Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 85(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30709817

ABSTRACT

Cyanobacteria are oxygenic photosynthetic prokaryotes with important roles in the global carbon and nitrogen cycles. Unicellular nitrogen-fixing cyanobacteria are known to be ubiquitous, contributing to the nitrogen budget in diverse ecosystems. In the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142, carbon assimilation and carbohydrate storage are crucial processes that occur as part of a robust diurnal cycle of photosynthesis and nitrogen fixation. During the light period, cells accumulate fixed carbon in glycogen granules to use as stored energy to power nitrogen fixation in the dark. These processes have not been thoroughly investigated, due to the lack of a genetic modification system in this organism. In bacterial glycogen metabolism, the glgX gene encodes a debranching enzyme that functions in storage polysaccharide catabolism. To probe the consequences of modifying the cycle of glycogen accumulation and subsequent mobilization, we engineered a strain of Cyanothece 51142 in which the glgX gene was genetically disrupted. We found that the ΔglgX strain exhibited a higher growth rate than the wild-type strain and displayed a higher rate of nitrogen fixation. Glycogen accumulated to higher levels at the end of the light period in the ΔglgX strain, compared to the wild-type strain. These data suggest that the larger glycogen pool maintained by the ΔglgX mutant is able to fuel greater growth and nitrogen fixation ability.IMPORTANCE Cyanobacteria are oxygenic photosynthetic bacteria that are found in a wide variety of ecological environments, where they are important contributors to global carbon and nitrogen cycles. Genetic manipulation systems have been developed in a number of cyanobacterial strains, allowing both the interruption of endogenous genes and the introduction of new genes and entire pathways. However, unicellular diazotrophic cyanobacteria have been generally recalcitrant to genetic transformation. These cyanobacteria are becoming important model systems to study diurnally regulated processes. Strains of the Cyanothece genus have been characterized as displaying robust growth and high rates of nitrogen fixation. The significance of our study is in the establishment of a genetic modification system in a unicellular diazotrophic cyanobacterium, the demonstration of the interruption of the glgX gene in Cyanothece sp. strain ATCC 51142, and the characterization of the increased nitrogen-fixing ability of this strain.


Subject(s)
Cyanothece/genetics , Cyanothece/metabolism , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Glycogen/genetics , Glycogen/metabolism , Nitrogen Fixation , Carbohydrate Metabolism/genetics , Cyanobacteria/genetics , Cyanobacteria/metabolism , Cyanothece/cytology , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Genes, Bacterial/genetics , Metabolic Networks and Pathways/genetics , Nitrogen/metabolism , Oxygen/metabolism , Photosynthesis
2.
Photosynth Res ; 118(1-2): 51-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23881383

ABSTRACT

Mixotrophic cultivation of cyanobacteria in wastewaters with flue gas sparging has the potential to simultaneously sequester carbon content from gaseous and aqueous streams and convert to biomass and biofuels. Therefore, it was of interest to study the effect of mixotrophy and elevated CO2 on metabolism, morphology and rhythm of gene expression under diurnal cycles. We chose a diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 as a model, which is a known hydrogen producer with robust circadian rhythm. Cyanothece 51142 grows faster with nitrate and/or an additional carbon source in the growth medium and at 3 % CO2. Intracellular glycogen contents undergo diurnal oscillations with greater accumulation under mixotrophy. While glycogen is exhausted by midnight under autotrophic conditions, significant amounts remain unutilized accompanied by a prolonged upregulation of nifH gene under mixotrophy. This possibly supports nitrogen fixation for longer periods thereby leading to better growth. To gain insights into the influence of mixotrophy and elevated CO2 on circadian rhythm, transcription of core clock genes kaiA, kaiB1 and kaiC1, the input pathway, cikA, output pathway, rpaA and representatives of key metabolic pathways was analyzed. Clock genes' transcripts were lower under mixotrophy suggesting a dampening effect exerted by an external carbon source such as glycerol. Nevertheless, the genes of the clock and important metabolic pathways show diurnal oscillations in expression under mixotrophic and autotrophic growth at ambient and elevated CO2, respectively. Taken together, the results indicate segregation of light and dark associated reactions even under mixotrophy and provide important insights for further applications.


Subject(s)
Carbon Dioxide/physiology , Circadian Rhythm , Cyanothece/physiology , Cell Size , Culture Techniques , Cyanothece/cytology , Nitrogen Fixation
3.
PLoS One ; 8(2): e56887, 2013.
Article in English | MEDLINE | ID: mdl-23457634

ABSTRACT

Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.


Subject(s)
Carbon/metabolism , Circadian Rhythm , Cyanothece/cytology , Cyanothece/metabolism , Carbon Dioxide/metabolism , Cell Proliferation , Cell Size , Cyanothece/physiology , Cyanothece/ultrastructure , Intracellular Space/metabolism , Transcription, Genetic
4.
Carbohydr Polym ; 92(2): 1408-15, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23399171

ABSTRACT

Cyanobacterial extracellular polymeric substances (EPS) are heteropolysaccharides that possess characteristics suitable for industrial applications, notably a high number of different monomers, strong anionic nature and high hydrophobicity. However, systematic studies that unveil the conditions influencing EPS synthesis and/or its characteristics are mandatory. In this work, Cyanothece sp. CCY 0110 was used as model organism. Our results revealed that this strain is among the most efficient EPS producers, and that the amount of RPS (released polysaccharides) is mainly related to the number of cells, rather than to the amount produced by each cell. Light was the key parameter, with high light intensity enhancing significantly RPS production (reaching 1.8 g L(-1)), especially in the presence of combined nitrogen. The data showed that RPS are composed by nine different monosaccharides (including two uronic acids), the presence of sulfate groups and peptides, and that the polymer is remarkably thermostable and amorphous in nature.


Subject(s)
Cyanothece/cytology , Cyanothece/metabolism , Extracellular Space/metabolism , Polysaccharides, Bacterial/biosynthesis , Bacterial Proteins/metabolism , Bioreactors , Cell Proliferation , Culture Techniques , Cyanothece/growth & development , Industry , Polysaccharides, Bacterial/metabolism
5.
Plant Physiol ; 161(3): 1334-46, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23274238

ABSTRACT

In order to accommodate the physiologically incompatible processes of photosynthesis and nitrogen fixation within the same cell, unicellular nitrogen-fixing cyanobacteria have to maintain a dynamic metabolic profile in the light as well as the dark phase of a diel cycle. The transition from the photosynthetic to the nitrogen-fixing phase is marked by the onset of various biochemical and regulatory responses, which prime the intracellular environment for nitrogenase activity. Cellular respiration plays an important role during this transition, quenching the oxygen generated by photosynthesis and by providing energy necessary for the process. Although the underlying principles of nitrogen fixation predict unicellular nitrogen-fixing cyanobacteria to function in a certain way, significant variations are observed in the diazotrophic behavior of these microbes. In an effort to elucidate the underlying differences and similarities that govern the nitrogen-fixing ability of unicellular diazotrophic cyanobacteria, we analyzed six members of the genus Cyanothece. Cyanothece sp. ATCC 51142, a member of this genus, has been shown to perform efficient aerobic nitrogen fixation and hydrogen production. Our study revealed significant differences in the patterns of respiration and nitrogen fixation among the Cyanothece spp. strains that were grown under identical culture conditions, suggesting that these processes are not solely controlled by cues from the diurnal cycle but that strain-specific intracellular metabolic signals play a major role. Despite these inherent differences, the ability to perform high rates of aerobic nitrogen fixation and hydrogen production appears to be a characteristic of this genus.


Subject(s)
Circadian Rhythm , Cyanothece/cytology , Cyanothece/physiology , Nitrogen Fixation/physiology , Aerobiosis/drug effects , Aerobiosis/genetics , Carbon/pharmacology , Chromosomes, Bacterial/metabolism , Circadian Rhythm/drug effects , Cyanothece/genetics , Cyanothece/ultrastructure , Genes, Bacterial/genetics , Hydrogen/metabolism , Nitrogen Fixation/drug effects , Nitrogenase/metabolism , Phenotype , Time Factors
6.
Appl Environ Microbiol ; 77(17): 5888-96, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21742912

ABSTRACT

Lake St. Lucia, iSimangaliso Wetland Park, South Africa, is the largest estuarine lake in Africa. Extensive use and manipulation of the rivers flowing into it have reduced freshwater inflow, and the lake has also been subject to a drought of 10 years. For much of this time, the estuary has been closed to the Indian Ocean, and salinities have progressively risen throughout the system, impacting the biotic components of the ecosystem, reducing zooplankton and macrobenthic biomass and diversity in particular. In June 2009, a bloom of a red/orange planktonic microorganism was noted throughout the upper reaches of Lake St. Lucia. The bloom persisted for at least 18 months, making it the longest such bloom on record. The causative organism was characterized by light and electron microscopy and by 16S rRNA sequencing and was shown to be a large, unicellular cyanobacterium most strongly associated with the genus Cyanothece. The extent and persistence of the bloom appears to be unique to Lake St. Lucia, and it is suggested that the organism's resistance to high temperatures, to intense insolation, and to hypersalinity as well as the absence of grazing pressure by salinity-sensitive zooplankton all contributed to its persistence as a bloom organism until a freshwater influx, due to exceptionally heavy summer rains in 2011, reduced the salinity for a sufficient length of time to produce a crash in the cyanobacterium population as a complex, low-salinity biota redeveloped.


Subject(s)
Cyanothece/classification , Cyanothece/growth & development , Phytoplankton/classification , Phytoplankton/growth & development , Water Microbiology , Cluster Analysis , Cyanothece/cytology , Cyanothece/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , Phytoplankton/cytology , Phytoplankton/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , South Africa , Wetlands
7.
Proc Natl Acad Sci U S A ; 105(39): 15094-9, 2008 Sep 30.
Article in English | MEDLINE | ID: mdl-18812508

ABSTRACT

Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N(2)-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell.


Subject(s)
Cyanothece/genetics , Genome, Bacterial , Nitrogen Fixation/genetics , Base Sequence , Chromosomes, Bacterial , Cyanothece/cytology , Cyanothece/metabolism , Energy Metabolism/genetics , Fermentation/genetics , Gene Order , Molecular Sequence Data , Proteomics , Pyruvic Acid/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...