Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 11(1): 9081, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907268

ABSTRACT

Phosphorus-solubilizing microorganisms is a microbial fertilizer with broad application potential. In this study, 7 endophytic phosphate solubilizing bacteria were screened out from Chinese fir, and were characterized for plant growth-promoting traits. Based on morphological and 16S rRNA sequence analysis, the endophytes were distributed into 5 genera of which belong to Pseudomonas, Burkholderia, Paraburkholderia, Novosphingobium, and Ochrobactrum. HRP2, SSP2 and JRP22 were selected based on their plant growth-promoting traits for evaluation of Chinese fir growth enhancement. The growth parameters of Chinese fir seedlings after inoculation were significantly greater than those of the uninoculated control group. The results showed that PSBs HRP2, SSP2 and JRP22 increased plant height (up to 1.26 times), stem diameter (up to 40.69%) and the biomass of roots, stems and leaves (up to 21.28%, 29.09% and 20.78%) compared to the control. Total N (TN), total P (TP), total K (TK), Mg and Fe contents in leaf were positively affected by PSBs while showed a significant relationship with strain and dilution ratio. The content of TN, TP, TK, available phosphorus (AP) and available potassium (AK) in the soil increased by 0.23-1.12 mg g-1, 0.14-0.26 mg g-1, 0.33-1.92 mg g-1, 5.31-20.56 mg kg-1, 15.37-54.68 mg kg-1, respectively. Treatment with both HRP2, SSP2 and JRP22 increased leaf and root biomass as well as their N, P, K uptake by affecting soil urease and acid phosphatase activities, and the content of available nutrients in soil. In conclusion, PSB could be used as biological agents instead of chemical fertilizers for agroforestry production to reduce environmental pollution and increase the yield of Chinese fir.


Subject(s)
Agricultural Inoculants/physiology , Cunninghamia/growth & development , Cunninghamia/microbiology , Phosphates/metabolism , Seedlings/growth & development , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/metabolism , Carbon-Carbon Lyases/metabolism , Cunninghamia/metabolism , Endophytes/physiology , Indoleacetic Acids/metabolism , Nitrogenase/metabolism , Phosphorus/metabolism , RNA, Ribosomal, 16S , Seedlings/metabolism , Seedlings/microbiology , Siderophores/metabolism , Soil/chemistry
2.
Sci Rep ; 10(1): 12260, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32704060

ABSTRACT

Nitrogen (N) deposition is a key factor that affects terrestrial biogeochemical cycles with a growing trend, especially in the southeast region of China, where shortage of available phosphorus (P) is particularly acute and P has become a major factor limiting plant growth and productivity. Arbuscular mycorrhizal fungi (AMF) establish a mutualistic symbiosis with plants, and play an important role in enhancing plant stress resistance. However, the response of AMF to the combined effects of N deposition and P additions is poorly understood. Thus, in this study, a field experiment was conducted in 10-year Chinese fir forests to estimate the effects of simulated nitrogen (N) deposition (low-N, 30 kg ha-1 year-1 and high-N, 60 kg ha-1 year-1) and phosphorus (P) addition treatments (low-P, 20 mg kg-1 and high-P, 40 mg kg-1) on AMF since April 2017, which was reflected in AMF root colonization rates and spore density of rhizosphere soil. Our results showed that N deposition significantly decreased AMF root colonization rates and spore density. In N-free plots, P addition significantly decreased AMF root colonization rates, but did not significantly alter spore density. In low-N plots, colonization rates significantly decreased under low P addition, but significantly increased under high P addition, and spore density exhibited a significant decline under high P additions. In high-N plots, colonization rates and spore density significantly increased under P additions. Interactive effects of simulated N deposition and P addition on both colonization rates and spore density were significant. Moderate N deposition or P addition can weaken the symbiotic relationship between plants and AMF, significantly reducing AMF colonization rates and inhibiting spore production. However, a moderate addition of P greatly enhances spore yield. In the case of interactive effects, the AMF colonization rates and spore density are affected by the relative content of N and P in the soil.


Subject(s)
Cunninghamia/metabolism , Cunninghamia/microbiology , Host-Pathogen Interactions , Mycorrhizae , Nitrogen/metabolism , Phosphorus/metabolism , Soil Microbiology , Spores, Fungal
3.
Sci Rep ; 9(1): 18057, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792242

ABSTRACT

Arbuscular mycorrhizal (AM) fungi play an important role in plant-fungi communities. It remains a central question of how the AM fungal community changes as plants grow. To establish an understanding of AM fungal community dynamics associated with Chinese fir, Chinese fir with five different growth stages were studied and 60 root samples were collected at the Jiangle National Forestry Farm, Fujian Province. A total of 76 AM fungal operational taxonomic units (OTUs) were identified by high-throughput sequencing on an Illumina Miseq platform. The genera covered by OTUs were Glomus, Archaeospora, Acaulospora, Gigaspora and Diversispora. Glomus dominated the community in the whole stage. The number and composition of OTUs varied along with the host plant growth. The number of OTUs showed an inverted V-shaped change with the host plant age, and the maximum occurred in 23-year. Overall, the basic species diversity and richness in this study were stable. Non-metric multi-dimensional scaling (NMDS) analysis based on bray-curtis distance revealed that there were remarkable differentiations between the 9-year and other stages. Besides, AM fungal community in 32-year had a significant difference with that of 23-year, while no significant difference with that of 45-year, suggesting that 32-year may be a steady stage for AM fungi associated with Chinese fir. The cutting age in 32-year may be the most favorable for microbial community. The pH, total N, total P, total K, available N, available P, available K, organic matter and Mg varied as the Chinese fir grows. According to Mantel test and redundancy analysis, available N, available P, K and Mg could exert significant influence on AM fungal communities, and these variables explained 31% of variance in the composition of AM fungal communities.


Subject(s)
Cunninghamia/microbiology , Host Microbial Interactions/physiology , Mycobiome/physiology , Mycorrhizae/physiology , Cunninghamia/physiology , DNA, Fungal/isolation & purification , High-Throughput Nucleotide Sequencing , Plant Roots/microbiology , Sequence Analysis, DNA , Soil/chemistry , Soil Microbiology , Time Factors
4.
Mol Plant Microbe Interact ; 32(2): 139-141, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30019989

ABSTRACT

Colletotrichum has a broad host range and causes major yield losses of crops. The fungus Colletotrichum gloeosporioides is associated with anthracnose on Chinese fir. In this study, we present a high-quality draft genome sequence of C. gloeosporioides sensu stricto SMCG1#C, providing a reference genomic data for further research on anthracnose of Chinese fir and other hosts.


Subject(s)
Colletotrichum/genetics , Cunninghamia , Genome, Plant , China , Cunninghamia/microbiology
5.
Plant Dis ; 102(3): 500-506, 2018 Mar.
Article in English | MEDLINE | ID: mdl-30673483

ABSTRACT

Chinese fir (Cunninghamia lanceolata) is a significant timber species that has been broadly cultivated in southern China. A shoot blight disease on Chinese fir seedlings was discovered in Fujian, China and a fungus was then consistently associated with the symptoms. This fungus was determined to be causing this disease, among others by fulfilling Koch's postulates. Based on morphological characteristics and multilocus phylogenetic analyses with the sequences of the internal transcribed spacer, partial glyceraldehyde-3-phosphate dehydrogenase gene, partial translation elongation factor 1-α gene, and partial 28S large subunit ribosomal RNA gene, the fungus was identified as Bipolaris oryzae. These characteristics and phylogenetic analyses clearly support that this pathogen is different from B. sacchari, which was, until now, considered to be the causal agent of a similar blight on Chinese fir in Guangdong, China. The fungus was also shown to be strongly pathogenic to rice, one of the most susceptible hosts to B. oryzae. Crop rotation involving rice is often carried out with Chinese fir in southern China, a practice that most likely increases the risk of shoot blight on C. lanceolata. To our knowledge, shoot blight caused by B. oryzae is reported for the first time in a gymnosperm species.


Subject(s)
Ascomycota/isolation & purification , Cunninghamia/microbiology , Plant Diseases/microbiology , Ascomycota/cytology , Ascomycota/genetics , Ascomycota/pathogenicity , Multilocus Sequence Typing , Mycological Typing Techniques , Phylogeny , Plant Shoots/microbiology , Seedlings/microbiology
6.
Sci Total Environ ; 619-620: 1530-1537, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29129329

ABSTRACT

Although biological nitrogen (N) fixation (BNF) is an important N input process in subtropical forest ecosystems, how the diazotrophic communities related to this process respond to N and phosphorus (P) inputs is largely unknown. We investigated the effects of exogenous N and/or P inputs on N2-fixation activity, diazotrophic abundance and community composition using a continuous application of fertilizers over 5years experiment in a Chinese fir plantation. The fertilization regimes included control (CK), P treatment (P), low N addition treatment (N1), high N addition treatment (N2), low N and P addition treatment (N1P) and high N with P addition treatment (N2P). N2-fixation activity was determined using the acetylene reduction assay (ARA). Quantitative PCR and Illumina Miseq sequencing of nifH gene were performed to analyze diazotrophic abundance and community composition, respectively. Our results showed that P addition increased N2-fixation activity and nifH gene abundance by 189.07nmol C2H4 and 1.02×107copiesg-1 dry soil, respectively, while were reduced by 1.19nmol C2H4 and 2.04×106copiesg-1 dry soil when N was added. The application of P with low N (N1P) effectively alleviated the inhibitory effect of N input on N2-fixation activity. N-related treatments resulted in significant decreases in operational taxonomic unit (OTU) richness and shifts in diazotrophic community structure. N2-fixation activity and nifH gene abundance were strongly and positively correlated with soil pH and negatively correlated with mineral N (NH4+-N and NO3--N) contents, while mineral N concentrations rather than soil pH appeared to be the main factor altering diazotrophic community structure. These results revealed that P addition played a positive role in regulating biological nitrogen fixation in subtropical forest ecosystems.


Subject(s)
Cunninghamia/microbiology , Fertilizers , Nitrogen Fixation , Nitrogen/analysis , Phosphorus/analysis , Soil Microbiology , China , Forests , Genes, Bacterial
7.
Sci Rep ; 6: 22399, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26928608

ABSTRACT

Ericoid mycorrhiza (ERM) are expected to facilitate establishment of ericaceous plants in harsh habitats. However, diversity and driving factors of the root-associated fungi of ericaceous plants are poorly understood. In this study, hair-root samples of Vaccinium carlesii were taken from four forest types: old growth forests (OGF), secondary forests with once or twice cutting (SEC I and SEC II), and Cunninghamia lanceolata plantation (PLF). Fungal communities were determined using high-throughput sequencing, and impacts of human disturbances and the intra- and inter-annual variability of root-associated fungal community were evaluated. Diverse fungal taxa were observed and our results showed that (1) Intra- and inter-annual changes in root-associated fungal community were found, and the Basidiomycota to Ascomycota ratio was related to mean temperature of the sampling month; (2) Human disturbances significantly affected structure of root-associated fungal community of V. carlesii, and two secondary forest types were similar in root-associated fungal community and were closer to that of the old growth forest; (3) Plant community composition, edaphic parameters, and geographic factors significantly affected root-associated fungal communities of V. carlesii. These results may be helpful in better understanding the maintenance mechanisms of fungal diversity associated with hair roots of ERM plants under human disturbances.


Subject(s)
Ascomycota/genetics , Basidiomycota/genetics , Cunninghamia/microbiology , Microbiota/genetics , Mycorrhizae/genetics , Plant Roots/microbiology , Vaccinium/microbiology , Ascomycota/classification , Base Sequence , Basidiomycota/classification , Biodiversity , China , DNA, Fungal/genetics , Forests , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Soil Microbiology
8.
Antonie Van Leeuwenhoek ; 107(6): 1451-73, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25840908

ABSTRACT

During routine surveys for possible fungal pathogens in the rapidly expanding plantations of Eucalyptus and Cunninghamia lanceolata in China, numerous isolates of unknown species in the genus Ceratocystis (Microascales) were obtained from tree wounds. In this study we identified the Ceratocystis isolates from Eucalyptus and Cunninghamia in the GuangDong, GuangXi, FuJian and HaiNan Provinces of South China based on morphology and through comparisons of DNA sequence data for the ITS, partial ß-tubulin and TEF-1α gene regions. Morphological and DNA sequence comparisons revealed two previously unknown species residing in the Indo-Pacific Clade. These are described here as Ceratocystis cercfabiensis sp. nov. and Ceratocystis collisensis sp. nov. Isolates of Ceratocystis cercfabiensis showed intragenomic variation in their ITS sequences and four strains were selected for cloning of the ITS gene region. Twelve ITS haplotypes were obtained from 17 clones selected for sequencing, differing in up to seven base positions and representing two separate phylogenetic groups. This is the first evidence of multiple ITS types in isolates of Ceratocystis residing in the Indo-Pacific Clade. Caution should thus be exercised when using the ITS gene region as a barcoding marker for Ceratocystis species in this clade. This study also represents the first record of a species of Ceratocystis from Cunninghamia.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Cunninghamia/microbiology , Eucalyptus/microbiology , Ascomycota/genetics , Ascomycota/physiology , China , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Haplotypes , Molecular Sequence Data , Peptide Elongation Factor 1/genetics , Phylogeny , Sequence Analysis, DNA , Tubulin/genetics
9.
Sheng Wu Gong Cheng Xue Bao ; 25(7): 993-8, 2009 Jul.
Article in Chinese | MEDLINE | ID: mdl-19835139

ABSTRACT

We evaluated the effect of biological pretreatment with white rot fungus Trametes vesicolor on the enzymatic hydrolysis of two wood species, Chinese willow (Salix babylonica, hardwood) and China-fir (Cunninghamia lanceolata, softwood). The result indicated that the pretreated woods showed significant increases in the final conversion ratios of enzymatic hydrolysis (4.78-fold for hardwood and 4.02-fold for softwood). In order to understand the role of biological pretreatment we investigated the enzyme-substrate interactions. Biological pretreatment enhanced the substrate accessibility to cellulase but not always correlated with the initial conversion rate. However, the change of the conversion rate decreased dramatically with increased desorption values after biological pretreatment. Thus, the biological pretreatment slowed down the declines in conversion rates during enzymatic hydrolysis by reducing the irreversible adsorption of cellulase and then improved the enzymatic hydrolysis. Moreover, the decreases of the irreversible adsorption may be attributed to the partial lignin degradation and alteration in lignin structure after biological pretreatment.


Subject(s)
Cellulase/metabolism , Trametes/physiology , Wood/metabolism , Wood/microbiology , Adsorption , Cunninghamia/metabolism , Cunninghamia/microbiology , Hydrolysis , Lignin/metabolism , Salix/metabolism , Salix/microbiology , Trametes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...