Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 143(38): 15769-15783, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34542285

ABSTRACT

Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am3+ and Cm3+, and the natural lanthanide-binding protein, lanmodulin (LanM). LanM is produced abundantly by methylotrophic bacteria, including Methylorubrum extorquens, that are widespread in the environment. We determine the first stability constant for an Am3+-protein complex (Am3LanM) and confirm the results with Cm3LanM, indicating a ∼5-fold higher affinity than that for lanthanides with most similar ionic radius, Nd3+ and Sm3+, and making LanM the strongest known heavy actinide-binding protein. The protein's high selectivity over 243Am's daughter nuclide 239Np enables lab-scale actinide-actinide separations as well as provides insight into potential protein-driven mobilization for these actinides in the environment. The luminescence properties of the Cm3+-LanM complex, and NMR studies of Gd3+-LanM, reveal that lanmodulin-bound f-elements possess two coordinated solvent molecules across a range of metal ionic radii. Finally, we show under a wide range of environmentally relevant conditions that lanmodulin effectively outcompetes desferrioxamine B, a hydroxamate siderophore previously proposed to be important in trivalent actinide mobility. These results suggest that natural lanthanide-binding proteins such as lanmodulin may play important roles in speciation and mobility of actinides in the environment; it also suggests that protein-based biotechnologies may provide a new frontier in actinide remediation, detection, and separations.


Subject(s)
Americium/chemistry , Bacterial Proteins/chemistry , Coordination Complexes/chemistry , Curium/chemistry , Ions/chemistry , Lanthanoid Series Elements/chemistry , Luminescent Measurements , Macromolecular Substances , Methylobacterium extorquens/chemistry , Molecular Conformation , Protein Binding , Structure-Activity Relationship
2.
Proteins ; 89(2): 193-206, 2021 02.
Article in English | MEDLINE | ID: mdl-32892408

ABSTRACT

The iron carrier human serum transferrin (sTf) is known to transport other metals, including some actinides (An). Radiotoxic An are routinely involved in the nuclear fuel cycle and the possibility of their accidental exposure cannot be ruled out. Understanding An interaction with sTf assumes a greater significance for the development of safe and efficacious chelators for their removal from the blood stream. Here we report several 100 ns equilibrium MD simulations of Cm(III)- and Th(IV)-loaded sTf at various protonation states of the protein to explore the possibility of the two An ions release and speciation. The results demonstrate variation in protonation state of dilysine pair (K206 and K296) and the tyrosine (Y188) residue is necessary for the opening of Cm(III)-bound protein and the release of the ion. For the tetravalent thorium, protonation of dilysine pair suffices to cause conformational changes of protein. However, in none of the protonation states, Th(IV) releases from sTf because of its strong electrostatic interaction with D63 in the first shell of the sTf binding cleft. Analysis of hydrogen bond, water bridge, and the evaluation of potential of mean forces of the An ions' release from sTf, substantiate the differential behavior of Cm(III) and Th(IV) at endosomal pH. The results provide insight in the regulation of Cm(III) and Th(IV) bioavailability that may prove useful for effective design of their decorporating agents and as well may help the future design of radiotherapy based on tetravalent ions.


Subject(s)
Curium/chemistry , Molecular Dynamics Simulation , Thorium/chemistry , Transferrin/chemistry , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Binding Sites , Curium/metabolism , Endosomes/metabolism , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Lysine/chemistry , Lysine/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protons , Static Electricity , Thermodynamics , Thorium/metabolism , Transferrin/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
3.
J Phys Chem Lett ; 11(15): 6063-6067, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32635727

ABSTRACT

Two-photon-excited fluorescence spectroscopy is a powerful tool to study the structural and electronic properties of optically active complexes and molecules. Although numerous lanthanide complexes have been characterized by two-photon-excited fluorescence in solution, this report is the first to apply such a technique to actinide compounds. Contrasting with previous observations in lanthanides, we demonstrate that the two-photon absorption properties of the complexes significantly depend on the metal (4f vs 5f), with Cm(III) complexes showing significantly higher two-photon absorption cross sections than lanthanide analogues and up to 200-fold stronger emission intensities. These results are consistent with electronic and structural differences between the lanthanide and actinide systems studied. Hence, the described methodology can provide valuable insights into the interactions between f-elements and ligands, along with promising prospects on the characterization of scarce compounds.


Subject(s)
Coordination Complexes/chemistry , Curium/chemistry , Fluorescent Dyes/chemistry , Catecholamines/chemistry , Electron Transport , Enterobactin/chemistry , Europium/chemistry , Fluorescein/chemistry , Ligands , Molecular Structure , Photons , Pyridones/chemistry , Spectrometry, Fluorescence , Terbium/chemistry
4.
Colloids Surf B Biointerfaces ; 190: 110950, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32172166

ABSTRACT

Trivalent actinides such as Cm(III) are able to occupy natural Ca(II) binding sites in biological systems. For this investigation, we studied the formation of aqueous Cm(III) complexes with S-layer proteins by time-resolved laser-induced fluorescence spectroscopy (TRLFS). S-layer proteins serve as protective biointerfaces in bacteria and archaea against the surrounding solution. Experimental assays were performed at a fixed total concentration of Cm(III) (0.88 µM) using an S-layer protein (5 g/L / 39.6 µM) at varying pH levels (2.0-9.0), as well as several types of S-layer proteins of L. sphaericus JG-A12. Based on resulting luminescence spectra and lifetime data, specific and unspecific binding sites could be distinguished. Notably, specific Cm(III) binding to S-layer proteins was confirmed by the appearance of a sharp emission band at 602.5 nm, combined with a long lifetime of 310 µs. The high affinity of these specific binding sites was also verified using competing EDTA, wherein only a high EDTA concentration (40 µM) could efficiently remove Cm(III) from S-layer proteins.


Subject(s)
Bacillaceae/chemistry , Curium/chemistry , Membrane Glycoproteins/chemistry , Particle Size , Surface Properties
5.
J Am Chem Soc ; 141(49): 19404-19414, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31794205

ABSTRACT

A major chemical challenge facing implementation of 225Ac in targeted alpha therapy-an emerging technology that has potential for treatment of disease-is identifying an 225Ac chelator that is compatible with in vivo applications. It is unclear how to tailor a chelator for Ac binding because Ac coordination chemistry is poorly defined. Most Ac chemistry is inferred from radiochemical experiments carried out on microscopic scales. Of the few Ac compounds that have been characterized spectroscopically, success has only been reported for simple inorganic ligands. Toward advancing understanding in Ac chelation chemistry, we have developed a method for characterizing Ac complexes that contain highly complex chelating agents using small quantities (µg) of 227Ac. We successfully characterized the chelation of Ac3+ by DOTP8- using EXAFS, NMR, and DFT techniques. To develop confidence and credibility in the Ac results, comparisons with +3 cations (Am, Cm, and La) that could be handled on the mg scale were carried out. We discovered that all M3+ cations (M = Ac, Am, Cm, La) were completely encapsulated within the binding pocket of the DOTP8- macrocycle. The computational results highlighted the stability of the M(DOTP)5- complexes.


Subject(s)
Actinium/chemistry , Americium/chemistry , Chelating Agents/chemistry , Coordination Complexes/chemical synthesis , Curium/chemistry , Lanthanum/chemistry , Organophosphorus Compounds/chemistry , Radiopharmaceuticals/chemical synthesis , Coordination Complexes/chemistry , Ligands , Molecular Structure , Radiopharmaceuticals/chemistry
6.
Phys Chem Chem Phys ; 21(38): 21213-21222, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31418759

ABSTRACT

Trivalent actinides and their lanthanide homologues are being scrutinized for their potential health risk when ingested as a result of a range of industrial activities such as mining. Importantly, these ions are known to exhibit high affinity towards calmodulin (CaM). In case of their inadvertent uptake, the holoproteins that are occupied by these cations may block signal transduction pathways or increase the concentration of these ions in intact cells, which could lead to accumulation in human organs. Accordingly, this investigation employed spectroscopy, computational chemistry, calorimetry, and biochemistry to study the results of metal ion substitution on the protein structure, enzymatic activity and chemo- and cytotoxicity of An3+/Ln3+ ions. As will be demonstrated herein, our data confirm the higher affinity of Cm3+ and Eu3+ compared to Ca2+ to all 4 binding sites of CaM, with one site differing from the remaining three. This higher-affinity site will complex Eu3+ in an exothermic fashion; in contrast, ion binding to the three lower-affinity EF-hands was found to be endothermic. The overall endothermic binding process is ascribed to the loss of the hydration shells of the trivalent ions upon protein binding. These findings are supported by extensive quantum chemical calculations of full holo-CaM, which were performed at the MP2 level using the fragment molecular orbital method. The exceptional binding site (EF-hand 3) features fewer negatively charged residues compared to the other EF-hands, thereby allowing Eu3+ and Cm3+ to carry one or two additional waters compared to Ca2+-CaM, while also causing the structure of Cm3+/Eu3+-CaM to become slightly disordered. Moreover, the enzymatic activity decreases somewhat in comparison to Ca2+-CaM. By utilizing a combination of techniques, we were able to generate a comprehensive picture of the CaM-actinide/lanthanide system from the molecular level to its functional impact. Such knowledge could also be applied to other metal-binding proteins.


Subject(s)
Calmodulin/chemistry , Calmodulin/metabolism , Curium/chemistry , Europium/chemistry , Binding Sites , Calcium/chemistry , Cations , Molecular Dynamics Simulation , Protein Conformation , Water
7.
J Hazard Mater ; 370: 156-163, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30940356

ABSTRACT

This work describes the molecular characterization of the interaction mechanism of a bentonite yeast isolate, Rhodotorula mucilaginosa BII-R8, with curium(III) as representative of trivalent actinides and europium(III) used as inactive analogue of Cm(III). A multidisciplinary approach combining spectroscopy, microscopy and flow cytometry was applied. Time-Resolved Laser Induced Fluorescence Spectroscopy (TRLFS) analyses demonstrated that the biosorption of Cm(III) is a reversible and pH-dependent process for R. mucilaginosa BII-R8 cells. Two Cm(III)-R. mucilaginosa BII-R8 species were identified having emission maxima at 599.6 and 601.5 nm. They were assigned to Cm(III) species bound to phosphoryl and carboxyl sites from the yeast cell, respectively. Phosphate groups were involved in the sorption of this actinide, as demonstrated by the Eu(III)-phosphate accumulates at the cell membrane shown by microscopy. In addition, cell viability and metabolic potential were assessed to determine the negative effect of Eu(III) in the yeast cells. The results obtained in this work showed that the interaction of Cm(III) with the yeast R. mucilaginosa BII-R8 cells at circumneutral and alkaline pH values will make this radionuclide more mobile to reach the biosphere. Therefore, geochemical conditions in the bentonite engineering barrier need to be carefully adjusted for the safe deep geological disposal of radioactive wastes.


Subject(s)
Curium/chemistry , Radioactive Pollutants/chemistry , Rhodotorula/chemistry , Adsorption , Bentonite , Europium/chemistry , Hydrogen-Ion Concentration , Radioactive Waste
8.
Nanoscale ; 11(16): 7609-7612, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30969284

ABSTRACT

We present the first report of ligand-sensitized, actinide luminescence in a lanthanide nanoparticle host. Amplified luminescence of 248Cm3+ doped in a NaGdF4 lattice is achieved through optical pumping of a surface-localized metal chelator, 3,4,3-LI(1,2-HOPO), capable of sensitizing Cm3+ excited states. The data suggest the possibility of using such materials in theranostic applications, with a ligand-sensitized actinide or radio-lanthanide serving the dual roles of a nuclear decay source for radiotherapeutics, and as a luminescent center or energy transfer conduit to another emissive metal ion, for biological imaging.


Subject(s)
Curium/chemistry , Nanoparticles/chemistry , Chelating Agents/chemistry , Ligands , Luminescent Measurements , Pyridones/chemistry
9.
J Phys Chem B ; 123(13): 2729-2744, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30864809

ABSTRACT

Human serum transferrin (sTf) can also function as a noniron metal transporter since only 30% of it is typically saturated with a ferric ion. While this function of sTf can be fruitfully utilized for targeted delivery of certain metal therapeutics, it also runs the risk of trafficking the lethal radionuclides into cells. A large number of actinide (An) ions are known to bind to the iron sites of sTf although molecular-level understanding of their binding is unclear. Understanding the radionuclide interaction with sTf is a primary step toward future design of their decorporating agents since irrespective of the means of contamination, the radionuclides are absorbed and transported by blood before depositing into target organs. Here, we report an extensive multiscale modeling approach of two An (curium(III) and thorium(IV)) ions' binding with sTf at serum physiological pH. We find that sTf binds both the heavy ions in a closed conformation with carbonate as synergistic anions and the An-loaded sTf maintains its closed conformation even after 100 ns of equilibrium molecular dynamics (MD) simulations. MD simulations are performed in a polarizable water environment, which also incorporates electronic continuum corrections for ions via charge rescaling. The molecular details of the An coordination and An exchange free energies with iron in the interdomain cleft of the protein are evaluated through a combination of quantum mechanical (QM) and MD studies. In line with reported experimental observations, well-tempered metadynamics results of the ions' binding energetics show that An-sTf complexes are less stable than Fe-sTf. Additionally, curium(III) is found to bind more weakly than thorium(IV). The latter result might suggest relative attenuation of thorium(IV) cytotoxicity when compared with curium(III).


Subject(s)
Curium/chemistry , Molecular Dynamics Simulation , Quantum Theory , Thorium/chemistry , Transferrin/chemistry , Binding Sites , Humans
10.
J Inorg Biochem ; 192: 45-51, 2019 03.
Article in English | MEDLINE | ID: mdl-30594865

ABSTRACT

The complexation of Cm(III) with human serum albumin (HSA) was investigated using time-resolved laser fluorescence spectroscopy (TRLFS). The Cm(III) HSA species is dominating the speciation between pH 7.0 and 9.3. The first coordination sphere is composed by three to four H2O molecules and five to six coordinating ligands from the protein. For the complex formation at pH 8.0 a conditional stability constant of logK = 6.16 ±â€¯0.50 was determined. Furthermore, information on the Cm(III) HSA binding site were obtained. With increasing Cu(II) concentration the Cm(III) HSA complexation is suppressed whereas the addition of Zn(II) has no effect. This points to the complexation of Cm(III) at the N-terminal binding site (NTS) which is the primary Cu(II) binding site. NMR experiments with Cu(II), Eu(III) and Am(III) HSA show a decrease of the peak assigned to the His C2 proton of His 3, which is part of the NTS, with increasing metal ion concentration. This confirms the complexation of Eu(III) and Am(III) at the Cu(II) binding site NTS. The results presented in this study contribute to a better understanding of relevant biochemical reactions of incorporated actinides.


Subject(s)
Curium/chemistry , Nuclear Magnetic Resonance, Biomolecular , Serum Albumin, Human/chemistry , Humans , Spectrometry, Fluorescence
11.
Dalton Trans ; 47(41): 14612-14620, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30270390

ABSTRACT

The coordination environment of Cm(iii) bound at the Fe(iii) binding sites of transferrin was investigated using a combined experimental and theoretical approach. Complexation studies with two hTf/2N single point mutants, Y95F (Tyr → Phe) and H249A (His → Ala) were performed. The substitution of Tyr 95 by the non-complexing Phe prevents Cm(iii) from forming of a strong, multidentate complex with the mutant. In contrast, with the H249A mutant Cm(iii) complexation at the binding site still occurs although a slightly higher pH is required to form the complex. This elucidates that His plays a minor role and is not a key ligand like Tyr 95. MD/DFT calculations of Cm(iii) bound at the N-terminal binding site provide further structural information. All coordinating groups present in the Fe(iii) transferrin complex are also found for Cm(iii), i.e. Asp 63, Tyr 95, Tyr 188 and His 249. Additionally, two water molecules, one monodentate and one bidentate carbonate ion complete the coordination environment. This structure of the Cm(iii) hTf/2N complex is confirmed by vibronic sideband spectroscopy which allows an identification of the directly coordinating groups. The results underline an involvement of Asp 63, Tyr 95, Tyr 188 and His 249 as well as carbonate in Cm(iii) coordination at the transferrin Fe(iii) binding site.


Subject(s)
Curium/chemistry , Transferrin/chemistry , Humans , Models, Molecular , Point Mutation , Quantum Theory , Transferrin/genetics
12.
J Inorg Biochem ; 175: 248-258, 2017 10.
Article in English | MEDLINE | ID: mdl-28802224

ABSTRACT

In case radioactive materials are released into the environment, their incorporation into our digestive system would be a significant concern. Trivalent f-elements, i.e., trivalent actinides and lanthanides, could potentially represent a serious health risk due to their chemo- and radiotoxicity, nevertheless the biochemical behavior of these elements are mostly unknown even to date. This study, therefore, focuses on the chemical speciation of trivalent f-elements in the human gastrointestinal tract. To simulate the digestive system artificial digestive juices (saliva, gastric juice, pancreatic juice and bile fluid) were prepared. The chemical speciation of lanthanides (as Eu(III)) and actinides (as Cm(III)) was determined experimentally by time-resolved laser-induced fluorescence spectroscopy (TRLFS) and the results were compared with thermodynamic modeling. The results indicate a dominant inorganic species with phosphate/carbonate in the mouth, while the aquo ion is predominantly formed with a minor contribution of the enzyme pepsin in the stomach. In the intestinal tract the most significant species are with the protein mucin. We demonstrated the first experimental results on the chemical speciation of trivalent f-elements in the digestive media by TRLFS. The results highlight a significant gap in chemical speciation between experiments and thermodynamic modeling due to the limited availability of thermodynamic stability constants particularly for organic species. Chemical speciation strongly influences the in vivo behavior of metal ions. Therefore, the results of this speciation study will help to enhance the assessment of health risks and to improve decorporation strategies after ingestion of these (radio-)toxic heavy metal ions.


Subject(s)
Curium/chemistry , Europium/chemistry , Gastrointestinal Tract/chemistry , Models, Chemical , Animals , Cattle , Humans , Spectrometry, Fluorescence , Thermodynamics
13.
Dalton Trans ; 45(21): 8724-33, 2016 06 07.
Article in English | MEDLINE | ID: mdl-26866402

ABSTRACT

The complexation of Eu(iii) and Cm(iii) with the protein α-amylase (Amy), a major enzyme in saliva and pancreatic juice, was investigated over wide ranges of pH and concentration at both ambient and physiological temperatures. Macroscopic sorption experiments demonstrated a strong and fast binding of Eu(iii) to Amy between pH 5 and 8. The protein provides three independent, non-cooperative binding sites for Eu(iii). The overall association constant of these three binding sites on the protein was calculated to be log K = 6.4 ± 0.1 at ambient temperature. With potentiometric titration, the averaged deprotonation constant of the carboxyl groups (the aspartic and glutamic acid residues) of Amy was determined to be pKa = 5.23 ± 0.14 at 25 °C and 5.11 ± 0.24 at 37 °C. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) revealed two different species for both Eu(iii) and Cm(iii) with Amy. In the case of the Eu(iii) species, the stability constants were determined to be log ß11 = 4.7 ± 0.2 and log ß13 = 12.0 ± 0.4 for Eu : Amy = 1 : 1 and 1 : 3 complexes, respectively, whereas the values for the respective Cm(iii) species were log ß11 = 4.8 ± 0.1 and log ß13 = 12.1 ± 0.1. Furthermore, the obtained stability constants were extrapolated to infinite dilution to make our data compatible with the existing thermodynamic database.


Subject(s)
Curium/metabolism , Europium/metabolism , alpha-Amylases/metabolism , Adsorption , Curium/chemistry , Europium/chemistry , Hydrogen-Ion Concentration , Kinetics , Potentiometry , Protein Binding , Spectrometry, Fluorescence , Temperature , alpha-Amylases/chemistry
14.
Dalton Trans ; 44(4): 1850-7, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25483018

ABSTRACT

The complexation of Cm(III) with the recombinant N-lobe of human serum transferrin (hTf/2N) is investigated in the pH range from 4.0 to 11.0 using TRLFS. At pH ≥ 7.4 a Cm(III) hTf/2N species is formed with Cm(III) bound at the Fe(III) binding site. The results are compared with Cm(III) transferrin interaction at the C-lobe and indicate the similarity of the coordination environment of the C- and N-terminal binding sites with four amino acid residues of the protein, two H2O molecules and three additional ligands (e.g. synergistic anions such as carbonate) in the first coordination sphere. Measurements at c(carbonate)tot = 0.23 mM (ambient carbonate concentration) and c(carbonate)tot = 25 mM (physiological carbonate concentration) show that an increase of the total carbonate concentration suppresses the formation of the Cm(III) hTf/2N species significantly. Additionally, the three Cm(III) carbonate species Cm(CO3)(+), Cm(CO3)2(-) and Cm(CO3)3(3-) are formed successively with increasing pH. In general, carbonate complexation is a competing reaction for both Cm(III) complexation with transferrin and hTf/2N but the effect is significantly higher for the half molecule. At c(carbonate)tot = 0.23 mM the complexation of Cm(III) with transferrin and hTf/2N starts at pH ≥ 7.4. At physiological carbonate concentration the Cm(III) transferrin species II forms at pH ≥ 7.0 whereas the Cm(III) hTf/2N species is not formed until pH > 10.0. Hence, our results reveal significant differences in the complexation behavior of the C-terminal site of transferrin and the recombinant N-lobe (hTf/2N) towards trivalent actinides.


Subject(s)
Curium/chemistry , Transferrin/chemistry , Carbonates/chemistry , Coordination Complexes/chemistry , Humans , Hydrogen-Ion Concentration , Recombinant Proteins/chemistry , Spectrometry, Fluorescence , Temperature
15.
Environ Sci Technol ; 48(23): 13985-91, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25350948

ABSTRACT

Plutonium (Pu), americium (Am), and curium (Cm) activities were measured in sediments from a former radioactive waste disposal basin located on the Savannah River Site, South Carolina, and in subsurface aquifer sediments collected downgradient from the basin. In situ Kd values (Pu concentration ratio of sediment/groundwater) derived from this field data and previously reported groundwater concentration data compared well to laboratory Kd values reported in the literature. Pu isotopic signatures confirmed multiple sources of Pu contamination. The ratio of (240)Pu/(239)Pu was appreciably lower for sediment samples compared to the associated groundwater. This isotopic ratio difference may be explained by the following: (1) (240)Pu produced by decay of (244)Cm may exist predominantly in high oxidation states (Pu(V)O2(+) and Pu(VI)O2(2+)) compared to Pu derived from the disposed waste effluents, and (2) oxidized forms of Pu sorb less to sediments than reduced forms of Pu. Isotope-specific Kd values calculated from measured Pu activities in the sediments and groundwater indicated that (240)Pu, which is derived primarily from the decay of (244)Cm, had a value of 10 ± 2 mL g(-1), whereas (239)Pu originating from the waste effluents discharged at the site had a value of 101 ± 8 mL g(-1). One possible explanation for the isotope-specific sorption behavior is that (240)Pu likely existed in the weaker sorbing oxidation states, +5 or +6, than (239)Pu, which likely existed in the +3 or +4 oxidation states. Consequently, remediation strategies for radioactively contaminated systems must consider not only the discharged contaminants but also their decay products. In this case, mitigation of Cm as well as Pu will be required to completely address Pu migration from the source term.


Subject(s)
Americium/chemistry , Curium/chemistry , Plutonium/chemistry , Radioactive Waste/analysis , Radioisotopes , Water Pollutants, Radioactive/chemistry , Environmental Monitoring , Oxidation-Reduction , Rivers/chemistry , Soil Pollutants, Radioactive/chemistry , South Carolina
16.
Chemistry ; 20(32): 9962-8, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25043376

ABSTRACT

The photophysical properties, solution thermodynamics, and in vivo complex stabilities of Cm(III) complexes formed with multidentate hydroxypyridinonate ligands, 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO), are reported. Both chelators were investigated for their ability to act as antenna chromophores for Cm(III), leading to highly sensitized luminescence emission of the metal upon complexation, with long lifetimes (383 and 196 µs for 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO), respectively) and remarkable quantum yields (45 % and 16 %, respectively) in aqueous solution. The bright emission peaks were used to probe the electronic structure of the 5f complexes and gain insight into ligand field effects; they were also exploited to determine the high (and proton-independent) stabilities of the corresponding Cm(III) complexes (log ß110 = 21.8(4) for 3,4,3-LI(1,2-HOPO) and log ß120 = 24.5(5) for 5-LIO(Me-3,2-HOPO)). The in vivo complex stability for both ligands was assessed by using (248) Cm as a tracer in a rodent model, which provided a direct comparison with the in vitro thermodynamic results and demonstrated the great potential of 3,4,3-LI(1,2-HOPO) as a therapeutic Cm(III) decontamination agent.


Subject(s)
Chelating Agents/chemistry , Curium/chemistry , Luminescent Agents/chemistry , Pyridones/chemistry , Radioactive Pollutants/chemistry , Coordination Complexes/chemistry , Curium/isolation & purification , Decontamination , Luminescence , Radioactive Pollutants/isolation & purification , Thermodynamics
17.
J Am Chem Soc ; 135(7): 2676-83, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23363005

ABSTRACT

Worldwide stocks of actinides and lanthanide fission products produced through conventional nuclear spent fuel are increasing continuously, resulting in a growing risk of environmental and human exposure to these toxic radioactive metal ions. Understanding the biomolecular pathways involved in mammalian uptake, transport and storage of these f-elements is crucial to the development of new decontamination strategies and could also be beneficial to the design of new containment and separation processes. To start unraveling these pathways, our approach takes advantage of the unique spectroscopic properties of trivalent curium. We clearly show that the human iron transporter transferrin acts as an antenna that sensitizes curium luminescence through intramolecular energy transfer. This behavior has been used to describe the coordination of curium within the two binding sites of the protein and to investigate the recognition of curium-transferrin complexes by the cognate transferrin receptor. In addition to providing the first protein-curium spectroscopic characterization, these studies prove that transferrin receptor-mediated endocytosis is a viable mechanism of intracellular entry for trivalent actinides such as curium and provide a new tool utilizing the specific luminescence of curium for the determination of other biological actinide transport mechanisms.


Subject(s)
Actinoid Series Elements/chemistry , Curium/chemistry , Transferrin/chemistry , Actinoid Series Elements/metabolism , Chromatography, High Pressure Liquid , Coordination Complexes/chemistry , Curium/metabolism , Humans , Luminescence , Thermodynamics , Transferrin/metabolism
18.
J Comput Chem ; 34(9): 707-19, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23233426

ABSTRACT

Pursuing our efforts on the development of accurate classical models to simulate radionuclides in complex environments (Réal et al., J. Phys. Chem. A 2010, 114, 15913; Trumm et al. J. Chem. Phys. 2012, 136, 044509), this article places a large emphasis on the discussion of the influence of models/parameters uncertainties on the computed structural, dynamical, and temporal properties. Two actinide test cases, trivalent curium and tetravalent thorium, have been studied with three different potential energy functions, which allow us to account for the polarization and charge-transfer effects occurring in hydrated actinide ion systems. The first type of models considers only an additive energy term for modeling ion/water charge-transfer effects, whereas the other two treat cooperative charge-transfer interactions with two different analytical expressions. Model parameters are assigned to reproduce high-level ab initio data concerning only hydrated ion species in gas phase. For the two types of cooperative charge-transfer models, we define two sets of parameters allowing or not to cancel out possible errors inherent to the force field used to model water/water interactions at the ion vicinity. We define thus five different models to characterize the solvation of each ion. For both ions, our cooperative charge-transfer models lead to close results in terms of structure in solution: the coordination number is included within 8 and 9, and the mean ion/water oxygen distances are 2.45 and 2.49 Å, respectively, for Th(IV) and Cm(III).


Subject(s)
Coordination Complexes/chemistry , Curium/chemistry , Oxygen/chemistry , Radioisotopes/chemistry , Thorium/chemistry , Water/chemistry , Cations , Gases , Humans , Models, Chemical , Quantum Theory , Radioactive Waste , Solutions , Static Electricity , Thermodynamics
19.
Dalton Trans ; 41(45): 13969-83, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23027503

ABSTRACT

Citrate complexes are the dominant binding form of trivalent actinides and lanthanides in human urine at pH < 6. Hence, an accurate prediction of the speciation of these elements in the presence of citrate is crucial for the understanding of their impact on the metabolism of the human organism and the corresponding health risks. We studied the complexation of Cm(III) and Eu(III), as representatives of trivalent actinides and lanthanides, respectively, in aqueous citrate solution over a wide pH range using time-resolved laser-induced fluorescence spectroscopy. Four distinct citrate complexes were identified and their stability constants were determined, which are MHCit(0), M(HCitH)HCit(2-), M(HCit)(2)(3-), and M(Cit)(2)(5-) (M = Cm, Eu). Additionally, there were also indications for the formation of MCit(-) complexes. Structural details on the EuHCit(0) and EuCit(-) complexes were obtained with FT-IR spectroscopy in combination with density functional theory calculations. IR spectroscopic evidence for the deprotonation of the hydroxyl group of the citrate ion in the EuCit(-) complex is presented, which also revealed that the complexation of the Eu(3+) ion takes place not only through the carboxylate groups, like in EuHCit(0), but additionally via the hydroxylate group. In both EuHCit(0) and EuCit(-) the carboxylate binding mode is mono-dentate. Under a very low metal : citrate ratio that is typical for human body fluids, the Cm(III) and Eu(III) speciation was found to be strongly pH-dependent. The Cm(III) and Eu(III) citrate complexes dominant in human urine at pH < 6 were identified to be Cm(HCitH)HCit(2-) and a mixture of Eu(HCitH)HCit(2-) and EuHCit(0). The results specify our previous in vitro study using natural human urine samples (Heller et al., Chem. Res. Toxicol., 2011, 24, 193-203).


Subject(s)
Citric Acid/chemistry , Curium/chemistry , Europium/chemistry , Organometallic Compounds/chemistry , Quantum Theory , Citric Acid/urine , Curium/urine , Europium/urine , Humans , Hydrogen-Ion Concentration , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Thermodynamics
20.
J Am Chem Soc ; 134(37): 15545-9, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22920726

ABSTRACT

A key distinction between the lanthanide (4f) and the actinide (5f) transition elements is the increased role of f-orbital covalent bonding in the latter. Circularly polarized luminescence (CPL) is an uncommon but powerful spectroscopy which probes the electronic structure of chiral, luminescent complexes or molecules. While there are many examples of CPL spectra for the lanthanides, this report is the first for an actinide. Two chiral, octadentate chelating ligands based on orthoamide phenol (IAM) were used to complex curium(III). While the radioactivity kept the amount of material limited to micromole amounts, spectra of the highly luminescent complexes showed significant emission peak shifts between the different complexes, consistent with ligand field effects previously observed in luminescence spectra.


Subject(s)
Actinoid Series Elements/chemistry , Curium/chemistry , Luminescence , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...