Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Cancer Sci ; 112(10): 4234-4245, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34382727

ABSTRACT

Development of acquired resistance to lapatinib, a dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor, severely limits the duration of clinical response in advanced HER2-driven breast cancer patients. Although the compensatory activation of the PI3K/Akt survival signal has been proposed to cause acquired lapatinib resistance, comprehensive molecular mechanisms remain required to develop more efficient strategies to circumvent this therapeutic difficulty. In this study, we found that suppression of HER2 by lapatinib still led to Akt inactivation and elevation of FOX3a protein levels, but failed to induce the expression of their downstream pro-apoptotic effector p27kip1 , a cyclin-dependent kinase inhibitor. Elevation of miR-221 was found to contribute to the development of acquired lapatinib resistance by targeting p27kip1 expression. Furthermore, upregulation of miR-221 was mediated by the lapatinib-induced Src family tyrosine kinase and subsequent NF-κB activation. The reversal of miR-221 upregulation and p27kip1 downregulation by a Src inhibitor, dasatinib, can overcome lapatinib resistance. Our study not only identified miRNA-221 as a pivotal factor conferring the acquired resistance of HER2-positive breast cancer cells to lapatinib through negatively regulating p27kip1 expression, but also suggested Src inhibition as a potential strategy to overcome lapatinib resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Drug Resistance, Neoplasm/physiology , Lapatinib/pharmacology , MicroRNAs/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Animals , Breast Neoplasms/chemistry , Breast Neoplasms/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Dasatinib/pharmacology , Down-Regulation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Forkhead Box Protein O3/metabolism , Hepatocyte Nuclear Factor 3-gamma/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/drug effects , Microarray Analysis , NF-kappa B p50 Subunit/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
2.
Mol Cancer Res ; 19(11): 1929-1945, 2021 11.
Article in English | MEDLINE | ID: mdl-34446542

ABSTRACT

Resistance to cyclin D-CDK4/6 inhibitors (CDK4/6i) represents an unmet clinical need and is frequently caused by compensatory CDK2 activity. Here we describe a novel strategy to prevent CDK4i resistance by using a therapeutic liposomal:peptide formulation, NP-ALT, to inhibit the tyrosine phosphorylation of p27Kip1(CDKN1B), which in turn inhibits both CDK4/6 and CDK2. We find that NP-ALT blocks proliferation in HR+ breast cancer cells, as well as CDK4i-resistant cell types, including triple negative breast cancer (TNBC). The peptide ALT is not as stable in primary mammary epithelium, suggesting that NP-ALT has little effect in nontumor tissues. In HR+ breast cancer cells specifically, NP-ALT treatment induces ROS and RIPK1-dependent necroptosis. Estrogen signaling and ERα appear required. Significantly, NP-ALT induces necroptosis in MCF7 ESRY537S cells, which contain an ER gain of function mutation frequently detected in metastatic patients, which renders them resistant to endocrine therapy. Here we show that NP-ALT causes necroptosis and tumor regression in treatment naïve, palbociclib-resistant, and endocrine-resistant BC cells and xenograft models, demonstrating that p27 is a viable therapeutic target to combat drug resistance. IMPLICATIONS: This study reveals that blocking p27 tyrosine phosphorylation inhibits CDK4 and CDK2 activity and induces ROS-dependent necroptosis, suggesting a novel therapeutic option for endocrine and CDK4 inhibitor-resistant HR+ tumors.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Necroptosis/genetics , Protein Kinase Inhibitors/therapeutic use , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred NOD , Oxidative Stress , Phosphorylation , Protein Kinase Inhibitors/pharmacology
3.
Hepatology ; 74(4): 1932-1951, 2021 10.
Article in English | MEDLINE | ID: mdl-33896016

ABSTRACT

BACKGROUND AND AIMS: HCC is a leading cause of cancer-related deaths globally with poor outcome and limited therapeutic options. Although the myelocytomatosis (MYC) oncogene is frequently dysregulated in HCC, it is thought to be undruggable. Thus, the current study aimed to identify the critical downstream metabolic network of MYC and develop therapies for MYC-driven HCC. APPROACH AND RESULTS: Liver cancer was induced in mice with hepatocyte-specific disruption of Myc and control mice by administration of diethylnitrosamine. Liquid chromatography coupled with mass spectrometry-based metabolomic analyses revealed that urinary dimethylarginine, especially symmetric dimethylarginine (SDMA), was increased in the HCC mouse model in an MYC-dependent manner. Analyses of human samples demonstrated a similar induction of SDMA in the urines from patients with HCC. Mechanistically, Prmt5, encoding protein arginine N-methyltransferase 5, which catalyzes SDMA formation from arginine, was highly induced in HCC and identified as a direct MYC target gene. Moreover, GSK3326595, a PRMT5 inhibitor, suppressed the growth of liver tumors in human MYC-overexpressing transgenic mice that spontaneously develop HCC. Inhibition of PRMT5 exhibited antiproliferative activity through up-regulation of the tumor suppressor gene Cdkn1b/p27, encoding cyclin-dependent kinase inhibitor 1B. In addition, GSK3326595 induced lymphocyte infiltration and major histocompatibility complex class II expression, which might contribute to the enhanced antitumor immune response. Combination of GSK3326595 with anti-programed cell death protein 1 (PD-1) immune checkpoint therapy (ICT) improved therapeutic efficacy in HCC. CONCLUSIONS: This study reveals that PRMT5 is an epigenetic executer of MYC, leading to repression of the transcriptional regulation of downstream genes that promote hepatocellular carcinogenesis, highlights a mechanism-based therapeutic strategy for MYC-driven HCC by PRMT5 inhibition through synergistically suppressed proliferation and enhanced antitumor immunity, and finally provides an opportunity to mitigate the resistance of "immune-cold" tumor to ICT.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms, Experimental/genetics , Liver Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Proto-Oncogene Proteins c-myc/genetics , Adult , Aged , Aged, 80 and over , Alkylating Agents/toxicity , Animals , Arginine/analogs & derivatives , Arginine/metabolism , Carcinogenesis/genetics , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Diethylnitrosamine/toxicity , Enzyme Inhibitors/pharmacology , Female , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Liver Neoplasms/immunology , Liver Neoplasms, Experimental/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Transgenic , Middle Aged , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrimidines/pharmacology , Quinolines/pharmacology , Up-Regulation , Young Adult
4.
Med Sci Monit ; 26: e922561, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32594094

ABSTRACT

BACKGROUND This study aimed to investigate the effects of the paeonol-platinum(II) (PL-Pt[II]) complex on SW1736 human anaplastic thyroid carcinoma cell line and the BHP7-13 human thyroid papillary carcinoma cell line in vitro and on mouse SW1736 tumor xenografts in vivo. MATERIAL AND METHODS The cytotoxic effects of the PL-Pt(II) complex on SW1736 cells and BHP7-13 cells was measured using the MTT assay. Western blot measured the expression levels of cyclins, cell apoptotic proteins, and signaling proteins. DNA content and apoptosis were detected by flow cytometry. SW1736 cell thyroid tumor xenografts were established in mice followed by treatment with the PL-Pt(II) complex. RESULTS Treatment of the SW1736 and BHP7-13 cells with the PL-Pt(II) complex reduced cell proliferation in a dose-dependent manner, with an IC50 of 1.25 µM and 1.0 µM, respectively, and increased the cell fraction in G0/G1phase, inhibited p53, cyclin D1, promoted p27 and p21 expression, and significantly increased the sub-G1 fraction. Treatment with the PL-Pt(II) complex increased caspase-3 degradation, reduced the expression of p-4EBP1, p-4E-BP1 and p-S6, and reduced the expression of p-ERK1/2 and p-AKT. Treatment with the PL-Pt(II) complex reduced the volume of the SW1736 mouse tumor xenografts on day 14 and day 21, and reduced AKT phosphorylation and S6 protein expression and increased degradation of caspase-3. CONCLUSIONS The cytotoxic effects of the PL-Pt(II) complex in human thyroid carcinoma cells, including activation of apoptosis and an increased sub-G1 cell fraction of the cell cycle, were mediated by down-regulation of the mTOR pathway.


Subject(s)
Acetophenones/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Platinum Compounds/pharmacology , TOR Serine-Threonine Kinases/drug effects , Thyroid Cancer, Papillary/genetics , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/genetics , Adaptor Proteins, Signal Transducing/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/genetics , Blotting, Western , Caspase 3/drug effects , Caspase 3/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin D1/drug effects , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Down-Regulation , Humans , In Vitro Techniques , Mice , Mitogen-Activated Protein Kinase 1/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasm Transplantation , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases/drug effects , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Thyroid Cancer, Papillary/metabolism , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/metabolism , Xenograft Model Antitumor Assays
5.
Clin Transl Gastroenterol ; 11(1): e00112, 2020 01.
Article in English | MEDLINE | ID: mdl-31972611

ABSTRACT

INTRODUCTION: Primary sclerosing cholangitis (PSC) is a cholestatic liver disorder that is frequently associated with ulcerative colitis (UC). Patients with PSC and UC (PSC-UC) have a higher risk of colorectal neoplasia compared with patients with UC. The oncogenic properties of microRNA-346 (miR-346) have been recently reported. We investigated the expression of miR-346 and its 2 target genes, the receptor of vitamin D (VDR), and the tumor necrosis factor-α (TNF-α), which are known to modulate carcinogenesis. METHODS: Ascending and sigmoid colon biopsies were obtained from patients with PSC, PSC and UC (PSC-UC), UC, and healthy controls (n = 10 in each group). Expressions of VDR, TNF-α, 18S RNA, p27, miR-346, and reference microRNA, miR-191, were evaluated by real-time PCR using human TaqMan Gene Expression and TaqMan MicroRNA Assays. Functional studies with miR-346 mimic and inhibitor were conducted in HepG2 and Caco-2 cells. The effect of ursodeoxycholic acid on miR-346 expression was examined in Caco-2 cells. RESULTS: An increased expression of miR-346 in the ascending colon of PSC-UC was observed (P < 0.001 vs all groups). In patients with UC, an exceptionally low colonic expression of miRNA-346 was accompanied by the extensive upregulation of VDR and TNF-α genes. A functional in vitro analysis demonstrated that inhibition of miR-346 resulted in the upregulation of VDR and TNF-α, whereas the induction of miR-346 activity suppressed VDR, TNF-α, and p27. DISCUSSION: The upregulation of miRNA-346 in the colon of patients with PSC may be responsible for the disturbance of VDR and TNF-α signaling pathway, which could result in an inadequate suppression of neoplasia.


Subject(s)
Cholangitis, Sclerosing/genetics , Colitis, Ulcerative/genetics , Colon/metabolism , Colorectal Neoplasms/genetics , MicroRNAs/genetics , Adult , Caco-2 Cells , Case-Control Studies , Cholagogues and Choleretics/pharmacology , Cholangitis, Sclerosing/complications , Cholangitis, Sclerosing/metabolism , Colitis, Ulcerative/complications , Colitis, Ulcerative/metabolism , Colon, Ascending , Colon, Sigmoid , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/genetics , Female , Gene Expression Regulation , Hep G2 Cells , Humans , Male , MicroRNAs/drug effects , Middle Aged , RNA, Ribosomal, 18S/genetics , Receptors, Calcitriol/drug effects , Receptors, Calcitriol/genetics , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/genetics , Up-Regulation , Ursodeoxycholic Acid/pharmacology , Young Adult
6.
Endocrinology ; 159(9): 3143-3157, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29514186

ABSTRACT

Pharmacologic expansion of endogenous ß cells is a promising therapeutic strategy for diabetes. To elucidate the molecular pathways that control ß-cell growth we screened ∼2400 bioactive compounds for rat ß-cell replication-modulating activity. Numerous hit compounds impaired or promoted rat ß-cell replication, including CC-401, an advanced clinical candidate previously characterized as a c-Jun N-terminal kinase inhibitor. Surprisingly, CC-401 induced rodent (in vitro and in vivo) and human (in vitro) ß-cell replication via dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) 1A and 1B inhibition. In contrast to rat ß cells, which were broadly growth responsive to compound treatment, human ß-cell replication was only consistently induced by DYRK1A/B inhibitors. This effect was enhanced by simultaneous glycogen synthase kinase-3ß (GSK-3ß) or activin A receptor type II-like kinase/transforming growth factor-ß (ALK5/TGF-ß) inhibition. Prior work emphasized DYRK1A/B inhibition-dependent activation of nuclear factor of activated T cells (NFAT) as the primary mechanism of human ß-cell-replication induction. However, inhibition of NFAT activity had limited effect on CC-401-induced ß-cell replication. Consequently, we investigated additional effects of CC-401-dependent DYRK1A/B inhibition. Indeed, CC-401 inhibited DYRK1A-dependent phosphorylation/stabilization of the ß-cell-replication inhibitor p27Kip1. Additionally, CC-401 increased expression of numerous replication-promoting genes normally suppressed by the dimerization partner, RB-like, E2F and multivulval class B (DREAM) complex, which depends upon DYRK1A/B activity for integrity, including MYBL2 and FOXM1. In summary, we present a compendium of compounds as a valuable resource for manipulating the signaling pathways that control ß-cell replication and leverage a DYRK1A/B inhibitor (CC-401) to expand our understanding of the molecular pathways that control ß-cell growth.


Subject(s)
Cell Proliferation/drug effects , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Insulin-Secreting Cells/drug effects , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazolones/pharmacology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Adult , Animals , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Female , Forkhead Box Protein M1/drug effects , Forkhead Box Protein M1/metabolism , Humans , In Vitro Techniques , Kv Channel-Interacting Proteins/drug effects , Kv Channel-Interacting Proteins/metabolism , Male , Middle Aged , NFATC Transcription Factors/drug effects , NFATC Transcription Factors/metabolism , Rats , Repressor Proteins/drug effects , Repressor Proteins/metabolism , Trans-Activators/drug effects , Trans-Activators/metabolism , Transcription Factors/drug effects , Transcription Factors/metabolism , Dyrk Kinases
7.
Br J Cancer ; 117(8): 1154-1163, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28873083

ABSTRACT

BACKGROUND: Overexpression of epidermal growth factor receptor (EGFR) occurs in approximately 90% of head and neck squamous cell carcinoma (HNSCC), and is correlated with poor prognosis. Thus, targeting EGFR is a promising strategy for treatment of HNSCC. Several small molecule EGFR inhibitors have been tested in clinical trials for treatment of HNSCC, but none of them are more effective than the current chemotherapeutic drugs. Thus, it is urgently needed to develop novel EGFR inhibitors for HNSCC treatment. METHODS: By screening an in-house focused library containing approximately 650 000 known kinase inhibitors and kinase inhibitor-like compounds containing common kinase inhibitor core scaffolds, we identified SKLB188 as a lead compound for inhibition of EGFR. The anticancer effects of SKLB188 on HNSCC cells were investigated by in vitro cell growth, cell cycle and apoptosis assays, as well as in vivo FaDu xenograft mouse model. Molecular docking, in vitro kinase profiling and western blotting were performed to characterise EGFR as the molecular target. RESULTS: SKLB188 inhibited HNSCC cell proliferation by inducing G1 cell cycle arrest, which was associated with downregulating the expression of Cdc25A, cyclins D1/A and cyclin-dependent kinases (CDK2/4), and upregulating the expression of cyclin-dependent kinase (CDK) inhibitors (p21Cip1 and p27Kip1), leading to decreased phosphorylation of Rb. SKLB188 also induced caspase-dependent apoptosis of HNSCC cells by downregulating the expression of Mcl-1 and survivin. Molecular docking revealed that SKLB188 could bind to the kinase domain of EGFR through hydrogen bonds and hydrophobic interactions. In vitro kinase assay showed that SKLB188 inhibited the activity of a recombinant human EGFR very potently (IC50=5 nM). Western blot analysis demonstrated that SKLB188 inhibited the phosphorylation of EGFR and its downstream targets, extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) and Akt in the cells. In addition, SKLB188 dose-dependently inhibited FaDu xenograft growth in nude mice, and concurrently inhibited the phosphorylation of Erk1/2 and Akt in the tumours. CONCLUSIONS: SKLB188 potently inhibits the growth of HNSCC cells in vitro and in vivo by targeting EGFR signalling. The results provide a basis for further clinical investigation of SKLB188 as a targeted therapy for HNSCC. Our findings may open a new avenue for development of novel EGFR inhibitors for treatment of HNSCC and other cancers.


Subject(s)
Apoptosis/drug effects , Carcinoma, Squamous Cell/metabolism , Cell Proliferation/drug effects , ErbB Receptors/antagonists & inhibitors , G1 Phase Cell Cycle Checkpoints/drug effects , Head and Neck Neoplasms/metabolism , Purines/pharmacology , Animals , Blotting, Western , Cyclin A/drug effects , Cyclin A/metabolism , Cyclin D1/drug effects , Cyclin D1/metabolism , Cyclin-Dependent Kinase 2/drug effects , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Down-Regulation , ErbB Receptors/metabolism , Humans , Immunohistochemistry , In Situ Nick-End Labeling , In Vitro Techniques , Mice , Mice, Nude , Molecular Docking Simulation , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Up-Regulation , Xenograft Model Antitumor Assays , cdc25 Phosphatases/drug effects , cdc25 Phosphatases/metabolism
8.
Anatol J Cardiol ; 16(6): 385-91, 2016 06.
Article in English | MEDLINE | ID: mdl-27163533

ABSTRACT

OBJECTIVE: We investigated whether the inhibitory effect of the immunosuppressant everolimus (RAD001) on vascular smooth muscle cell (VSMC) proliferation is mediated by p27/kip1 gene promoter activity. METHODS: In this experimental study, cultured rat VSMCs were transiently transfected with a recombinant plasmid (pXp27) containing p27/kip1 gene promoter sequence and a chloramphenicol acetyltransferase (CAT) reporter gene. After stimulation with the mitogen platelet-derived growth factor (PDGF-BB, 10 ng/mL) in the presence or absence of RAD001 (10 nM), the promoter activity, mRNA expression, and protein expression of p27/kip1 were examined by CAT assay, RT-PCR, and immunoblotting, respectively. Cell cycle-related changes were detected by flow cytometry. DNA synthesis was determined using 3H-TdR incorporation. RESULTS: Compared with the non-stimulation group, PDGF-BB stimulation induced a significant proliferative response in the VSMCs as indicated by decreased p27/kip1 gene promoter activity, decreased p27/kip1 mRNA and protein expression, increased S-phase and G2/M-phase cells, and increased DNA synthesis. RAD001 intervention increased p27/kip1 gene promoter activity 3.5-fold, promoted p27/kip1 mRNA and protein expression, increased G0-phase cells, reduced DNA synthesis, and, overall, inhibited PDGF-BB-stimulated cell proliferation. CONCLUSION: RAD001 inhibits PDGF-BB-stimulated proliferation of cultured VSMCs by upregulating p27/kip1 gene promoter activity and increasing p27/kip1 mRNA and protein expression.


Subject(s)
Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Everolimus/pharmacology , Muscle, Smooth, Vascular/drug effects , Animals , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Rats , Rats, Wistar
9.
Oncol Rep ; 33(5): 2368-74, 2015 May.
Article in English | MEDLINE | ID: mdl-25812605

ABSTRACT

Tetramethylpyrazine (TMP) has been proven to be an anticancer agent in many studies. However, its effectiveness in acute lymphoblastic leukemia (ALL) and its molecular mechanisms are still unclear. The present study aimed to evaluate the effect of TMP against Jurkat and SUP-B15 ALL cell lines and to investigate the possible detailed mechanism of action of TMP. A Cell Counting Kit-8 (CCK-8) assay was employed to examine the proliferation of Jurkat and SUP-B15 cells. Flow cytometric analysis was conducted to detect the cell cycle distribution and apoptotic rate. The expression of total glycogen synthase kinase-3ß (GSK-3ß), cox-2, survivin, bcl-2 and p27 RNA and protein levels was detected by quantitative real-time PCR and western blot assay, respectively. Additionally, western blot analysis was used to determine the whole-cell and nuclear protein levels of GSK-3ß downstream transcription factors, NF-κB (p65) and c-myc. TMP inhibited the proliferation of Jurkat and SUP-B15 cells in a dose- and time-dependent manner, with IC50 values of 120 and 200 µg/ml, respectively at 48 h. TMP induced the apoptosis of Jurkat and SUP-B15 cells and synergistically blocked cell cycle progression at the G0/G1 phase. Cells treated with TMP exhibited significantly attenuated GSK-3ß, NF-κB (p65) and c-myc expression, followed by downregulation of bcl-2, cox-2 and survivin and an upregulation of p27. The results showed that TMP induced apoptosis and caused cell cycle arrest in Jurkat and SUP-B15 cells through the downregulation of GSK-3ß, which may have further prevented the induced translocation of NF-κB and c-myc from the cytoplasm to the nucleus.


Subject(s)
Antineoplastic Agents/pharmacology , Glycogen Synthase Kinase 3/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Pyrazines/pharmacology , RNA, Messenger/drug effects , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Inhibitor of Apoptosis Proteins/drug effects , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Jurkat Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-bcl-2/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/drug effects , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Survivin , Transcription Factor RelA/drug effects , Transcription Factor RelA/metabolism
10.
Braz J Med Biol Res ; 46(8): 643-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23903687

ABSTRACT

MP [4-(3',3'-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27(KIP1) protein and p21(CIP1) mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21(CIP1), p16(INK4a) and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer.


Subject(s)
Apoptosis/drug effects , Benzofurans/administration & dosage , Endophytes/chemistry , G1 Phase Cell Cycle Checkpoints/drug effects , Xylariales/chemistry , Apoptosis Regulatory Proteins/genetics , Benzofurans/isolation & purification , Cell Cycle Proteins/drug effects , Cell Proliferation/drug effects , Cycadopsida , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p27/drug effects , DNA-Binding Proteins/drug effects , Flow Cytometry , Forkhead Box Protein O1 , Forkhead Transcription Factors/drug effects , Genes, p16/drug effects , HeLa Cells , Humans , Nuclear Proteins/drug effects , Real-Time Polymerase Chain Reaction , Transcription Factors/drug effects , Transcription, Genetic , Tumor Protein p73 , Tumor Suppressor Proteins/drug effects
11.
J Oral Pathol Med ; 42(4): 332-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23106397

ABSTRACT

BACKGROUND: Although oral squamous cell carcinomas (OSCCs) commonly overexpress the epidermal growth factor receptor (EGFR), EGFR tyrosine kinase inhibitors (TKIs) exhibit poor efficacy clinically. Activation of the insulin-like growth factor-1 receptor (IGF1R) induces resistance of OSCC cells to EGFR-TKIs in vitro. This study seeks to evaluate the changes in cell cycle status in OSCC cells in response to gefitinib and IGF1R activation. METHODS: SCC-25 OSCC cells were used for in vitro analyses. RESULTS: Gefitinib caused a 50% reduction in S-phase population, and IGF1R activation caused a 2.8-fold increase; combined treatment yielded a baseline S-phase population. Gefitinib treatment increased the cyclin-dependent kinase inhibitor p27, and this was not abrogated by IGF1R activation. pT157-p27 was noted by immunoblot to be decreased on gefitinib treatment, but this was reversed with IGF1R activation. T157 phosphorylation contributes to cytoplasmic localization of p27 where it can promote cell proliferation and cell motility. Using both subcellular fractionation and immunofluorescence microscopy techniques, IGF1R stimulation was noted to increase the relative cytoplasmic localization of p27; this persisted when combined with gefitinib. CONCLUSIONS: IGF1R activation partially reverses the cell cycle arrest caused by gefitinib in OSCC cells. While IGF1R stimulation does not eliminate the gefitinib-induced increase in total p27, its phosphorylation state and subcellular localization are altered. This may contribute to the ability of the IGF1R to rescue OSCC cells from EGFR-TKI treatment and may have important implications for the use of p27 as a biomarker of cell cycle arrest and response to therapy.


Subject(s)
Carcinoma, Squamous Cell/pathology , Cyclin-Dependent Kinase Inhibitor p27/physiology , ErbB Receptors/physiology , Mouth Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor, IGF Type 1/physiology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Nucleus/ultrastructure , Cyclin D/drug effects , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cytoplasm/ultrastructure , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Gefitinib , Humans , Insulin-Like Growth Factor I/pharmacology , Oncogene Protein v-akt/physiology , Peptide Fragments/pharmacology , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/pharmacology , Quinazolines/administration & dosage , Receptor, IGF Type 1/drug effects , S Phase/drug effects , Subcellular Fractions/ultrastructure
12.
Scand J Gastroenterol ; 47(5): 565-71, 2012 May.
Article in English | MEDLINE | ID: mdl-22486188

ABSTRACT

BACKGROUND AND OBJECTIVE: Alpha-ketoglutarate (AKG), a key intermediate in Krebs cycle, is an important biological compound involved in the formation of amino acids, nitrogen transport, and oxidation reactions. AKG is already commercially available as a dietary supplement and its supplementation with glutamine, arginine, or ornithine alpha-ketoglutarate has been recently considered to improve anticancer immune functions. It is well documented that AKG treatment of Hep3B hepatoma cells in hypoxia induced HIF-alpha (hypoxia-inducible factor) degradation and reduced vascular endothelial growth factor (VEGF) synthesis. Moreover, AKG showed potent antitumor effects in murine tumor xenograft model, inhibiting tumor growth, angiogenesis, and VEGF gene expression. However, the mechanisms of its anticancer activity in normoxia have not been examined so far. RESULTS: Here, we report that in normoxia, AKG inhibited proliferation of colon adenocarcinoma cell lines: Caco-2, HT-29, and LS-180, representing different stages of colon carcinogenesis. Furthermore, AKG influenced the cell cycle, enhancing the expression of the inhibitors of cyclin-dependent kinases p21 Waf1/Cip1 and p27 Kip1. Moreover, expression of cyclin D1, required in G1/S transmission, was decreased, which accompanied with the significant increase in cell number in G1 phase. AKG affected also one the key cell cycle regulator, Rb, and reduced its activation status. CONCLUSION: In this study for the first time, the antiproliferative activity of AKG on colon adenocarcinoma Caco-2, HT-29, and LS-180 cells in normoxic conditions was revealed. Taking into consideration an anticancer activity both in hypoxic and normoxic conditions, AKG may be considered as a new potent chemopreventive agent.


Subject(s)
Cell Cycle/drug effects , Cell Proliferation/drug effects , Ketoglutaric Acids/pharmacology , Caco-2 Cells , Cyclin D1/drug effects , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , HT29 Cells , Humans , Oxygen , Phosphorylation/drug effects , Retinoblastoma Protein/drug effects , Retinoblastoma Protein/metabolism
13.
Neurobiol Dis ; 46(3): 673-81, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22426400

ABSTRACT

Expansion of polyglutamine repeats is the cause of at least nine inherited human neurodegenerative disorders, including Huntington's disease (HD). It is widely accepted that deregulation of the transcriptional coactivator CBP by expanded huntingtin (htt) plays an important role in HD molecular pathogenesis. In this study, we report on a novel target of expanded polyglutamine stretches, the transcriptional coactivator Jun activation domain-binding protein 1 (Jab1), which shares DNA-sequence-specific transcription factor targets with CBP. Jab1 also plays a major role in the degradation of the cyclin-dependent-kinase inhibitor and putative transcription cofactor p27(Kip1). We found that Jab1 accumulates in aggregates when co-expressed with either expanded polyglutamine stretches or N-terminal fragments of mutant htt. In addition, the coactivator function of Jab1 was suppressed both by aggregated expanded polyglutamine solely and by mutant htt. Inhibition by mutant htt even preceded the appearance of microscopic aggregation. In an exon 1 HD cell model, we found that endogenous Jab1 could be recruited into aggregates and that this was accompanied by the accumulation of p27(Kip1). Accumulation of p27(Kip1) was also found in brains derived from HD patients. The repression of Jab1 by various mechanisms coupled with an increase of p27(Kip1) at late stages may have important transcriptional effects. In addition, the interference with the Jab1-p27(Kip1) pathway may contribute to the observed lower incidence of cancer in HD patients and may also be relevant for the understanding of the molecular pathogenesis of polyglutamine disorders in general.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27/drug effects , Intracellular Signaling Peptides and Proteins/drug effects , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/pharmacology , Peptide Hydrolases/drug effects , Peptides/genetics , Peptides/pharmacology , Blotting, Western , COP9 Signalosome Complex , Cells, Cultured , DNA Repeat Expansion , Fluorescent Antibody Technique , HeLa Cells , Humans , Huntingtin Protein , Huntington Disease/metabolism , Huntington Disease/pathology , Luciferases/metabolism , Mutation/genetics , Mutation/physiology , PC12 Cells , Plasmids/genetics , Polymerase Chain Reaction , Signal Transduction/drug effects
14.
Am J Respir Crit Care Med ; 185(9): 965-80, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22383500

ABSTRACT

RATIONALE: 17ß-Estradiol (E2) attenuates hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension (HPH) through an unknown mechanism that may involve estrogen receptors (ER) or E2 conversion to catecholestradiols and methoxyestradiols with previously unrecognized effects on cardiopulmonary vascular remodeling. OBJECTIVES: To determine the mechanism by which E2 exerts protective effects in HPH. METHODS: Male rats were exposed to hypobaric hypoxia while treated with E2 (75 µg/kg/d) or vehicle. Subgroups were cotreated with pharmacologic ER-antagonist or with inhibitors of E2-metabolite conversion. Complementary studies were performed in rats cotreated with selective ERα- or ERß-antagonist. Hemodynamic and pulmonary artery (PA) and right ventricular (RV) remodeling parameters, including cell proliferation, cell cycle, and autophagy, were measured in vivo and in cultured primary rat PA endothelial cells. MEASUREMENTS AND MAIN RESULTS: E2 significantly attenuated HPH endpoints. Hypoxia increased ERß but not ERα lung vascular expression. Co-treatment with nonselective ER inhibitor or ERα-specific antagonist rendered hypoxic animals resistant to the beneficial effects of E2 on cardiopulmonary hemodynamics, whereas ERα- and ERß-specific antagonists opposed the remodeling effects of E2. In contrast, inhibition of E2-metabolite conversion did not abolish E2 protection. E2-treated hypoxic animals exhibited reduced ERK1/2 activation and increased expression of cell-cycle inhibitor p27(Kip1) in lungs and RV, with up-regulation of lung autophagy. E2-induced signaling was recapitulated in hypoxic but not normoxic endothelial cells, and was associated with decreased vascular endothelial growth factor secretion and cell proliferation. CONCLUSIONS: E2 attenuates hemodynamic and remodeling parameters in HPH in an ER-dependent manner, through direct antiproliferative mechanisms on vascular cells, which may provide novel nonhormonal therapeutic targets for HPH.


Subject(s)
Estradiol/pharmacology , Hypertension, Pulmonary/drug therapy , Hypoxia/complications , Receptors, Estrogen/drug effects , Airway Remodeling/drug effects , Airway Remodeling/physiology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Cardiac Output/drug effects , Cardiac Output/physiology , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/physiology , Estradiol/analogs & derivatives , Estradiol/therapeutic use , Estrogen Antagonists/pharmacology , Fulvestrant , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypoxia/drug therapy , Hypoxia/physiopathology , Lung/blood supply , Lung/physiopathology , Male , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/physiopathology , Rats , Rats, Sprague-Dawley , Receptors, Estrogen/physiology , Ventricular Remodeling/drug effects , Ventricular Remodeling/physiology
15.
Int J Urol ; 19(6): 565-74, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22324515

ABSTRACT

OBJECTIVES: Neuropeptides are important signal initiators in advanced prostate cancer, partially acting through activation of nuclear factor kappa B. Central to nuclear factor kappa B regulation is the ubiquitin-proteasome system, pharmacological inhibition of which has been proposed as an anticancer strategy. We investigated the putative role of the proteasome inhibitor bortezomib in neuropeptides signaling effects on prostate cancer cells. METHODS: Human prostate cancer cell lines, LNCaP and PC-3, were used to examine cell proliferation, levels of proapoptotic (caspase-3, Bad) and cell cycle regulatory proteins (p53, p27, p21), as well as total and phosphorylated Akt and p44/42 mitogen-activated protein kinase proteins. Furthermore, 20S proteasome activity, subcellular localization of nuclear factor kappa B and transcription of nuclear factor kappa B target genes, interleukin-8 and vascular endothelial growth factor, were assessed. RESULTS: Neuropeptides (endothelin-1, bombesin) increased cell proliferation, whereas bortezomib decreased proliferation and induced apoptosis, an effect maintained after cotreatment with neuropeptides. Bad, p53, p21 and p27 were downregulated by neuropeptides in PC-3, and these effects were reversed with the addition of bortezomib. Neuropeptides increased proteasomal activity and nuclear factor kappa B levels in PC-3, and these effects were prevented by bortezomib. Interleukin-8 and vascular endothelial growth factor transcripts were induced after neuropeptides treatment, but downregulated by bortezomib. These results coincided with the ability of bortezomib to reduce mitogen-activated protein kinase signaling in both cell lines. CONCLUSIONS: These findings are consistent with bortezomib-mediated abrogation of neuropeptides-induced proliferative and antiapoptotic signaling. Thus, the effect of the drug on the neuropeptides axis needs to be further investigated, as neuropeptide action in prostate cancer might entail involvement of the proteasome.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bombesin/drug effects , Boronic Acids/pharmacology , Cell Proliferation/drug effects , Endothelin-1/drug effects , Prostatic Neoplasms/pathology , Pyrazines/pharmacology , Bombesin/physiology , Bortezomib , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p21/physiology , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/physiology , Down-Regulation , Endothelin-1/physiology , Humans , Interleukin-8/drug effects , Interleukin-8/genetics , Male , Mitogen-Activated Protein Kinases/drug effects , NF-kappa B/drug effects , NF-kappa B/physiology , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/physiology , RNA, Messenger/metabolism , Signal Transduction/drug effects , Translocation, Genetic/drug effects , Tumor Suppressor Protein p53/drug effects , Tumor Suppressor Protein p53/physiology , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor A/genetics , bcl-Associated Death Protein/drug effects , bcl-Associated Death Protein/physiology
16.
J Oral Pathol Med ; 41(4): 322-31, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22103929

ABSTRACT

BACKGROUND: To clarify the efficacy of grape seed procyanidin (GSP) on antiproliferative effects related to p53 functional status of oral squamous cell carcinoma (OSCC) for its chemoadjuvant potential. METHODS: We used GSP to investigate SCC-25 cells with wild-type p53 gene and OEC-M1 cells with mutant p53 gene for the assessment of antiproliferative effects including cell viability, cell cycle, apoptosis, migration and invasion potential, and alterations of associated oncoproteins involved in cellular and molecular events. RESULTS: The findings suggest that GSP on OEC-M1 cells leads to cell cycle arrest by increasing the expression of p21(Cip1) /p27(Kip1) protein without functioning mitochondria-mediated apoptosis, whereas GSP on SCC-25 cells inhibits cell proliferation via both G1-phase arrest and mitochondria-mediated apoptosis in a dose-dependent manner as a result of alterations of Bcl-2. GSP also inhibits the migration and invasion of both cells, which are associated with the suppression of matrix metalloproteinases (MMPs), MMP-2 and MMP-9. CONCLUSION: Antiproliferative effectiveness of GSP is closely associated with the p53 status of OSCC cells. GSP displays chemoadjuvant potential via cell cycle blockage and apoptotic induction. Our findings clearly suggest that GSP may play a role as a novel chemopreventive or therapeutic agent for OSCC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/pathology , Grape Seed Extract/pharmacology , Mouth Neoplasms/pathology , Plant Preparations/pharmacology , Proanthocyanidins/pharmacology , Tumor Suppressor Protein p53/drug effects , Vitis , Anticarcinogenic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Dose-Response Relationship, Drug , G1 Phase/drug effects , Humans , Matrix Metalloproteinase 2/drug effects , Matrix Metalloproteinase 9/drug effects , Mitochondria/drug effects , Neoplasm Invasiveness , Oncogene Proteins/drug effects , Point Mutation/genetics , Protein Kinase Inhibitors/analysis , Proto-Oncogene Proteins c-bcl-2/drug effects , Tumor Suppressor Protein p53/genetics
17.
Cell Biol Toxicol ; 28(1): 47-56, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22012578

ABSTRACT

The pseudo-tumoral expansion of fibroblast-like synoviocytes is a hallmark of rheumatoid arthritis (RA), and targeting rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs) may have therapeutic potentials in this disease. Andrographolide, a diterpenoid compound isolated from the herb Andrographis paniculata, has been reported to have potent anti-inflammatory activity. In the present study, we aimed to investigate the effects of andrographolide on human RAFLSs and the underlying molecular mechanism(s). RAFLSs were isolated from patients with RA and treated with or without various concentrations (i.e., 10, 20, and 30 µM) of andrographolide for 48 h. 3-[4,5-Dimethyl-2-yl]-2,5-diphenyl tetrazolium bromide assay revealed that andrographolide treatment decreased the proliferation of RAFLSs in a dose-dependent manner. Cell cycle analysis using propidium iodide (PI) staining showed a G0/G1 cell cycle arrest in andrographolide-treated RAFLSs. Immunoblotting analysis of key cell cycle regulators demonstrated that andrographolide treatment caused a dose-dependent increase in the expression of cell-cycle inhibitors p21 and p27 and a concomitant reduction of cyclin-dependent kinase 4. Exposure to andrographolide-induced apoptosis of RAFLSs measured by annexin V/PI double staining, which was coupled with promotion of cytochrome C release from mitochondria and activation of caspase-3. Moreover, andrographolide-treated RAFLSs displayed a significant decrease in the Bcl-2/Bax ratio compared to untreated cells. In conclusion, our data demonstrate that andrographolide exerts anti-growth and pro-apoptotic effects on RAFLSs, thus may have therapeutic potential for the treatment of RA.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints , Diterpenes/pharmacology , Fibroblasts/drug effects , Synovial Fluid/cytology , Anti-Inflammatory Agents/pharmacology , Arthritis, Rheumatoid/metabolism , Caspase 3/drug effects , Caspase 3/metabolism , Cell Survival/drug effects , Cells, Cultured , Cyclin-Dependent Kinase 4/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cytochromes c/drug effects , Cytochromes c/metabolism , Dose-Response Relationship, Drug , Humans , In Vitro Techniques , Proto-Oncogene Proteins c-bcl-2/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Synovial Fluid/drug effects , bcl-2-Associated X Protein/drug effects , bcl-2-Associated X Protein/metabolism
18.
Oncogene ; 29(12): 1798-809, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20023701

ABSTRACT

The F-box protein Fbxw7 (also known as Fbw7, SEL-10, hCdc4 or hAgo) mediates the ubiquitylation and thereby contributes to the degradation of proteins that positively regulate cell cycle. Conditional ablation of Fbxw7 in mouse embryonic fibroblasts (MEFs) induces cell-cycle arrest accompanied by abnormal accumulation of the intracellular domain of Notch1 (NICD1) and c-Myc. However, the molecular mechanisms by which the accumulation of NICD1 and c-Myc induces cell-cycle arrest have remained unclear. We have now examined the expression of cell-cycle inhibitors in Fbxw7-deficient MEFs and found that the abundance of p27(Kip1) and p57(Kip2) is paradoxically decreased. This phenomenon appears to be attributable to the accumulation of NICD1, given that it was recapitulated by overexpression of NICD1 and blocked by ablation of RBP-J. Conversely, the expression of p16(Ink4a) and p19(ARF) was increased in an NICD1-independent manner in Fbxw7-null MEFs. The increased expression of p19(ARF) was recapitulated by overexpression of c-Myc and abolished by ablation of c-Myc, suggesting that the accumulation of c-Myc is primarily responsible for that of p19(ARF). In contrast, the upregulation of p16(Ink4a) appeared to be independent of c-Myc. These results indicate that cell-cycle inhibitors undergo complex regulation by the Fbxw7-mediated proteolytic system.


Subject(s)
Cell Cycle/physiology , F-Box Proteins/pharmacology , Fibroblasts/cytology , Fibroblasts/physiology , Ubiquitin-Protein Ligases/pharmacology , Animals , Cell Cycle/drug effects , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p57/drug effects , Cyclin-Dependent Kinase Inhibitor p57/genetics , DNA Primers , Down-Regulation/drug effects , F-Box Proteins/genetics , F-Box-WD Repeat-Containing Protein 7 , Fibroblasts/drug effects , Homeostasis/drug effects , Mice , Mice, Knockout , Proto-Oncogene Proteins c-myc/pharmacology , RNA Interference , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Ubiquitination
19.
World J Gastroenterol ; 15(35): 4410-4, 2009 Sep 21.
Article in English | MEDLINE | ID: mdl-19764092

ABSTRACT

AIM: To investigate the effect of paeonol on controlling the proliferation of colorectal cancer cell line HT-29 and to discuss its possible mechanism. METHODS: The inhibitory effect of paeonol on proliferation of HT-29 cells was detected by MTT assay. The results of apoptosis were measured by flow cytometry. Immunocytochemical staining was performed to detect the expression of cyclooxygenase-2 (COX-2) and protein p27 in HT-29 cells treated with paeonol at different concentrations. Reverse transcription-polymerase chain reaction (RT-PCR) was used for mRNA analysis. RESULTS: From the data of both MTT and flow cytometry, we observed that cell proliferation was inhibited by different concentrations of paeonol. By immunocytochemical staining, we found that HT-29 cells treated with paeonol (0.024-1.504 mmol/L) reflected reduced expression of COX-2 and increased expression of p27 in a dose-dependent manner. RT-PCR showed that paeonol down-regulated COX-2 and up-regulated p27 in a dose- and time-dependent manner in HT-29 cells. CONCLUSION: One of the apoptotic mechanisms of paeonol is down-regulation of COX-2. p27 is up-regulated simultaneously and plays an important part in controlling cell proliferation and is a crucial factor in the Fas/FasL apoptosis pathway.


Subject(s)
Acetophenones/pharmacology , Apoptosis/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclooxygenase 2/metabolism , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclooxygenase 2/drug effects , Dose-Response Relationship, Drug , Flow Cytometry , HT29 Cells/drug effects , HT29 Cells/metabolism , Humans , Immunohistochemistry , Proliferating Cell Nuclear Antigen , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Up-Regulation
20.
Rev Bras Ginecol Obstet ; 31(3): 131-7, 2009 Mar.
Article in Portuguese | MEDLINE | ID: mdl-19547888

ABSTRACT

PURPOSE: to evaluate the effects of tamoxifen on the expression of TGF-beta and p27 proteins in polyps and adjacent endometrium of women after menopause. METHODS: prospective study with 30 post-menopausal women with diagnosis of breast cancer, taking tamoxifen (20 mg/day), presenting diagnosis of suspect endometrial polyps through transvaginal ultrasonography, and submitted to diagnostic and surgical hysterectomy to withdraw the polyps and adjacent endometrium. A immunohistochemical study has been done to verify the expression of the TGF-beta and p27 proteins in the polyps and adjacent endometrium. These proteins' quantification has been done by morphometry. RESULTS: the patients' average age was 61.7 years old; their average age at the menopause onset was 49.5; and the average of using tamoxifen was 25.3 months. The average concentration of positive cells for TGF-beta protein in the glandular and stroma polyp epithelium was 62.6+/-4.5 cells/mm(2). For the p27, in the glandular polyp epithelium, it was 24.2+/-18.6 cells/mm(2) and for the stroma, 19.2+/-15.2 cells/mm(2). There was no significant difference between the expression of TGF-beta and p27 in the glandular epithelial form the polyps and the adjacent endometrium. The expression of proteins in the polyp and adjacent endometrium with its respective glandular and stroma epithelium showed a significant difference for the p27 protein (r=0.9, p<0.05). CONCLUSIONS: we have concluded that the TGF-beta expression is not related to the effect of tamoxifen on the growing of endometrial polyps, but the absence of polyps' malignization by tamoxifen may be explained by the high expression of p27 protein in its glandular epithelium.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27/biosynthesis , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Endometrial Neoplasms/metabolism , Polyps/metabolism , Postmenopause , Tamoxifen/pharmacology , Transforming Growth Factor beta/biosynthesis , Transforming Growth Factor beta/drug effects , Female , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL