ABSTRACT
Palisade fabric is a ubiquitous texture of silica sinter found in low temperature (<40°C) regimes of hot spring environments, and it is formed when populations of filamentous microorganisms act as templates for silica polymerization. Although it is known that postdepositional processes such as biological degradation and dewatering can strongly affect preservation of these fabrics, the impact of extreme aridity has so far not been studied in detail. Here, we report a detailed analysis of recently silicified palisade fabrics from a geyser in El Tatio, Chile, tracing the progressive degradation of microorganisms within the silica matrix. This is complemented by heating experiments of natural sinter samples to assess the role of diagenesis. Sheathed cyanobacteria, identified as Leptolyngbya sp., were found to be incorporated into silica sinter by irregular cycles of wetting, evaporation, and mineral precipitation. Transmission electron microscopy analyses revealed that nanometer-sized silica particles are filling the pore space within individual cyanobacterial sheaths, giving rise to their structural rigidity to sustain a palisade fabric framework. Diagenesis experiments further show that the sheaths of the filaments are preferentially preserved relative to the trichomes, and that the amount of water present within the sinter is an important factor for overall preservation during burial. This study confirms that palisade fabrics are efficiently generated in a highly evaporative geothermal field, and that these biosignatures can be most effectively preserved under dry diagenetic conditions.
Subject(s)
Cyanobacteria/ultrastructure , Geologic Sediments/chemistry , Hot Springs , Silicon Dioxide/analysis , Carbon/analysis , Chile , Geologic Sediments/microbiology , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nitrogen/analysis , RNA, Ribosomal, 16S/analysis , Sequence Analysis, DNA , WaterABSTRACT
Two untapered, heterocytous species were observed and collected from the intertidal and supratidal zones of the Mexican coastline of the Pacific Ocean near Oaxaca and from the Gulf of Mexico. These populations were highly similar in morphology to the freshwater taxon Petalonema incrustans in the Scytonemataceae. However, 16S rRNA sequence data and phylogenetic analysis indicated that they were sister taxa to the epiphyllic, Brazilian species Phyllonema aveceniicola in the Rivulariaceae, described from culture material. While genetic identity between the two new species was high, they differed significantly in morphology, 16S rRNA gene sequence identity, and sequence and structure of the 16S-23S ITS region. Their morphology differed markedly from the generitype of the previously monotypic Phyllonema, which has tapered, heteropolar, single-false branched trichomes with very thin or absent sheath. The two new species, Phyllonema ansata and Phyllonema tangolundensis, described from both culture and environmental material, have untapered, isopolar, geminately false branched trichomes with thick, lamellated sheaths, differences so significant that the species would not be placed in Phyllonema without molecular corroboration. The morphological differences are so significant that a formal emendation of the genus is required. These taxa provide a challenge to algal taxonomy because the morphological differences are such that one would logically conclude that they represent different genera, but the phylogenetic evidence for including them all in the same genus is conclusive. This conclusion is counter to the current trend in algal taxonomy in which taxa with minor morphological differences have been repeatedly placed in separate genera based primarily upon DNA sequence evidence.
Subject(s)
Cyanobacteria/classification , Cyanobacteria/cytology , Algal Proteins/analysis , Cyanobacteria/genetics , Cyanobacteria/ultrastructure , DNA, Ribosomal Spacer/analysis , Mexico , Phylogeny , Protein Structure, Secondary , RNA, Algal/analysis , RNA, Ribosomal, 16S/analysis , Sequence Analysis, RNAABSTRACT
Brazil has an extensive and environmentally diverse coastline, which favors the occurrence of numerous cyanobacterial morpho- and ecotypes. Nevertheless, this coastline is still poorly studied and its diversity is underestimated. Considering the family Oscillatoriaceae, Lyngbya deserves special attention. It includes many clades which are phylogenetically non-related but morphologically similar. Such clades occur in marine and freshwater environments and are traditionally treated as a single genus. In the current study, we sampled both mediolittoral and estuarine zones along the Brazilian coast. Based on a polyphasic characterization, we described a new genus of marine filamentous cyanobacteria: Neolyngbya. It includes six new species sampled in Brazil, which are described in this study (N. maris-brasilis, N. granulosa, N. irregularis, N. nodulosa, N. arenicola and N. tenuis). Additionally, the characterization included a Neolyngbya sp. from Japan in the clade, but only based on molecular data. All species presented irregular arrangement of thylakoids as described for Oscillatoriaceae. The new genus shares morphological characteristics with species in different clades of the Lyngbya complex. The ultrastructural analyses of Neolyngbya, however, showed numerous gas vesicles, especially in the interthylakoid space; such feature is not observed in benthic Lyngbya species. Neolyngbya formed a well-supported clade (16S rRNA phylogeny), however distantly related to L. aestuarii and L. confervoides, both marine species clusters. The Limnoraphis clade is in a sister relationship to the Neolyngbya clade, however the former occurs in freshwater plankton. Secondary structures of 16S-23S rRNA ITS sequences were congruent with the phylogeny. The polyphasic characterization was helpful to clarify the diversity and ecological aspects of benthic filamentous cyanobacteria and the evolutionary history of the group. This favors a better understanding of inter and infrageneric taxa. The number of novel taxa described in this study emphasizes the importance of conducting additional floristic surveys, mainly in underexplored marine environments, to reveal the real cyanobacterial biodiversity in these areas.
Subject(s)
Cyanobacteria/classification , Biodiversity , Brazil , Cyanobacteria/genetics , Cyanobacteria/ultrastructure , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Microscopy, Electron, Transmission , Phylogeny , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNAABSTRACT
Cyanobacteria are a group of photosynthetic, nitrogen-fixing bacteria present in a wide variety of habitats such as freshwater, marine, and terrestrial ecosystems. In this work, the effects of As(III), a major toxic environmental pollutant, on the lipidomic profiles of two cyanobacteria species (Anabaena and Planktothrix agardhii) were assessed by means of a recently proposed method based on the concept of regions of interest (ROI) in liquid chromatography mass spectroscopy (LC-MS) together with multivariate curve resolution alternating least squares (MCR-ALS). Cyanobacteria were exposed to two concentrations of As(III) for a week, and lipid extracts were analyzed by ultrahigh-performance liquid chromatography/time-of-flight mass spectrometry in full scan mode. The data obtained were compressed by means of the ROI strategy, and the resulting LC-MS data sets were analyzed by the MCR-ALS method. Comparison of profile peak areas resolved by MCR-ALS in control and exposed samples allowed the discrimination of lipids whose concentrations were changed due to As(III) treatment. The tentative identification of these lipids revealed an important reduction of the levels of some galactolipids such as monogalactosyldiacylglycerol, the pigment chlorophyll a and its degradation product, pheophytin a, as well as carotene compounds such as 3-hydroxycarotene and carotene-3,3'-dione, all of these compounds being essential in the photosynthetic process. These results suggested that As(III) induced important changes in the composition of lipids of cyanobacteria, which were able to compromise their energy production processes. Graphical abstract Steps of the proposed LC-MS + MCR-ALS procedure.
Subject(s)
Arsenic/metabolism , Chlorophyll/metabolism , Cyanobacteria/drug effects , Environmental Pollutants/metabolism , Lipid Metabolism/drug effects , Anabaena/drug effects , Anabaena/metabolism , Anabaena/ultrastructure , Chromatography, High Pressure Liquid/methods , Cyanobacteria/metabolism , Cyanobacteria/ultrastructure , Least-Squares Analysis , Mass Spectrometry/methods , Multivariate AnalysisABSTRACT
Two Cyanobacteria isolated from South Atlantic Ocean continental shelf deep water and from a marine green algae inhabiting the Admiralty Bay, King George Island, Antarctica were investigated based on morphological and ultrastructural traits, phylogeny of 16S rRNA gene sequences, secondary structure of the 16S-23S internal transcribed spacer regions and phylogenomic analyses. The majority of these evaluations demonstrated that both strains differ from the genera of cyanobacteria with validly published names and, therefore, supported the description of the novel genus as Aliterella gen. nov. The identity and phylogeny of 16S rRNA gene sequences, together with the secondary structure of D1D1' and BoxB intergenic regions, further supported the two strains representing distinct species: Aliterella atlantica gen. nov., sp. nov. (type SP469036, strain CENA595T) and Aliterella antarctica sp. nov. (type SP469035, strain CENA408T). The phylogenomic analysis of A. atlantica sp. nov. CENA595T, based on 21 protein sequences, revealed that this genus belongs to the cyanobacterial order Chroococcidiopsidales. The isolation and cultivation of two geographically distant unicellular members of a novel cyanobacterial genus and the sequenced genome of the type strain bring new insights into the current classification of the coccoid group, and into the reconstruction of their evolutionary history.
Subject(s)
Cyanobacteria/classification , Phylogeny , Seawater/microbiology , Antarctic Regions , Atlantic Ocean , Bacterial Typing Techniques , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria/ultrastructure , DNA, Bacterial/genetics , DNA, Intergenic/genetics , Nucleic Acid Conformation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNAABSTRACT
New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (<40°C) sinter-apron terraces. In modern hot springs, the dark green to brown, sheathed, photosynthetic cyanobacterium Calothrix spp. (family Rivulariaceae) constructs felted palisade mats in shallow terrace(tte) pools actively accreting opaline silica. The resulting stacked layers of silicified coarse filaments-a stromatolite-are highly porous and readily modified by postdepositional environmental perturbations, secondary silica infill, and diagenetic silica phase mineral transformations (opal-A to quartz). Fossil preservation quality is affected by relative timing of silicification, and later environmental and geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro- and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.
Subject(s)
Cyanobacteria/ultrastructure , Fossils/ultrastructure , Geologic Sediments/microbiology , Hot Springs/microbiology , Argentina , Biofilms , Biomarkers/chemistry , Cyanobacteria/chemistry , Fossils/microbiology , Geologic Sediments/chemistry , Hot Springs/chemistry , Lipids/chemistry , Microscopy, Electron, Scanning , New Zealand , Silicon Dioxide , Spectrum Analysis, Raman , X-Ray DiffractionABSTRACT
For more than a decade, the taxonomy of the Phormidiaceae has been problematic, since morphologically similar organisms represent phylogenetically distinct entities. Based on 16S rRNA gene sequence analyses, the polyphyletic genus Phormidium and other gas-vacuolated oscillatorioids appear scattered throughout the cyanobacterial tree of life. Recently, several studies have focused on understanding the oscillatorioid taxa at the generic level. At the specific level, few studies have characterized cyanobacterial strains using combined datasets (morphology, ultrastructure and molecular multilocus analyses). Using a multifaceted approach, we propose a new, well-defined genus, Cephalothrix gen. nov., by analysing seven filamentous strains that are morphologically 'intermediate' between gas-vacuolated taxa and Phormidium. Furthermore, we characterize two novel species: Cephalothrix komarekiana sp. nov. (strains CCIBt 3277, CCIBt 3279, CCIBt 3523, CCALA 155, SAG 75.79 and UTEX 1580) and Cephalothrix lacustris sp. nov. (strain CCIBt 3261). The generic name and specific epithets are proposed under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants.
Subject(s)
Cyanobacteria/classification , Cyanobacteria/cytology , Cyanobacteria/ultrastructure , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Microscopy, Electron, Transmission , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNAABSTRACT
The role of microorganisms in microbialite formation remains unresolved: do they induce mineral precipitation (microbes first) or do they colonize and/or entrap abiotic mineral precipitates (minerals first)? Does this role vary from one species to another? And what is the impact of mineral precipitation on microbial ecology? To explore potential biogenic carbonate precipitation, we studied cyanobacteria-carbonate assemblages in modern hydromagnesite-dominated microbialites from the alkaline Lake Alchichica (Mexico), by coupling three-dimensional imaging of molecular fluorescence emitted by microorganisms, using confocal laser scanning microscopy, and Raman scattering/spectrometry from the associated minerals at a microscale level. Both hydromagnesite and aragonite precipitate within a complex biofilm composed of photosynthetic and other microorganisms. Morphology and pigment-content analysis of dominant photosynthetic microorganisms revealed up to six different cyanobacterial morphotypes belonging to Oscillatoriales, Chroococcales, Nostocales and Pleurocapsales, as well as several diatoms and other eukaryotic microalgae. Interestingly, one of these morphotypes, Pleurocapsa-like, appeared specifically associated with aragonite minerals, the oldest parts of actively growing Pleurocapsa-like colonies being always aragonite-encrusted. We hypothesize that actively growing cells of Pleurocapsales modify local environmental conditions favoring aragonite precipitation at the expense of hydromagnesite, which precipitates at seemingly random locations within the biofilm. Therefore, at least part of the mineral precipitation in Alchichica microbialites is most likely biogenic and the type of biominerals formed depends on the nature of the phylogenetic lineage involved. This observation may provide clues to identify lineage-specific biosignatures in fossil stromatolites from modern to Precambrian times.
Subject(s)
Carbonates/metabolism , Cyanobacteria/metabolism , Lakes/microbiology , Biofilms , Carbonates/analysis , Carbonates/chemistry , Cyanobacteria/classification , Cyanobacteria/ultrastructure , Mexico , Microscopy, Confocal , Phylogeny , Pigments, Biological/chemistry , Spectrum Analysis, RamanABSTRACT
Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.
Subject(s)
Biofilms , Calcium Carbonate/analysis , Carbonates/analysis , Cyanobacteria/isolation & purification , Cyanobacteria/physiology , Inclusion Bodies/chemistry , Inclusion Bodies/ultrastructure , Lakes/microbiology , Barium/analysis , Base Sequence , Calcification, Physiologic , Calcium/analysis , Carbonates/metabolism , Chemical Precipitation , Cyanobacteria/classification , Cyanobacteria/ultrastructure , Genes, Bacterial , Genes, rRNA , Magnesium/analysis , Mexico , Molecular Sequence Data , Phylogeny , Strontium/analysisABSTRACT
A demanda crescente de água doce de boa qualidade são problemas atuais e mundiais, além do descaso com os dejetos lançados nos ambientes aquáticos que comprometem a qualidade dos recursos hídricos. Um dos parâmetros que atesta a potabilidade da água é a presença de cianobactérias e cianotoxinas. Cianobactérias são microrganismos procariontes aeróbicos fotoautróficos que sintetizam as cianotoxinas. Estes compostos podem ser classificados de acordo com seus mecanismos de ação em hepatotóxicos, neurotóxicos e dermatotóxicos. Por sua diversidade, representam diferentes riscos não só ao ecossistema e a outros organismos dos ambientes aquáticos, como também aos seres humanos. Esse projeto visou o isolamento e cultivo de cepas de cianobactérias produtoras de toxinas para a investigação da biossíntese desses compostos. Com este intuito, foram realizadas coletas de água em três reservatórios no estado de São Paulo e um no Paraná. Cepas de cianobactérais foram isoladas, identificadas e analisadas quanto à produção de toxinas. Uma cepa de Microcystis aeruginosa (LTPNA 02) produtora de microcistinas (MC-LR, MC-RR, MC-YR, MC-LF, MC-LW e desm-MC-LR e desm- MC-RR) foi escolhida para ser estudada frente diferentes condições de cultivo e ter o seu crescimento, produção de toxinas e expressão gênica estudados. Foram utilizados os meios de cultura já referidos na literatura: ASM-1 (N:P=1, 10 e 20), MLA (N:P=10), Bold 3N (N:P=16) e BG-11 (N:P=10 e 100). Para acompanhar o crescimento, dois métodos foram utilizados: contagem de células e espectrofotometria. As toxinas foram quantificadas por LC-MS - QTrap. A análise da expressão gênica foi realizada por reação de PCR em tempo real pelo método de quantificação relativa ΔΔCt. Foi observada diferença no crescimento da cepa estudada nos diferentes meios de cultivo empregados. A contagem das células permitiu a identificação das fases logarítmica e total de crescimento. Durante a fase logarítmica, três experimentos demonstraram...
There is a great concern these days about potable and good quality water due to the increase of the population needs and also to the arising problems with contamination caused by anthropogenic sources. The presence of cyanobacteria and cyanotoxins are some parameters that attest water potability. Cyanobacteria are prokaryotic aerobic photoautotrophic microorganisms that may synthesize cyanotoxins. These compounds can be classified as hepatotoxic, neurotoxic and dermatotoxic according to their action mechanisms. Because of their diversity, they may represent different risks, not only to their ecosystem and other aquatic living organisms, but also to human beings. The aim of this project was the isolation and cultivation of cyanotoxin-producing cyanobacteria for further investigation on the biosynthesis of these compounds. Water samples from three different reservoirs in São Paulo state and one in Paraná state were collected in order to isolate cyanobacteria strains and accomplish their identification and to evaluate the toxin production. The Microcystis aeruginosa (LTPNA 02) microcystin producer strain (MCLR, MC-RR, MC-YR, MC-LF, MC-LW, desm-MC-LR and desm-MC-RR) was chosen to be grown in different cultivation conditions and later analyzed for its growth rate, toxin production and gene expression. All culture media used in this research were chosen according to the literature: ASM-1 (N:P=1, 10 and 20), MLA (N:P=10), Bold 3N (N:P=16) and BG-11 (N:P=10 and 100). To evaluate growth rate, two techniques were used: cell counting and absorbance determination in two different wavelengths (680 nm and 750 nm). Toxins were quantified by LC-MS in a hybrid triple-quadrupole instrument (Qtrap). Gene expression was assessed by real time PCR, using the ΔΔCt relative quantification method. Cell counting allowed total growth and logarithmic phase identification. During the last, three experiments showed statistical difference from control group (p<0,05). Four experiments...
Subject(s)
Cyanobacteria/ultrastructure , Biochemical Phenomena , Bacterial Toxins/analysis , Bacterial Toxins/biosynthesis , Gene Expression/physiology , Microcystins/biosynthesis , Microcystins/chemistry , Microcystins/toxicityABSTRACT
Surfaces of buildings at the archaeological site of Palenque, Mexico, are colonized by cyanobacteria that form biofilms, which in turn cause aesthetic and structural damage. The structural characterization and species composition of biofilms from the walls of one of these buildings, El Palacio, are reported. The distribution of photosynthetic microorganisms in the biofilms, their relationship with the colonized substratum, and the three-dimensional structure of the biofilms were studied by image analysis. The differences between local seasonal microenvironments at the Palenque site, the bioreceptivity of stone and the relationship between biofilms and their substrata are described. The implications for the development and permanence of species capable of withstanding temporal heterogeneity in and on El Palacio, mainly due to alternating wet and dry seasons, are discussed. Knowledge on how different biofilms contribute to biodegradation or bioprotection of the substratum can be used to develop maintenance and conservation protocols for cultural heritage.
Subject(s)
Biofilms/growth & development , Cyanobacteria/growth & development , Sculpture , Architecture , Cyanobacteria/ultrastructure , Mexico , Microscopy, Confocal , Microscopy, Electron, Scanning , Seasons , Tropical Climate , X-Ray DiffractionABSTRACT
Calcified cyanobacterial microfossils are common in carbonate environments through most of the Phanerozoic, but are absent from the marine rock record over the past 65 Myr. There has been long-standing debate on the factors controlling the formation and temporal distribution of these fossils, fostered by the lack of a suitable modern analog. We describe calcified cyanobacteria filaments in a modern marine reef setting at Highborne Cay, Bahamas. Our observations and stable isotope data suggest that initial calcification occurs in living cyanobacteria and is photosynthetically induced. A single variety of cyanobacteria, Dichothrix sp., produces calcified filaments. Adjacent cyanobacterial mats form well-laminated stromatolites, rather than calcified filaments, indicating there can be a strong taxonomic control over the mechanism of microbial calcification. Petrographic analyses indicate that the calcified filaments are degraded during early diagenesis and are not present in well-lithified microbialites. The early diagenetic destruction of calcified filaments at Highborne Cay indicates that the absence of calcified cyanobacteria from periods of the Phanerozoic is likely to be caused by low preservation potential as well as inhibited formation.
Subject(s)
Calcium/analysis , Cyanobacteria/chemistry , Fossils , Geologic Sediments/microbiology , Bahamas , Carbon Isotopes/analysis , Cyanobacteria/cytology , Cyanobacteria/ultrastructure , Microscopy , Microscopy, Electron, ScanningABSTRACT
We investigated the production of a hepatotoxic, cyclic heptapeptide, microcystin, by a filamentous branched cyanobacterium belonging to the order Stigonematales, genus Fischerella. The freshwater Fischerella sp. strain CENA161 was isolated from spring water in a small concrete dam in Piracicaba, São Paulo State, Brazil, and identified by combining a morphological description with 16S rRNA gene sequencing and phylogenetic analysis. Microcystin (MCYST) analysis performed using an ELISA assay on cultured cells gave positive results. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis detected 33.6microg MCYST-LR per gram dry weight of cyanobacterial cells. Microcystin profile revealed by quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS/MS) analysis confirmed the production of MCYST-LR. Furthermore, genomic DNA was analyzed by PCR for sequences similar to the ketosynthase (KS) domain of the type I polyketide synthase gene, which is involved in microcystin biosynthesis. This revealed the presence of a KS nucleotide fragment similar to the mcyD and ndaD genes of the microcystin and nodularin synthetase complexes. Phylogenetic analysis grouped the Fischerella KS sequence together with mcyD sequences of the three known microcystin synthetase operon (Microcystis, Planktothrix and Anabaena) and ndaD of the nodularin synthetase operon, with 100% bootstrap support. Our findings demonstrate that Fischerella sp. CENA161 produces MYCST-LR and for the first time identify a nucleotide sequence putatively involved in microcystin synthesis in this genus.
Subject(s)
Cyanobacteria/metabolism , Microcystins/biosynthesis , Brazil , Chromatography, High Pressure Liquid , Cyanobacteria/genetics , Cyanobacteria/ultrastructure , DNA, Plant/genetics , DNA, Plant/isolation & purification , Enzyme-Linked Immunosorbent Assay , Fresh Water/microbiology , Mass Spectrometry , Phylogeny , RNA, Ribosomal/biosynthesis , RNA, Ribosomal/genetics , Spectrometry, Mass, Electrospray IonizationABSTRACT
Costa Rica is at the centre of the Mesoamerican biodiversity hotspot. Little is known about cyanobacteria from this region so far. Here, four isolates of the order Stigonematales (section V) were characterized in a polyphasic approach. All strains were isolated from geothermal sites and hot springs of Costa Rica. However, one of them, identified as Westiellopsis sp. Ar73, did not grow at more than 40 degrees C. Based on its identical 16S rRNA to several previously isolated Westiellopsis sp. and Fischerella muscicola strains, a ubiquitous distribution throughout tropical and subtropical regions can be implied. In contrast, the isolates MV9, MV11 and RV14 grew well up to 50-55 degrees C. Based on morphologic, ultrastructural, molecular and physiologic data, MV9, MV11 and RV14 were identified to belong to the genus Fischerella. Two distinct intergenic transcribed spacer (ITS) types, with or without tRNA genes, were detected for all Stigonematales analysed here, indicating ITS polymorphism as a characteristic feature of heterocystous cyanobacteria. In phylogenetic trees, these Fischerella spp. formed a new and distinct clade within the wider lineage of thermophilic Fischerella (Mastigocladus cf. laminosus), which might represent a geographic lineage. Thus, geographic isolation may be an underestimated aspect of microbial evolution. The strains presented here are suitable as new models to study this group of cyanobacteria.
Subject(s)
Cyanobacteria/classification , Hot Springs/microbiology , Costa Rica , Cyanobacteria/isolation & purification , Cyanobacteria/physiology , Cyanobacteria/ultrastructure , DNA, Bacterial/analysis , DNA, Ribosomal Spacer/analysis , Hot Temperature , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNAABSTRACT
Recently, the Pacific coast of Costa Rica has experienced an increase in both magnitude and frequency of harmful algae blooms (HAB). The lack of data regarding the dynamics of these events in the area, and the species of microalgae that produce them, are themes of great interest. The blooms have produced negative impacts on fishery resources and on human health in Costa Rica. In May 2002 a HAB left a large number of dead fish along the central Pacific coast. Water samples were collected using a phytoplankton net and fixed for subsequent processing by electron microscopy. In addition, a one liter sample of surface water was taken for later cell count. In the observed HAB, the dominating organisms found were the cyanobacteria Trichodesmiun erythraeum surrounded by high concentrations of Gram - bacteria and the dinoflagellate Cochlodinium cf. polykrikoides. T. erythraeum, is one of the most important N 2 fixing cyanobacteria in marine waters that has been associated with HAB events in diverse parts of the world as well as with symptoms that produce contact dermatitis and other discomforts. C. cf. polykrikoides is a dinoflagellete associated with fish kills; although the type of associated toxins are unknown. In a national newspaper 17 cases of intoxication in humans were reported during this same period, which presented respiratory disorders and burning of the eyes. This is the first report in Costa Rica where a cyanobacteria and a dinoflagellate were observed together producing HAB
Recientemente, la costa del Pacífico de Costa Rica ha experimentado un aumento en magnitud y frecuencia de proliferaciones algales nocivas (PAN). La falta de datos con respecto a la dinámica de estos eventos en el área, y las especies de microalgas que los producen, son temas de mucho interés. Las PAN han producido impactos negativos en los recursos pesqueros y en la salud humana en Costa Rica. En mayo de 2002, una PAN se observó frente a las playas a lo largo del Pacífico central; además, se observó un gran número y diversidad de peces muertos. Las muestras de agua fueron recolectadas usando una red de fitoplancton y se fijaron para ser procesadas posteriormente con microscopía electrónica. Asimismo, se tomó un litro de muestra de la superficie para su posterior conteo celular. En la PAN observada, los organismos dominantes fueron la cianobacteria Trichodesmiun erythraeum, rodeada por altas concentraciones de bacterias Gram -, y el dinoflagelado Cochlodinium cf. polykrikoides. T. erythraeum, es una de las principales cianobacterias fijadoras de N2 atmosférico en aguas marinas, y se ha asociado con los eventos PAN en diversas partes del mundo, produciendo síntomas como dermatitis por contacto con la brisa marina y otras afecciones. C. cf. polykrikoides es un dinoflagelado asociado con mortalidad de peces; aunque el tipo de toxinas asociadas aún es desconocido. En un periódico nacional se reportaron 17 casos de intoxicación en humanos durante este mismo periodo de PAN, los afectados presentaron desórdenes respiratorios e irritación en los ojos. Éste es el primer informe en Costa Rica dónde se observaron cianobacterias y dinoflagelados juntos produciendo PAN. Este tipo de fenómenos debe analizarse y debe documentarse, para habilitar una comprensión en la dinámica y los factores asociados con el aumento de estos eventos en el Pacífico costarricense
Subject(s)
Humans , Animals , Cyanobacteria/pathogenicity , Dinoflagellida/pathogenicity , Eutrophication/physiology , Abdominal Pain/etiology , Costa Rica , Cyanobacteria/isolation & purification , Cyanobacteria/ultrastructure , Dermatitis, Contact/etiology , Dinoflagellida/isolation & purification , Dinoflagellida/ultrastructure , Eye/microbiology , Fishes/microbiology , Marine Toxins/adverse effects , Nitrogen Fixation , Population Dynamics , Phytoplankton/chemistry , Water MicrobiologyABSTRACT
Recently, the Pacific coast of Costa Rica has experienced an increase in both magnitude and frequency of harmful algae blooms (HAB). The lack of data regarding the dynamics of these events in the area, and the species of microalgae that produce them, are themes of great interest. The blooms have produced negative impacts on fishery resources and on human health in Costa Rica. In May 2002 a HAB left a large number of dead fish along the central Pacific coast. Water samples were collected using a phytoplankton net and fixed for subsequent processing by electron microscopy. In addition, a one liter sample of surface water was taken for later cell count. In the observed HAB, the dominating organisms found were the cyanobacteria Trichodesmiun erythraeum surrounded by high concentrations of Gram-bacteria and the dinoflagellate Cochlodinium cf. polykrikoides. T. erythraeum, is one of the most important N2 fixing cyanobacteria in marine waters that has been associated with HAB events in diverse parts of the world as well as with symptoms that produce contact dermatitis and other discomforts. C. cf. polykrikoides is a dinoflagellete associated with fish kills; although the type of associated toxins are unknown. In a national newspaper 17 cases of intoxication in humans were reported during this same period, which presented respiratory disorders and burning of the eyes. This is the first report in Costa Rica where a cyanobacteria and a dinoflagellate were observed together producing HAB.
Subject(s)
Cyanobacteria/isolation & purification , Dinoflagellida/isolation & purification , Eutrophication , Animals , Costa Rica , Cyanobacteria/ultrastructure , Dinoflagellida/ultrastructure , Eye/microbiology , Fishes/microbiology , Humans , Population Dynamics , Water MicrobiologyABSTRACT
The microbial mat community in the saltmarsh/evaporate flat interface at Laguna Figueroa involved in the deposition of laminated sediments was investigated. Pigment analysis, light microscopy and transmission electron microscopy were used to determine the relative abundance and distribution of phototrophic species. The community is vertically stratified into four distinct phototrophic populations. The layering could be distinguished by pigment and species composition. The two layers closest to the surface contained mostly oxygenic phototrophs and chlorophyll a as the primary photosynthetic pigment. Anoxic phototrophs predominated in the bottom two layers with bacteriochlorophylls a and c in the third layer and bacteriochlorophyll a and b in the bottom layer. The surface yellow layer was composed primarily of Navicula, Rhopalodia and other diatom species as well as the cyanobacteria Aphanothece sp. and Phormidium sp. Microcoleus chthonoplasces and Chroococcidiopsis sp. were the major cyanobacteria in the green colored second layer. In the third layer, pinkish-purple in color, purple photographs (Chromatium sp., Thiocapsa roseoparsicina) and filamentous green phototrophs (Chloroflexus sp., Oscillochloris sp.) were abundant. The fourth and deepest photosynthetic layer was salmon colored and composed primarily of Thiocapsa pfennigii, and other purple sulfur phototrophs. The pattern of alternating light (oxygenic community) and dark (anoxygenic community) layering preserved in older laminae is a consequence of this community structure. Study of the flat laminated mat over the 10-year period (1978-1988) including and after its destruction by catastrophic flooding events in 1978 and 1980, showed a succession of stratified communities culminating in the return of Microcoleus and the full compliment of layers by the fall of 1984.
Subject(s)
Bacteria/isolation & purification , Water Microbiology , Bacteria/ultrastructure , Cyanobacteria/isolation & purification , Cyanobacteria/ultrastructure , Ecology , Fossils , Mexico , Microscopy, Electron , Pigmentation , SeawaterABSTRACT
An unidentified filamentous purple bacterium, probably belonging to a new genus or even a new family, is found in close association with the filamentous, mat-forming cyanobacterium Microcoleus chthonoplastes in a hypersaline pond at Guerrero Negro, Baja California Sur, Mexico, and in Solar Lake, Sinai, Egypt. This organism is a gliding, segmented trichome, 0.8-0.9 micrometer wide. It contains intracytoplasmic stacked lamellae which are perpendicular and obliquely oriented to the cell wall, similar to those described for the purple sulfur bacteria Ectothiorhodospira. These bacteria are found inside the cyanobacterial bundle, enclosed by the cyanobacterial sheath. Detailed transmission electron microscopical analyses carried out in horizontal sections of the upper 1.5 mm of the cyanobacterial mat show this cyanobacterial-purple bacterial association at depths of 300-1200 micrometers, corresponding to the zone below that of maximal oxygenic photosynthesis. Sharp gradients of oxygen and sulfide are established during the day at this microzone in the two cyanobacterial mats studied. The close association, the distribution pattern of this association and preliminary physiological experiments suggest a co-metabolism of sulfur by the two-membered community. This probable new genus of purple bacteria may also grow photoheterotrophically using organic carbon excreted by the cyanobacterium. Since the chemical gradients in the entire photic zone fluctuate widely in a diurnal cycle, both types of metabolism probably take place. During the morning and afternoon, sulfide migrates up to the photic zone allowing photoautotrophic metabolism with sulfide as the electron donor. During the day the photic zone is highly oxygenated and the purple bacteria may either use oxidized species of sulfur such as elemental sulfur and thiosulfate in the photoautotrophic mode or grow photoheterotrophically using organic carbon excreted by M. chthonoplastes. The new type of filamentous purple sulfur bacteria is not available yet in pure culture, and its taxonomical position cannot be fully established. This organism is suggested to be a new type of gliding, filamentous, purple phototroph.
Subject(s)
Bacteria/classification , Bacterial Physiological Phenomena , Cyanobacteria/physiology , Sulfur/metabolism , Water Microbiology , Actin Cytoskeleton/ultrastructure , Bacteria/metabolism , Bacteria/ultrastructure , Biological Evolution , Cyanobacteria/metabolism , Cyanobacteria/ultrastructure , Egypt , Geologic Sediments/microbiology , Mexico , Microscopy, Electron , Oxygen/metabolism , Seawater/microbiology , Sulfides/metabolismABSTRACT
Laguna Figueroa is a lagoonal complex on the Pacific coast of the Baja California penisula 200 km south of the Mexican-United States border. The hypersaline lagoon is 16 km long and 2-3 km wide with a salt marsh and evaporite flat and is separated from the ocean by a barrier dune and beach. At the salt marsh-evaporite flat interface a stratified microbial community dominated by Microcoleus chthonoplastes is depositing laminated sediments. Similar stratiform deposits with associated microbial mat communities have been found in cherts of the Fig Tree Group, South Africa which are 3.4 GE in age. Heavy rains in the winters of 1978-1979 and 1979-1980 flooded the evaporite flat with 1-3 meters of meteoric water and buried the laminated sediment under 5-10 cm of siliciclastic and clay sediment. These flooding events had a dramatic effect on the composition of the mat community. The Microcoleus dominated community, with species of Chloroflexus sp. and an Ectothiorhodospira-like filamentous purple phototroph, disappeared leaving a community dominated by the purple phototrophs Chromatium sp. and Thiocapsa sp. Recolonization of the surface by species of the cyanobacteria Oscillatoria sp. and Spirulina sp. preceded the return of the Microcoleus community. Field conditions were monitored by ground based observations and supplemented with LandSat and Skylab imagery. The microbial community was studied with light microscopy and transmission electron microscopy. The change in dominating microbial species was correlated with the episodes of flooding.