolism , Hep G2 Cells , Humans , MCF-7 Cells , Magnetic Resonance Spectroscopy , Molecular Conformation , Spectrometry, Mass, Electrospray Ionization
4.
Molecules ; 24(2)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654552

ABSTRACT

Artemisinin (ART) is a highly effective antimalarial agent isolated from the traditional Chinese herb Qinghao. Metabolism of ART and its derivatives in the body is one of the most pressing issues for pharmaceutical scientists. Herein, an efficient in vitro microorganism model for simulation of metabolism of ART in vivo was developed employing Cunninghamella elegans. Metabolites in the microbial transformation system and plasma of mice pre-administrated ART orally were analyzed by ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-quadrupole time-of-flight (Q-TOF)-mass spectrometry (MSE) combined with UNIFI software. Thirty-two metabolites were identified in vitro and 23 were identified in vivo. After comparison, 16 products were found to be common to both models including monohydroxylated ART, dihydroxylated ART, deoxyartemisinin, hydroxylated deoxyartemisinin, hydroxylated dihydroartemisinin (DHA), and hydroxylated deoxy-DHA. These results revealed that C. elegans CICC 40250 functioned as an appropriate model to mimic ART metabolism in vivo. Moreover, an overall description of metabolites of ART from C. elegans CICC 40250 has been provided. Notably, DHA was detected and identified as a metabolite of ART in mouse plasma for the first time.


Subject(s)
Antimalarials/pharmacokinetics , Artemisinins/pharmacokinetics , Cunninghamella/chemistry , Metabolomics/methods , Administration, Oral , Animals , Antimalarials/administration & dosage , Artemisinins/administration & dosage , Artemisinins/analysis , Chromatography, High Pressure Liquid , Cunninghamella/growth & development , Hydroxylation , Mice , Molecular Structure , Species Specificity , Spectrometry, Mass, Electrospray Ionization
5.
Drug Test Anal ; 11(5): 721-729, 2019 May.
Article in English | MEDLINE | ID: mdl-30462883

ABSTRACT

Tryptamines can occur naturally in plants, mushrooms, microbes, and amphibians. Synthetic tryptamines are sold as new psychoactive substances (NPS) because of their hallucinogenic effects. When it comes to NPS, metabolism studies are of crucial importance, due to the lack of pharmacological and toxicological data. Different approaches can be taken to study in vitro and in vivo metabolism of xenobiotica. The zygomycete fungus Cunninghamella elegans (C. elegans) can be used as a microbial model for the study of drug metabolism. The current study investigated the biotransformation of four naturally occurring and synthetic tryptamines [N,N-Dimethyltryptamine (DMT), 4-hydroxy-N-methyl-N-ethyltryptamine (4-HO-MET), N,N-di allyl-5-methoxy tryptamine (5-MeO-DALT) and 5-methoxy-N-methyl-N-isoporpoyltryptamine (5-MeO-MiPT)] in C. elegans after incubation for 72 hours. Metabolites were identified using liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS) with a quadrupole time-of-flight (QqTOF) instrument. Results were compared to already published data on these substances. C. elegans was capable of producing all major biotransformation steps: hydroxylation, N-oxide formation, carboxylation, deamination, and demethylation. On average 63% of phase I metabolites found in the literature could also be detected in C. elegans. Additionally, metabolites specific for C. elegans were identified. Therefore, C. elegans is a suitable complementary model to other in vitro or in vivo methods to study the metabolism of naturally occurring or synthetic tryptamines.


Subject(s)
Cunninghamella/metabolism , Designer Drugs/metabolism , Psychotropic Drugs/metabolism , Tryptamines/metabolism , Allyl Compounds/analysis , Allyl Compounds/metabolism , Biotransformation , Chromatography, Liquid , Cunninghamella/chemistry , Designer Drugs/analysis , N,N-Dimethyltryptamine/analysis , N,N-Dimethyltryptamine/metabolism , Psychotropic Drugs/analysis , Tandem Mass Spectrometry , Tryptamines/analysis
6.
Int J Biol Macromol ; 118(Pt B): 2265-2268, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30030076

ABSTRACT

The bioremediation of water and soil, from heavy metal (HM) contamination, is a continuing worldwide demand. Chitosan, as a promising bioactive polymer, was produced from grown fungal (Cunninghamella elegans) mycelia and had a molecular weight of 112 kDa and a deacetylation degree of 87%. Sodium tripolyphosphate was applied for the synthesis of chitosan nanoparticles (NCt) from fungal chitosan (Cts); the particle size of produced NCt was in range of 5-45 nm. The produced biopolymers were used for HM absorption, Pb2+ and Cu2+ at concentration range of 100-300 ppm, from aqueous solution and soil matrix. Both Cts and NCt had high adsorption capacity toward the examined HM, with higher affinity as adsorbents to Pb2+ than to adsorb Cu2+ from water or after amendment of soil matrix. The produced NCt particles were highly effective than bulk Cts for the remediation and biosorption of contaminant metals, Pb2+ and Cu2+. Both Cts and NCt could be effectually applied as amendments in HM-contaminated soils for their bioremediation.


Subject(s)
Chitosan/chemistry , Cunninghamella/chemistry , Metals, Heavy/isolation & purification , Nanoparticles/chemistry , Soil/chemistry , Adsorption , Biodegradation, Environmental , Nanoparticles/ultrastructure , Spectroscopy, Fourier Transform Infrared
7.
Phytochemistry ; 152: 1-9, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29689318

ABSTRACT

Biotransformation of steroidal ruscogenins (neoruscogenin and ruscogenin) was carried out with Cunninghamella blakesleeana NRRL 1369 and endophytic fungus Neosartorya hiratsukae yielding mainly P450 monooxygenase products together with a glycosylated compound. Fermentation of ruscogenins (75:25, neoruscogenin-ruscogenin mixture) with C. blakesleeana yielded 8 previously undescribed hydroxylated compounds. Furthermore, microbial transformation of neoruscogenin by endophytic fungus N. hiratsukae afforded three previously undescribed neoruscogenin derivatives. While hydroxylation at C-7, C-12, C-14, C-21 with further oxidation at C-1 and C-7 were observed with C. blakesleeana, N. hiratsukae biotransformation provided C-7 and C-12 hydroxylated compounds along with C-12 oxidized and C-1(O) glycosylated derivatives. The structures of the metabolites were elucidated by 1-D (1H, 13C and DEPT135) and 2-D NMR (COSY, HMBC, HMQC, NOESY, ROESY) as well as HR-MS analyses.


Subject(s)
Biotransformation , Cunninghamella/chemistry , Neosartorya/chemistry , Spirostans/metabolism , Cunninghamella/metabolism , Molecular Conformation , Neosartorya/metabolism , Spirostans/chemistry , Spirostans/isolation & purification
8.
PLoS One ; 12(2): e0171476, 2017.
Article in English | MEDLINE | ID: mdl-28234904

ABSTRACT

Seven metabolites were obtained from the microbial transformation of anabolic-androgenic steroid mibolerone (1) with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina. Their structures were determined as 10ß,17ß-dihydroxy-7α,17α-dimethylestr-4-en-3-one (2), 6ß,17ß-dihydroxy-7α,17α-dimethylestr-4-en-3-one (3), 6ß,10ß,17ß-trihydroxy-7α,17α-dimethylestr-4-en-3-one (4), 11ß,17ß-dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en-3-one (5), 1α,17ß-dihydroxy-7α,17α-dimethylestr-4-en-3-one (6), 1α,11ß,17ß-trihydroxy-7α,17α-dimethylestr-4-en-3-one (7), and 11ß,17ß-dihydroxy-7α,17α-dimethylestr-4-en-3-one (8), on the basis of spectroscopic studies. All metabolites, except 8, were identified as new compounds. This study indicates that C. blakesleeana, and C. echinulata are able to catalyze hydroxylation at allylic positions, while M. phaseolina can catalyze hydroxylation of CH2 and CH3 groups of substrate 1. Mibolerone (1) was found to be a moderate inhibitor of ß-glucuronidase enzyme (IC50 = 42.98 ± 1.24 µM) during random biological screening, while its metabolites 2-4, and 8 were found to be inactive. Mibolerone (1) was also found to be significantly active against Leishmania major promastigotes (IC50 = 29.64 ± 0.88 µM). Its transformed products 3 (IC50 = 79.09 ± 0.06 µM), and 8 (IC50 = 70.09 ± 0.05 µM) showed a weak leishmanicidal activity, while 2 and 4 were found to be inactive. In addition, substrate 1 (IC50 = 35.7 ± 4.46 µM), and its metabolite 8 (IC50 = 34.16 ± 5.3 µM) exhibited potent cytotoxicity against HeLa cancer cell line (human cervical carcinoma). Metabolite 2 (IC50 = 46.5 ± 5.4 µM) also showed a significant cytotoxicity, while 3 (IC50 = 107.8 ± 4.0 µM) and 4 (IC50 = 152.5 ± 2.15 µM) showed weak cytotoxicity against HeLa cancer cell line. Compound 1 (IC50 = 46.3 ± 11.7 µM), and its transformed products 2 (IC50 = 43.3 ± 7.7 µM), 3 (IC50 = 65.6 ± 2.5 µM), and 4 (IC50 = 89.4 ± 2.7 µM) were also found to be moderately toxic to 3T3 cell line (mouse fibroblast). Interestingly, metabolite 8 showed no cytotoxicity against 3T3 cell line. Compounds 1-4, and 8 were also evaluated for inhibition of tyrosinase, carbonic anhydrase, and α-glucosidase enzymes, and all were found to be inactive.


Subject(s)
17-Ketosteroids/metabolism , Antineoplastic Agents/metabolism , Antiprotozoal Agents/metabolism , Cunninghamella/metabolism , Nandrolone/analogs & derivatives , Saccharomycetales/metabolism , Testosterone Congeners/metabolism , 17-Ketosteroids/chemistry , 17-Ketosteroids/isolation & purification , 17-Ketosteroids/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Biotransformation , Carbonic Anhydrases/chemistry , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Cunninghamella/chemistry , Cunninghamella/drug effects , Glucuronidase/antagonists & inhibitors , Glucuronidase/chemistry , HeLa Cells , Humans , Hydroxylation , Leishmania major/drug effects , Leishmania major/growth & development , Mice , Molecular Structure , Monophenol Monooxygenase/chemistry , NIH 3T3 Cells , Nandrolone/chemistry , Nandrolone/metabolism , Nandrolone/pharmacology , Saccharomycetales/chemistry , Saccharomycetales/drug effects , Testosterone Congeners/chemistry , Testosterone Congeners/isolation & purification , Testosterone Congeners/pharmacology , alpha-Glucosidases/chemistry
9.
J Pharm Biomed Anal ; 134: 228-236, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-27918992

ABSTRACT

FG-4592 is a hypoxia-inducible factor (HIF) stabilizer, which can increase the number of red blood cells in the body. It has not been approved by regulatory authorities, but is available for purchase on the Internet. Due to its ability to improve the oxygen transportation mechanism in the body, FG-4592 is of interest for doping control laboratories, but prior to this study, little information about its metabolism was available. In this study, the metabolism of FG-4592 was investigated in a human doping control sample and in five in vitro models: human hepatocytes and liver microsomes, equine liver microsomes and S9 fraction and the fungus Cunninghamella elegans. By using liquid chromatography coupled to a Q-TOF mass spectrometer operated in MSE and MSMS modes, twelve different metabolites were observed for FG-4592. One monohydroxylated metabolite was detected in both the human and equine liver microsome incubations. For the fungus Cunninghamella elegans eleven different metabolites were observed of which the identical monohydroxylated metabolite had the highest response. This rich metabolic profile and the higher levels of metabolites produced by Cunninghamella elegans demonstrates its usefulness as a metabolite producing medium. In the doping control urine sample, one metabolite, which was the result of a direct glucuronidation, was observed. No metabolites were detected in neither the human hepatocyte nor in the equine liver S9 fraction incubates.


Subject(s)
Cunninghamella/metabolism , Doping in Sports , Glycine/analogs & derivatives , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Isoquinolines/metabolism , Substance Abuse Detection/methods , Tandem Mass Spectrometry/methods , Animals , Cunninghamella/chemistry , Doping in Sports/prevention & control , Glycine/analysis , Glycine/metabolism , Hepatocytes/chemistry , Hepatocytes/metabolism , Horses , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/analysis , Isoquinolines/analysis , Liquid-Liquid Extraction/methods , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism
10.
Int J Biol Macromol ; 88: 59-65, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26995612

ABSTRACT

Water contamination, with heavy metals and microbial pathogens, is among the most dangerous challenges that confront human health worldwide. Chitosan is a bioactive biopolymer that could be produced from fungal mycelia to be utilized in various applied fields. An attempt to apply fungal chitosan for heavy metals chelation and microbial pathogens inhibition, in contaminated water, was performed in current study. Chitosan was produced from the mycelia of Aspergillus niger, Cunninghamella elegans, Mucor rouxii and from shrimp shells, using unified production conditions. The FT-IR spectra of produced chitosans were closely comparable. M. rouxii chitosan had the highest deacetylation degree (91.3%) and the lowest molecular weight (33.2kDa). All chitosan types had potent antibacterial activities against Escherichia coli and Staphylococcus aureus; the most forceful type was C. elegans chitosan. Chitosan beads were cross-linked with glutaraldehyde (GLA) and ethylene-glycol-diglycidyl ether (EGDE); linked beads became insoluble in water, acidic and alkaline solutions and could effectively adsorb heavy metals ions, e.g. copper, lead and zinc, in aqueous solution. The bioactive filter, loaded with EGDE- A. niger chitosan beads, was able to reduce heavy metals' concentration with >68%, and microbial load with >81%, after 6h of continuous water flow in the experimentally designed filter.


Subject(s)
Chitosan/chemistry , Copper/isolation & purification , Lead/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Zinc/isolation & purification , Adsorption , Animal Shells/chemistry , Animals , Aspergillus niger/chemistry , Biodegradation, Environmental , Chitosan/isolation & purification , Cross-Linking Reagents/chemistry , Cunninghamella/chemistry , Drinking Water/chemistry , Drinking Water/microbiology , Epoxy Resins/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Glutaral/chemistry , Humans , Mucor/chemistry , Mycelium/chemistry , Penaeidae/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
11.
Int J Biol Macromol ; 83: 277-81, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26645148

ABSTRACT

Water pollution is among the most hazardous problems that threaten human health worldwide. Chitosan is a marvelous bioactive polymer that could be produced from fungal mycelia. This study was conducted to produce chitosan from Cunninghamella elegans and to use it for water pollutants elimination, e.g. heavy metals and waterborne microorganisms, and to investigate its antibacterial mode of action against Escherichia coli. The produced fungal chitosan had a deacetylation degree of 81%, a molecular weight of 92.73 kDa and a matched FT-IR spectrum with standard shrimp chitosan. Fungal chitosan exhibited remarkable antimicrobial activity against E. coli, Staphylococcus aureus and Candida albicans. Chitosan was proved as an effective metal adsorbent, toward the examined metal ions, Cu2+, Zn2+ and Pb2+, and its adsorption capacity greatly increased with the increasing of metal concentration, especially for Cu and Zn. The scanning electron micrographs, of treated E. coli cells with fungal chitosan, indicated that the cells began to lyse and combine after 3h of exposure and chitosan particles attached to the combined cells and, after 12 h from exposure, the entire bacterial cell walls were fully disrupted and lysed. Therefore, fungal chitosan could be recommended, as a bioactive, renewable, ecofriendly and cost effective material, for overcoming water pollution problems, from chemical and microbial origins.


Subject(s)
Chitosan/chemistry , Cunninghamella/chemistry , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biodegradation, Environmental , Candida albicans/drug effects , Chitosan/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
12.
Chem Pharm Bull (Tokyo) ; 63(8): 579-83, 2015.
Article in English | MEDLINE | ID: mdl-26235165

ABSTRACT

6-Hydroxyflavanone (1) when fermented with fungal culture Cunninghamella blakesleeana (ATCC 8688a) yielded flavanone 6-O-ß-D-glucopyranoside (2), flavanone 6-sulfate (3), and 6-hydroxyflavanone 7-sulfate (4). Aspergillus alliaceus (ATCC 10060) also transformed 1 to metabolite 3 as well as 4'-hydroxyflavanone 6-sulfate (5) and 6,4'-dihydroxyflavanone (6). Beauveria bassiana (ATCC 7159) metabolized 1 to 6 and flavanone 6-O-ß-D-4-O-methyglucopyranoside (7). Mucor ramannianus (ATCC 9628) transformed 1 to 2,4-cis-6-hydroxyflavan-4-ol (8), 2,4-trans-6-hydroxyflavan-4-ol (9), 2,4-trans-6,4'-dihydroxyflavan-4-ol 5-sulfate (10), 1,3-cis-1-methoxy-1-(2,5-dihydroxyphenyl)-3-phenylpropane (11) and 2,4-trans-flavan-4-ol 6-sulfate (12). Structures of the metabolic products were elucidated by means of spectroscopic data. None of the metabolites tested showed antibacterial, antifungal and antimalarial activities against selected organisms. However, weak antileishmanial activity was observed for metabolite 11 when tested against Leishmania donovani.


Subject(s)
Anti-Infective Agents/metabolism , Aspergillus/metabolism , Beauveria/metabolism , Cunninghamella/metabolism , Flavanones/metabolism , Mucor/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Aspergillus/chemistry , Bacteria/drug effects , Beauveria/chemistry , Cunninghamella/chemistry , Fermentation , Flavanones/chemistry , Fungi/drug effects , Humans , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Mucor/chemistry
13.
Mikrobiologiia ; 84(2): 204-11, 2015.
Article in Russian | MEDLINE | ID: mdl-26263626

ABSTRACT

Qualitative and quantitative differences were found between the lipids of cell walls (CW) and of whole mycelial cells and dormant cells of mucoraceous and ascomycete fungi. Thus, whole mycelial cells (WC) contained more lipids than CW. Unlike sporangiospores and conidia (exogenous dormant spores), zygotes were found to have the highest content of triacylglycerol lipids (70%). Cell walls of mucoraceous fungi contained more triacylglycerols (TAG) and less polar lipids than ascomycete lipids. While all CW and WC studied were similar in fatty acid (FA) composition, their ratio was specific for each structure: linoleic acid predominated in mycelial CW and WC, while oleic acid was predominant in the spores; this difference was especially pronounced in conidial WC. Unlike WC, in CW massive lipids may be represented not by phosphatidylethanolamine (PEA) and phosphatidylcholine (PC), but by free fatty acids (FFA), free (FSt) and etherified sterols (ESt), phosphatidic acid (PA), fatty acid methyl esters (FAME), and glycolipids (GL), which is an indication of a special functional role of CW.


Subject(s)
Absidia/chemistry , Cell Wall/chemistry , Cunninghamella/chemistry , Mycelium/chemistry , Penicillium/chemistry , Spores, Fungal/chemistry , Absidia/growth & development , Chromatography, Thin Layer , Culture Media , Cunninghamella/growth & development , Glycolipids/isolation & purification , Linoleic Acid/isolation & purification , Mycelium/growth & development , Oleic Acid/isolation & purification , Penicillium/growth & development , Phosphatidic Acids/isolation & purification , Phosphatidylcholines/isolation & purification , Phosphatidylethanolamines/isolation & purification , Spores, Fungal/growth & development , Sterols/isolation & purification , Triglycerides/isolation & purification
14.
Infect Immun ; 83(10): 3937-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26195554

ABSTRACT

Legionella pneumophila, the agent of Legionnaires' disease, secretes a siderophore (legiobactin) that promotes bacterial infection of the lung. In past work, we determined that cytoplasmic LbtA (from Legiobactin gene A) promotes synthesis of legiobactin, inner membrane LbtB aids in export of the siderophore, and outer membrane LbtU and inner membrane LbtC help mediate ferrilegiobactin uptake and assimilation. However, the past studies examined legiobactin contained within bacterial culture supernatants. By utilizing high-pressure liquid chromatography that incorporates hydrophilic interaction-based chemistry, we have now purified legiobactin from supernatants of virulent strain 130b that is suitable for detailed chemical analysis. High-resolution mass spectrometry (MS) revealed that the molecular mass of (protonated) legiobactin is 437.140 Da. On the basis of the results obtained from both MS analysis and various forms of nuclear magnetic resonance, we found that legiobactin is composed of two citric acid residues linked by a putrescine bridge and thus is identical in structure to rhizoferrin, a polycarboxylate-type siderophore made by many fungi and several unrelated bacteria. Both purified legiobactin and rhizoferrin obtained from the fungus Cunninghamella elegans were able to promote Fe(3+) uptake by wild-type L. pneumophila as well as enhance growth of iron-starved bacteria. These results did not occur with 130b mutants lacking lbtU or lbtC, indicating that both endogenously made legiobactin and exogenously derived rhizoferrin are assimilated by L. pneumophila in an LbtU- and LbtC-dependent manner.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ferric Compounds/chemistry , Legionella pneumophila/metabolism , Legionnaires' Disease/microbiology , Siderophores/chemistry , Siderophores/metabolism , Bacterial Proteins/genetics , Cunninghamella/chemistry , Cunninghamella/metabolism , Ferric Compounds/metabolism , Humans , Legionella pneumophila/chemistry , Legionella pneumophila/genetics , Mass Spectrometry , Molecular Structure
15.
J Org Chem ; 80(12): 6490-5, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25985231

ABSTRACT

Regio- and stereoselective 11ß-hydroxylation was achieved on the basic limonoid skeleton through microbial transformation. Whole cells of Cunninghamella echinulata efficiently converted basic limonoids such as epoxyazadiradione, azadiradione, and gedunin to their 11ß-hydroxy analogues as the sole metabolite. Fermentation conditions affecting the efficiency (96%) of biotransformation including substrate concentration, incubation period, pH, and temperature were optimized. The position and stereochemistry of hydroxyl functionality on the isolated metabolites were established through extensive spectroscopic and spectrometric studies (1D, 2D NMR, ESI-MS, and MS/MS).


Subject(s)
Cunninghamella/chemistry , Cunninghamella/metabolism , Limonins/chemistry , Limonins/metabolism , Biotransformation , Fermentation , Hydroxylation , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism
16.
Drug Test Anal ; 7(7): 626-33, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25209992

ABSTRACT

A new model is presented that can be used to screen for bioactivation of drugs. The evaluation of toxicity is an important step in the development of new drugs. One way to detect possible toxic metabolites is to use trapping agents such as glutathione. Often human liver microsomes are used as a metabolic model in initial studies. However, there is a need for alternatives that are easy to handle, cheap, and can produce large amounts of metabolites. In the presented study, paracetamol, mefenamic acid, and diclofenac, all known to form reactive metabolites in humans, were incubated with the fungus Cunninghamella elegans and the metabolites formed were characterized with ultra high performance liquid chromatography coupled to a quadrupole time of flight mass spectrometer. Interestingly, glutathione conjugates formed by the fungus were observed for all three drugs and their retention times and MS/MS spectra matched those obtained in a comparative experiment with human liver microsomes. These findings clearly demonstrated that the fungus is a suitable trapping model for toxic biotransformation products. Cysteine conjugates of all three test drugs were also observed with high signal intensities in the fungal incubates, giving the model a further indicator of drug bioactivation. To our knowledge, this is the first demonstration of the use of a fungal model for the formation and trapping of reactive drug metabolites. The investigated model is cheap, easy to handle, it does not involve experimental animals and it can be scaled up to produce large amounts of metabolites.


Subject(s)
Acetaminophen/metabolism , Cunninghamella/metabolism , Diclofenac/metabolism , Mefenamic Acid/metabolism , Tandem Mass Spectrometry/methods , Acetaminophen/analysis , Animals , Chromatography, High Pressure Liquid/methods , Cunninghamella/chemistry , Diclofenac/analysis , Humans , Mefenamic Acid/analysis , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism
17.
Int J Mol Sci ; 15(9): 15377-95, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25257520

ABSTRACT

A Mucoralean fungus was isolated from Caatinga soil of Pernambuco, Northeast of Brazil, and was identified as Cunninghamella echinulata by morphological, physiological, and biochemical tests. This strain was evaluated for biosurfactant/bioemulsifier production using soybean oil waste (SOW) and corn steep liquor (CSL) as substrates, added to basic saline solution, by measuring surface tension and emulsifier index and activity. The best results showed the surface water tension was reduced from 72 to 36 mN/m, and an emulsification index (E24) of 80% was obtained using engine oil and burnt engine oil, respectively. A new molecule of biosurfactant showed an anionic charge and a polymeric chemical composition consisting of lipids (40.0% w/w), carbohydrates (35.2% w/w) and protein (20.3% w/w). In addition, the biosurfactant solution (1%) demonstrated its ability for an oil displacement area (ODA) of 37.36 cm², which is quite similar to that for Triton X-100 (38.46 cm²). The stability of the reduction in the surface water tension as well as of the emulsifier index proved to be stable over a wide range of temperatures, in pH, and in salt concentration (4%-6% w/v). The biosurfactant showed an ability to reduce and increase the viscosity of hydrophobic substrates and their molecules, suggesting that it is a suitable candidate for mediated enhanced oil recovery. At the same time, these studies indicate that renewable, relatively inexpensive and easily available resources can be used for important biotechnological processes.


Subject(s)
Cunninghamella/chemistry , Emulsifying Agents/isolation & purification , Surface-Active Agents/isolation & purification , Biodegradation, Environmental , Brazil , Carbohydrates/analysis , Carbon/metabolism , Cunninghamella/growth & development , Cunninghamella/isolation & purification , Cunninghamella/metabolism , Drug Stability , Emulsifying Agents/chemistry , Fuel Oils , Fungal Proteins/analysis , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Industrial Waste , Lipids/analysis , Micelles , Nitrogen/metabolism , Salinity , Soil Microbiology , Glycine max , Surface Tension/drug effects , Surface-Active Agents/chemistry , Temperature , Viscosity , Water , Zea mays
18.
J Pharm Biomed Anal ; 98: 36-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24879518

ABSTRACT

In this study, using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, it has been confirmed that biotransformation with the fungus Cunninghamella elegans combined with chemical oxidation with the free radical tetramethylpiperidinyl-1-oxy (TEMPO) can produce drug glucuronides of ß-configuration. Glucuronic acid conjugates are a common type of metabolites formed by the human body. The detection of such conjugates in doping control and other kinds of forensic analysis would be beneficial owing to a decrease in analysis time as hydrolysis can be omitted. However the commercial availability of reference standards for drug glucuronides is poor. The selective androgen receptor modulator (SARM) SARM S1 was incubated with the fungus C. elegans. The sample was treated with the free radical TEMPO oxidizing agent and was thereafter purified by SPE. A glucuronic acid conjugate was isolated using a fraction collector connected to an ultra high performance liquid chromatographic (UHPLC) system. The isolated compound was characterized by NMR spectroscopy and mass spectrometry and its structure was confirmed as a glucuronic acid ß-conjugate of hydroxylated SARM S1 bearing the glucuronide moiety on carbon C-10.


Subject(s)
Biotransformation/physiology , Cunninghamella/chemistry , Glucuronides/chemistry , Glucuronides/metabolism , Hydroxylation/physiology , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Animals , Chromatography, High Pressure Liquid/methods , Cyclic N-Oxides/chemistry , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Oxidation-Reduction
19.
ChemMedChem ; 9(4): 733-6, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24474678

ABSTRACT

In drug design, one way of improving metabolic stability is to introduce fluorine at a metabolically labile site. In the early stages of drug design, identification of such sites is challenging, and a rapid method of assessing the effect of fluorination on a putative drug's metabolic stability would be of clear benefit. One approach to this is to employ micro-organisms that are established as models of drug metabolism in parallel with the synthesis of fluorinated drug analogues. In this study, we have used the filamentous fungus Cunninghamella elegans to identify the metabolically labile site of the nonsteroidal anti-inflammatory drug flurbiprofen, to aid in the design of fluorinated derivatives that were subsequently synthesised. The effect of the additional fluorine substitution on cytochrome P450-catalysed oxidation was then determined via incubation with the fungus, and demonstrated that fluorine substitution at the 4'-position rendered the drug inactive to oxidative transformation, whereas substitution of fluorine at either 2' or 3' resulted in slower oxidation compared to the original drug. This approach to modulating the metabolic stability of a drug-like compound is widely applicable and can be used to address metabolic issues of otherwise good lead compounds in drug development.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cunninghamella/metabolism , Fluorine/metabolism , Flurbiprofen/metabolism , Hydrocarbons, Fluorinated/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Crystallography, X-Ray , Cunninghamella/chemistry , Drug Design , Fluorine/chemistry , Flurbiprofen/chemical synthesis , Flurbiprofen/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Models, Molecular , Molecular Structure
20.
Steroids ; 82: 53-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24462640

ABSTRACT

Fermentation of mesterolone (1) with Cunninghamella blakesleeana yielded four new metabolites, 1α-methyl-1ß,11ß,17ß-trihydroxy-5α-androstan-3-one (2), 1α-methyl-7α,11ß,17ß-trihydroxy-5α-androstan-3-one (3), 1α-methyl-1ß,6α,17ß-trihydroxy-5α-androstan-3-one (4) and 1α-methyl-1ß,11α,17ß-trihydroxy-5α-androstan-3-one (5), along with three known metabolites, 1α-methyl-11α,17ß-dihydroxy-5α-androstan-3-one (6), 1α-methyl-6α,17ß-dihydroxy-5α-androstan-3-one (7) and 1α-methyl-7α,17ß-dihydroxy-5α-androstan-3-one (8). Biotransformation of 1 with Macrophomina phaseolina also yielded a new metabolite, 1α-methyl, 17ß-hydroxy-5α-androstan-3,6-dione (9). The isolated metabolites were subjected to various in vitro biological assays, such as anti-cancer, inhibition of α-glucosidase, and phosphodiesterase-5 enzymes and oxidative brust. However, no significant results were observed. This is the first report of biotransformation of 1 with C. blakesleeana and M. phaseolina.


Subject(s)
Ascomycota/metabolism , Cunninghamella/chemistry , Mesterolone/metabolism , Ascomycota/chemistry , Cunninghamella/metabolism , Mesterolone/chemistry , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...