Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.480
Filter
1.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732206

ABSTRACT

Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin's benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 µM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs' therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells.


Subject(s)
Breast Neoplasms , Cell Cycle Checkpoints , Curcumin , Cyclin-Dependent Kinase Inhibitor p21 , Gene Expression Regulation, Neoplastic , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , MCF-7 Cells , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cell Cycle Checkpoints/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Antineoplastic Agents/pharmacology , GADD45 Proteins
2.
Calcif Tissue Int ; 114(6): 625-637, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643416

ABSTRACT

Loss of p21 leads to increased bone formation post-injury; however, the mechanism(s) by which this occurs remains undetermined. E2f1 is downstream of p21 and as a transcription factor can act directly on gene expression; yet it is unknown if E2f1 plays a role in the osteogenic effects observed when p21 is differentially regulated. In this study we aimed to investigate the interplay between p21 and E2f1 and determine if the pro-regenerative osteogenic effects observed with the loss of p21 are E2f1 dependent. To accomplish this, we employed knockout p21 and E2f1 mice and additionally generated a p21/E2f1 double knockout. These mice underwent burr-hole injuries to their proximal tibiae and healing was assessed over 7 days via microCT imaging. We found that p21 and E2f1 play distinct roles in bone regeneration where the loss of p21 increased trabecular bone formation and loss of E2f1 increased cortical bone formation, yet loss of E2f1 led to poorer bone repair overall. Furthermore, when E2f1 was absent, either individually or simultaneously with p21, there was a dramatic decrease of the number of osteoblasts, osteoclasts, and chondrocytes at the site of injury compared to p21-/- and C57BL/6 mice. Together, these results suggest that E2f1 regulates the cell populations required for bone repair and has a distinct role in bone formation/repair compared to p21-/-E2f1-/-. These results highlight the possibility of cell cycle and/or p21/E2f1 being potential druggable targets that could be leveraged in clinical therapies to improve bone healing in pathologies such as osteoporosis.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , E2F1 Transcription Factor , Mice, Inbred C57BL , Mice, Knockout , Osteogenesis , Animals , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Osteogenesis/physiology , Mice , Bone Regeneration/physiology , Osteoblasts/metabolism
3.
Aging (Albany NY) ; 16(8): 6673-6693, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38683123

ABSTRACT

PURPOSE: The objective of this study was to investigate the senescent phenotypes of human corneal endothelial cells (hCEnCs) upon treatment with ultraviolet (UV)-A. METHODS: We assessed cell morphology, senescence-associated ß-galactosidase (SA-ß-gal) activity, cell proliferation and expression of senescence markers (p16 and p21) in hCEnCs exposed to UV-A radiation, and senescent hCEnCs induced by ionizing radiation (IR) were used as positive controls. We performed RNA sequencing and proteomics analyses to compare gene and protein expression profiles between UV-A- and IR-induced senescent hCEnCs, and we also compared the results to non-senescent hCEnCs. RESULTS: Cells exposed to 5 J/cm2 of UV-A or to IR exhibited typical senescent phenotypes, including enlargement, increased SA-ß-gal activity, decreased cell proliferation and elevated expression of p16 and p21. RNA-Seq analysis revealed that 83.9% of the genes significantly upregulated and 82.6% of the genes significantly downregulated in UV-A-induced senescent hCEnCs overlapped with the genes regulated in IR-induced senescent hCEnCs. Proteomics also revealed that 93.8% of the proteins significantly upregulated in UV-A-induced senescent hCEnCs overlapped with those induced by IR. In proteomics analyses, senescent hCEnCs induced by UV-A exhibited elevated expression levels of several factors part of the senescence-associated secretory phenotype. CONCLUSIONS: In this study, where senescence was induced by UV-A, a more physiological stress for hCEnCs compared to IR, we determined that UV-A modulated the expression of many genes and proteins typically altered upon IR treatment, a more conventional method of senescence induction, even though UV-A also modulated specific pathways unrelated to IR.


Subject(s)
Cell Proliferation , Cellular Senescence , Endothelial Cells , Ultraviolet Rays , Humans , Cellular Senescence/radiation effects , Ultraviolet Rays/adverse effects , Cell Proliferation/radiation effects , Endothelial Cells/radiation effects , Endothelial Cells/metabolism , Endothelium, Corneal/radiation effects , Endothelium, Corneal/metabolism , Cells, Cultured , Proteomics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , beta-Galactosidase/metabolism , beta-Galactosidase/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics
4.
Sci Rep ; 14(1): 9305, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653804

ABSTRACT

Dysregulated nuclear-cytoplasmic trafficking has been shown to play a role in oncogenesis in several types of solid tumors and hematological malignancies. Exportin 1 (XPO1) is responsible for the nuclear export of several proteins and RNA species, mainly tumor suppressors. KPT-330, a small molecule inhibitor of XPO1, is approved for treating relapsed multiple myeloma and diffuse large B-cell lymphoma. Cutaneous T-cell lymphoma (CTCL) is an extranodal non-Hodgkin lymphoma with an adverse prognosis and limited treatment options in advanced stages. The effect of therapeutically targeting XPO1 with KPT-330 in CTCL has not been established. We report that XPO1 expression is upregulated in CTCL cells. KPT-330 reduces cell proliferation, induces G1 cell cycle arrest and apoptosis. RNA-sequencing was used to explore the underlying mechanisms. Genes associated with the cell cycle and the p53 pathway were significantly enriched with KPT-330 treatment. KPT-330 suppressed XPO1 expression, upregulated p53, p21WAF1/Cip1, and p27Kip1 and their nuclear localization, and downregulated anti-apoptotic protein (Survivin). The in vivo efficacy of KPT-330 was investigated using a bioluminescent xenograft mouse model of CTCL. KPT-330 blocked tumor growth and prolonged survival (p < 0.0002) compared to controls. These findings support investigating the use of KPT-330 and next-generation XPO1 inhibitors in CTCL.


Subject(s)
Apoptosis , Cyclin-Dependent Kinase Inhibitor p21 , Cyclin-Dependent Kinase Inhibitor p27 , Exportin 1 Protein , Karyopherins , Lymphoma, T-Cell, Cutaneous , Receptors, Cytoplasmic and Nuclear , Triazoles , Tumor Suppressor Protein p53 , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Cutaneous/metabolism , Lymphoma, T-Cell, Cutaneous/genetics , Apoptosis/drug effects , Animals , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Karyopherins/metabolism , Karyopherins/antagonists & inhibitors , Mice , Cell Line, Tumor , Triazoles/pharmacology , Cell Proliferation/drug effects , Hydrazines/pharmacology , Hydrazines/therapeutic use , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects
5.
EMBO Rep ; 25(5): 2418-2440, 2024 May.
Article in English | MEDLINE | ID: mdl-38605277

ABSTRACT

Microcephaly is a common feature in inherited bone marrow failure syndromes, prompting investigations into shared pathways between neurogenesis and hematopoiesis. To understand this association, we studied the role of the microcephaly gene Mcph1 in hematological development. Our research revealed that Mcph1-knockout mice exhibited congenital macrocytic anemia due to impaired terminal erythroid differentiation during fetal development. Anemia's cause is a failure to complete cell division, evident from tetraploid erythroid progenitors with DNA content exceeding 4n. Gene expression profiling demonstrated activation of the p53 pathway in Mcph1-deficient erythroid precursors, leading to overexpression of Cdkn1a/p21, a major mediator of p53-dependent cell cycle arrest. Surprisingly, fetal brain analysis revealed hypertrophied binucleated neuroprogenitors overexpressing p21 in Mcph1-knockout mice, indicating a shared pathophysiological mechanism underlying both erythroid and neurological defects. However, inactivating p53 in Mcph1-/- mice failed to reverse anemia and microcephaly, suggesting that p53 activation in Mcph1-deficient cells resulted from their proliferation defect rather than causing it. These findings shed new light on Mcph1's function in fetal hematopoietic development, emphasizing the impact of disrupted cell division on neurogenesis and erythropoiesis - a common limiting pathway.


Subject(s)
Cell Cycle Proteins , Cyclin-Dependent Kinase Inhibitor p21 , Erythropoiesis , Mice, Knockout , Microcephaly , Tumor Suppressor Protein p53 , Animals , Erythropoiesis/genetics , Microcephaly/genetics , Microcephaly/pathology , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Mutation , Anemia, Macrocytic/genetics , Anemia, Macrocytic/pathology , Anemia, Macrocytic/metabolism , Cell Differentiation/genetics , Erythroid Precursor Cells/metabolism
6.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38663003

ABSTRACT

Vascular endothelial cell premature senescence plays an important part in stroke. Many microRNAs (miRNAs) are known to be involved in the pathological process of vascular endothelial cell premature senescence. The present study aimed to investigate the mechanism of hydrogen peroxide (H2O2)-induced premature senescence in human umbilical vein endothelial cells (HUVECs) and effect of miR-142-3p on hydrogen peroxide (H2O2)-induced premature senescence. HUVECs were exposed to H2O2 to establish a model premature senescence in endothelial cells. CCK-8 assay was performed to detect cell viability. Senescence-associated ß-galactosidase staining assay and senescence-related proteins p16 and p21 were used to detect changes in the degree of cell senescence. RT-qPCR and Western blot were conducted to measure mRNA and protein levels, respectively. The scratch wound-healing assay, transwell assay, and EdU assay were performed to evaluate the ability of migration and proliferation, respectively. miRNA-142-3p and silencing information regulator 2 related enzyme 1 (SIRT1) binding was verified using Targetscan software and a dual-luciferase assay. We found that miRNA-142-3p is abnormally up-regulated in HUVECs treated with H2O2. Functionally, miRNA-142-3p inhibition may mitigate the degree of HUVEC senescence and improve HUVEC migration and proliferation. Mechanistically, SIRT1 was validated to be targeted by miRNA-142-3p in HUVECs. Moreover, SIRT1 inhibition reversed the effects of miRNA-142-3p inhibition on senescent HUVECs exposed to H2O2. To our knowledge, this is the first study to show that miRNA-142-3p ameliorates H2O2-induced HUVECs premature senescence by targeting SIRT1 and may shed light on the role of the miR-142-3p/SIRT1 axis in stroke treatment.


Subject(s)
Cell Proliferation , Cellular Senescence , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide , MicroRNAs , Sirtuin 1 , Humans , Sirtuin 1/metabolism , Sirtuin 1/genetics , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Cellular Senescence/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Signal Transduction/drug effects
7.
Viruses ; 16(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38675828

ABSTRACT

The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.


Subject(s)
HIV-1 , Ubiquitin Thiolesterase , Ubiquitins , Virus Replication , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Humans , HIV-1/physiology , HIV-1/genetics , Ubiquitins/metabolism , Ubiquitins/genetics , Cytokines/metabolism , Cytokines/genetics , Immunity, Innate , HIV Infections/virology , HIV Infections/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Host-Pathogen Interactions , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
8.
Cell Commun Signal ; 22(1): 245, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671456

ABSTRACT

BACKGROUND: The alveolar epithelial type II cell (AT2) and its senescence play a pivotal role in alveolar damage and pulmonary fibrosis. Cell circadian rhythm is strongly associated with cell senescence. Differentiated embryonic chondrocyte expressed gene 1 (DEC1) is a very important circadian clock gene. However, the role of DEC1 in AT2 senescence and pulmonary fibrosis was still unclear. RESULTS: In this study, a circadian disruption model of light intervention was used. It was found that circadian disruption exacerbated pulmonary fibrosis in mice. To understand the underlying mechanism, DEC1 levels were investigated. Results showed that DEC1 levels increased in lung tissues of IPF patients and in bleomycin-induced mouse fibrotic lungs. In vitro study revealed that bleomycin and TGF-ß1 increased the expressions of DEC1, collagen-I, and fibronectin in AT2 cells. Inhibition of DEC1 mitigated bleomycin-induced fibrotic changes in vitro and in vivo. After that, cell senescence was observed in bleomycin-treated AT2 cells and mouse models, but these were prevented by DEC1 inhibition. At last, p21 was confirmed having circadian rhythm followed DEC1 in normal conditions. But bleomycin disrupted the circadian rhythm and increased DEC1 which promoted p21 expression, increased p21 mediated AT2 senescence and pulmonary fibrosis. CONCLUSIONS: Taken together, circadian clock protein DEC1 mediated pulmonary fibrosis via p21 and cell senescence in alveolar epithelial type II cells.


Subject(s)
Bleomycin , Cellular Senescence , Circadian Rhythm , Pulmonary Fibrosis , Animals , Humans , Male , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Circadian Rhythm/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mice, Inbred C57BL , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
9.
Nat Commun ; 15(1): 3301, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671004

ABSTRACT

Diphthamide is a modified histidine residue unique for eukaryotic translation elongation factor 2 (eEF2), a key ribosomal protein. Loss of this evolutionarily conserved modification causes developmental defects through unknown mechanisms. In a patient with compound heterozygous mutations in Diphthamide Biosynthesis 1 (DPH1) and impaired eEF2 diphthamide modification, we observe multiple defects in neural crest (NC)-derived tissues. Knockin mice harboring the patient's mutations and Xenopus embryos with Dph1 depleted also display NC defects, which can be attributed to reduced proliferation in the neuroepithelium. DPH1 depletion facilitates dissociation of eEF2 from ribosomes and association with p53 to promote transcription of the cell cycle inhibitor p21, resulting in inhibited proliferation. Knockout of one p21 allele rescues the NC phenotypes in the knockin mice carrying the patient's mutations. These findings uncover an unexpected role for eEF2 as a transcriptional coactivator for p53 to induce p21 expression and NC defects, which is regulated by diphthamide modification.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , Histidine , Histidine/analogs & derivatives , Minor Histocompatibility Antigens , Neural Crest , Peptide Elongation Factor 2 , Tumor Suppressor Protein p53 , Tumor Suppressor Proteins , Animals , Neural Crest/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Humans , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Mice , Peptide Elongation Factor 2/metabolism , Peptide Elongation Factor 2/genetics , Histidine/metabolism , Ribosomes/metabolism , Mutation , Cell Proliferation , Xenopus laevis , Female , Gene Knock-In Techniques , Xenopus , Male , Mice, Knockout
10.
Nat Aging ; 4(4): 527-545, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38594460

ABSTRACT

Limited understanding exists regarding how aging impacts the cellular and molecular aspects of the human ovary. This study combines single-cell RNA sequencing and spatial transcriptomics to systematically characterize human ovarian aging. Spatiotemporal molecular signatures of the eight types of ovarian cells during aging are observed. An analysis of age-associated changes in gene expression reveals that DNA damage response may be a key biological pathway in oocyte aging. Three granulosa cells subtypes and five theca and stromal cells subtypes, as well as their spatiotemporal transcriptomics changes during aging, are identified. FOXP1 emerges as a regulator of ovarian aging, declining with age and inhibiting CDKN1A transcription. Silencing FOXP1 results in premature ovarian insufficiency in mice. These findings offer a comprehensive understanding of spatiotemporal variability in human ovarian aging, aiding the prioritization of potential diagnostic biomarkers and therapeutic strategies.


Subject(s)
Forkhead Transcription Factors , Ovary , Animals , Female , Humans , Mice , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Granulosa Cells/metabolism , Oocytes/metabolism , Ovary/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Aging/genetics
11.
Toxicology ; 504: 153804, 2024 May.
Article in English | MEDLINE | ID: mdl-38614205

ABSTRACT

Fifty percent of all acute liver failure (ALF) cases in the United States are due to acetaminophen (APAP) overdose. Assessment of canonical features of liver injury, such as plasma alanine aminotransferase activities are poor predictors of acute liver failure (ALF), suggesting the involvement of additional mechanisms independent of hepatocyte death. Previous work demonstrated a severe overdose of APAP results in impaired regeneration, the induction of senescence by p21, and increased mortality. We hypothesized that a discrete population of p21+ hepatocytes acquired a secretory phenotype that directly impedes liver recovery after a severe APAP overdose. Leveraging in-house human APAP explant liver and publicly available single-nuclei RNAseq data, we identified a subpopulation of p21+ hepatocytes enriched in a unique secretome of factors, such as CXCL14. Spatial transcriptomics in the mouse model of APAP overdose confirmed the presence of a p21+ hepatocyte population that directly surrounded the necrotic areas. In both male and female mice, we found a dose-dependent induction of p21 and persistent circulating levels of the p21-specific constituent, CXCL14, in the plasma after a severe APAP overdose. In parallel experiments, we targeted either the putative senescent hepatocytes with the senolytic drugs, dasatinib and quercetin, or CXCL14 with a neutralizing antibody. We found that targeting CXCL14 greatly enhanced liver recovery after APAP-induced liver injury, while targeting senescent hepatocytes had no effect. These data support the conclusion that the sustained induction of p21 in hepatocytes with persistent CXCL14 secretion are critical mechanistic events leading to ALF in mice and human patients.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Chemokines, CXC , Cyclin-Dependent Kinase Inhibitor p21 , Hepatocytes , Mice, Inbred C57BL , Acetaminophen/toxicity , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Male , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , Mice , Chemokines, CXC/metabolism , Chemokines, CXC/genetics , Liver Regeneration/drug effects , Drug Overdose , Analgesics, Non-Narcotic/toxicity
12.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38458201

ABSTRACT

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Subject(s)
Cyclins , DNA Mismatch Repair , Animals , Cyclins/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Interphase , Mammals/metabolism
13.
Atherosclerosis ; 392: 117506, 2024 May.
Article in English | MEDLINE | ID: mdl-38518516

ABSTRACT

BACKGROUND AND AIMS: Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long noncoding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. METHODS AND RESULTS: By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr-/- mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. CONCLUSIONS: Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis.


Subject(s)
Atherosclerosis , Cellular Senescence , Mice, Knockout , Proprotein Convertase 9 , RNA, Long Noncoding , Receptors, LDL , Animals , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Humans , Male , Female , Receptors, LDL/genetics , Receptors, LDL/metabolism , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Disease Models, Animal , Liver/metabolism , Liver/pathology , Mice , Plaque, Atherosclerotic , Mice, Inbred C57BL , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Mitochondria/metabolism , Signal Transduction , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics
14.
J Biol Chem ; 300(4): 107136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447798

ABSTRACT

Polyploid giant cancer cells (PGCC) are frequently detected in tumors and are increasingly recognized for their roles in chromosomal instability and associated genome evolution that leads to cancer recurrence. We previously reported that therapy stress promotes polyploidy, and that acid ceramidase plays a role in depolyploidization. In this study, we used an RNA-seq approach to gain a better understanding of the underlying transcriptomic changes that occur as cancer cells progress through polyploidization and depolyploidization. Our results revealed gene signatures that are associated with disease-free and/or overall survival in several cancers and identified the cell cycle inhibitor CDKN1A/p21 as the major hub in PGCC and early progeny. Increased expression of p21 in PGCC was limited to the cytoplasm. We previously demonstrated that the sphingolipid enzyme acid ceramidase is dispensable for polyploidization upon therapy stress but plays a crucial role in depolyploidization. The current study demonstrates that treatment of cells with ceramide is not sufficient for p53-independent induction of p21 and that knockdown of acid ceramidase, which hydrolyzes ceramide, does not interfere with upregulation of p21. In contrast, blocking the expression of p21 with UC2288 prevented the induction of acid ceramidase and inhibited both the formation of PGCC from parental cells as well as the generation of progeny from PGCC. Taken together, our data suggest that p21 functions upstream of acid ceramidase and plays an important role in polyploidization and depolyploidization.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , Polyploidy , Humans , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Transcriptome , Giant Cells/metabolism
15.
Stem Cell Rev Rep ; 20(4): 1093-1105, 2024 May.
Article in English | MEDLINE | ID: mdl-38457059

ABSTRACT

Breast cancer, the most prevalent malignancy in women, often progresses to bone metastases, especially in older individuals. Dormancy, a critical aspect of bone-metastasized breast cancer cells (BCCs), enables them to evade treatment and recur. This dormant state is regulated by bone marrow mesenchymal stem cells (BMMSCs) through the secretion of various factors, including those associated with senescence. However, the specific mechanisms by which BMMSCs induce dormancy in BCCs remain unclear. To address this gap, a bone-specific senescence-accelerated murine model, SAMP6, was utilized to minimize confounding systemic age-related factors. Confirming senescence-accelerated osteoporosis, distinct BMMSC phenotypes were observed in SAMP6 mice compared to SAMR1 counterparts. Notably, SAMP6-BMMSCs exhibited premature senescence primarily due to telomerase activity loss and activation of the p21 signaling pathway. Furthermore, the effects of conditioned medium (CM) derived from SAMP6-BMMSCs versus SAMR1-BMMSCs on BCC proliferation were examined. Intriguingly, only CM from SAMP6-BMMSCs inhibited BCC proliferation by upregulating p21 expression in both MCF-7 and MDA-MB-231 cells. These findings suggest that the senescence-associated secretory phenotype (SASP) of BMMSCs suppresses BCC viability by inducing p21, a pivotal cell cycle inhibitor and tumor suppressor. This highlights a heightened susceptibility of BCCs to dormancy in a senescent microenvironment, potentially contributing to the increased incidence of breast cancer bone metastasis and recurrence observed with aging.


Subject(s)
Breast Neoplasms , Mesenchymal Stem Cells , Senescence-Associated Secretory Phenotype , Mesenchymal Stem Cells/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Humans , Animals , Mice , Cell Proliferation , Cell Survival , Cellular Senescence , Culture Media, Conditioned/pharmacology , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , MCF-7 Cells
16.
FEBS Lett ; 598(8): 935-944, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553249

ABSTRACT

Chondrocyte differentiation is crucial for cartilage formation. However, the complex processes and mechanisms coordinating chondrocyte proliferation and differentiation remain incompletely understood. Here, we report a novel function of the adaptor protein Gulp1 in chondrocyte differentiation. Gulp1 expression is upregulated during chondrogenic differentiation. Gulp1 knockdown in chondrogenic ATDC5 cells reduces the expression of chondrogenic and hypertrophic marker genes during differentiation. Furthermore, Gulp1 knockdown impairs cell growth arrest during chondrocyte differentiation and reduces the expression of the cyclin-dependent kinase inhibitor p21. The activation of the TGF-ß/SMAD2/3 pathway, which is associated with p21 expression in chondrocytes, is impaired in Gulp1 knockdown cells. Collectively, these results demonstrate that Gulp1 contributes to cell growth arrest and chondrocyte differentiation by modulating the TGF-ß/SMAD2/3 pathway.


Subject(s)
Cell Differentiation , Chondrocytes , Chondrogenesis , Cyclin-Dependent Kinase Inhibitor p21 , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Checkpoints/genetics , Cell Line , Cell Proliferation , Chondrocytes/metabolism , Chondrocytes/cytology , Chondrogenesis/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Gene Knockdown Techniques , Smad2 Protein/metabolism , Smad2 Protein/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Transforming Growth Factor beta/metabolism
17.
Nucleic Acids Res ; 52(7): 3778-3793, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38348929

ABSTRACT

DNA replication stress, caused by various endogenous and exogenous agents, halt or stall DNA replication progression. Cells have developed diverse mechanisms to tolerate and overcome replication stress, enabling them to continue replication. One effective strategy to overcome stalled replication involves skipping the DNA lesion using a specialized polymerase known as PrimPol, which reinitiates DNA synthesis downstream of the damage. However, the mechanism regulating PrimPol repriming is largely unclear. In this study, we observe that knockdown of STN1 or CTC1, components of the CTC1/STN1/TEN1 complex, leads to enhanced replication progression following UV exposure. We find that such increased replication is dependent on PrimPol, and PrimPol recruitment to stalled forks increases upon CST depletion. Moreover, we find that p21 is upregulated in STN1-depleted cells in a p53-independent manner, and p21 depletion restores normal replication rates caused by STN1 deficiency. We identify that p21 interacts with PrimPol, and STN1 depletion stimulates p21-PrimPol interaction and facilitates PrimPol recruitment to stalled forks. Our findings reveal a previously undescribed interplay between CST, PrimPol and p21 in promoting repriming in response to stalled replication, and shed light on the regulation of PrimPol repriming at stalled forks.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , DNA Primase , DNA Replication , DNA-Directed DNA Polymerase , Multifunctional Enzymes , Telomere-Binding Proteins , Ultraviolet Rays , Humans , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Primase/metabolism , DNA Primase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , DNA Damage
18.
Ann Hematol ; 103(1): 199-209, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37792064

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is a common, genomically heterogenous disease that presents a clinical challenge despite the success of frontline regimens and second-line chimeric antigen receptor T-cell (CAR-T) therapy. Recently, genomic alterations and tumor microenvironment features associated with poor CAR-T response have been identified, namely those to the TP53 tumor suppressor gene. This retrospective analysis aimed to integrate various data to identify genomic partnerships capable of providing further clarity and actionable treatment targets within this population. Publicly available data were analyzed for differential expression based on TP53 and 24-month event-free survival (EFS24) status, revealing enrichments of the BRD4 bromodomain oncogene (p < 0.0001, p = 0.001). High-BRD4 and TP53 alterations were significantly associated with lower CDKN1A (p21) and TNFRSF10B (TRAIL-R2), a key tumor suppressor and CAR-T modulator, respectively. Significant loss of CD8 T-cell presence within low-TNFRSF0B (p = 0.0042) and altered-TP53 (p = 0.0424) patients showcased relevant outcome-associated tumor microenvironment features. Furthermore, reduced expression of CDKN1A was associated with low TNFRSF10B (FDR < 0.0001) and increased BRD4 interactant genes (FDR < 0.0001). Promisingly, in vitro MDM2 inhibition with Idasnutlin and TP53 reactivation via Eprenetapopt was able to renew TNFRSF10B protein expression. Additionally, applying the BRD4-degrading PROTAC ARV-825 and the CDK4/6 inhibitor Abemaciclib as single-agents and in synergistic combination significantly reduced TP53-altered DLBCL cell line viability. Our analysis presents key associations within a genomic network of actionable targets capable of providing clarity within the evolving precision CAR-T treatment landscape.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Humans , Nuclear Proteins , Retrospective Studies , Tumor Suppressor Protein p53/genetics , Transcription Factors/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Tumor Microenvironment/genetics , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/therapeutic use , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/therapeutic use
19.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139316

ABSTRACT

Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle/genetics , Cyclin-Dependent Kinases/metabolism , Apoptosis/genetics
20.
Mol Cell ; 83(22): 4062-4077.e5, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37977118

ABSTRACT

Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.


Subject(s)
Tumor Suppressor Protein p53 , Humans , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cell Cycle , Cell Division , Tumor Suppressor Protein p53/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...