Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.791
Filter
1.
Sci Rep ; 14(1): 10650, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724532

ABSTRACT

Avoiding fatigue is a long-standing challenge in both healthy and diseased individuals. Establishing objective standard markers of fatigue is essential to evaluate conditions in spatiotemporally different locations and individuals and identify agents to fight against fatigue. Herein, we introduced a novel method for evaluating fatigue using nervous system markers (including dopamine, adrenaline, and noradrenaline), various cytokine levels (such as interleukin [IL]-1ß, tumor necrosis factor [TNF]-α, IL-10, IL-2, IL-5 and IL-17A), and oxidative stress markers (such as diacron-reactive oxygen metabolites [d-ROMs] and biological antioxidant potential [BAP]) in a rat fatigue model. Using this method, the anti-fatigue effects of methyl dihydrojasmonate (MDJ) and linalool, the fragrance/flavor compounds used in various products, were assessed. Our method evaluated the anti-fatigue effects of the aforementioned compounds based on the changes in levels of the nerves system markers, cytokines, and oxidative stress markers. MDJ exerted more potent anti-fatigue effects than linalool. In conclusion, the reported method could serve as a useful tool for fatigue studies and these compounds may act as effective therapeutic agents for abrogating fatigue symptoms.


Subject(s)
Acyclic Monoterpenes , Cytokines , Disease Models, Animal , Fatigue , Oxidative Stress , Animals , Oxidative Stress/drug effects , Acyclic Monoterpenes/pharmacology , Rats , Fatigue/drug therapy , Fatigue/metabolism , Cytokines/metabolism , Male , Cyclopentanes/pharmacology , Antioxidants/pharmacology , Biomarkers , Monoterpenes/pharmacology , Oxylipins/pharmacology , Rats, Sprague-Dawley
2.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724910

ABSTRACT

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Subject(s)
Acetates , Antioxidants , Brassica napus , Cyclopentanes , Gibberellins , Oxylipins , Plant Growth Regulators , Soil , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Brassica napus/growth & development , Brassica napus/drug effects , Brassica napus/metabolism , Gibberellins/metabolism , Gibberellins/pharmacology , Antioxidants/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Acetates/pharmacology , Soil/chemistry , Chlorophyll/metabolism , Salt Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Nutrients/metabolism
3.
Sci Rep ; 14(1): 11587, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773239

ABSTRACT

Peptide deformylase can catalyse the removal of formyl groups from the N-terminal formyl methionine of the primary polypeptide chain. The peptide deformylase genes of a few herbaceous plants have been studied to some extent, but the peptide deformylase genes of woody plants have not been studied. In this study, we isolated EuPDF1B from Eucommia ulmoides Oliv. The full-length sequence of EuPDF1B is 1176 bp long with a poly-A tail and contains an open reading frame of 831 bp that encodes a protein of 276 amino acids. EuPDF1B was localized to the chloroplast. qRT‒PCR analysis revealed that this gene was expressed in almost all tissues tested but mainly in mature leaves. Moreover, the expression of EuPDF1B was enhanced by ABA, MeJA and GA and inhibited by shading treatment. The expression pattern of EuPDF1B was further confirmed in EuPDF1Bp: GUS transgenic tobacco plants. Among all the transgenic tobacco plants, EuPDF1Bp-3 showed the highest GUS histochemical staining and activity in different tissues. This difference may be related to the presence of enhancer elements in the region from - 891 bp to - 236 bp of the EuPDF1B promoter. In addition, the expression of the chloroplast gene psbA and the net photosynthetic rate, fresh weight and height of tobacco plants overexpressing EuPDF1B were greater than those of the wild-type tobacco plants, suggesting that EuPDF1B may promote the growth of transgenic tobacco plants. This is the first time that PDF and its promoter have been cloned from woody plants, laying a foundation for further analysis of the function of PDF and the regulation of its expression.


Subject(s)
Amidohydrolases , Cloning, Molecular , Eucommiaceae , Gene Expression Regulation, Plant , Nicotiana , Plants, Genetically Modified , Eucommiaceae/genetics , Eucommiaceae/metabolism , Plants, Genetically Modified/genetics , Amidohydrolases/genetics , Amidohydrolases/metabolism , Nicotiana/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Phylogeny , Amino Acid Sequence , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism
4.
Planta ; 259(6): 152, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735012

ABSTRACT

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Subject(s)
Acetates , Artemisia annua , Artemisinins , Cyclopentanes , Methyltransferases , Oxylipins , Phylogeny , Artemisia annua/genetics , Artemisia annua/enzymology , Artemisia annua/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Artemisinins/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Methyltransferases/metabolism , Methyltransferases/genetics , Acetates/pharmacology , Acetates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Salicylic Acid/metabolism
5.
BMC Plant Biol ; 24(1): 418, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760720

ABSTRACT

BACKGROUND: Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS: RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION: This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.


Subject(s)
Abscisic Acid , Blueberry Plants , Cyclopentanes , Ethylenes , Fruit , Gene Expression Regulation, Plant , Oxylipins , Photosynthesis , Plant Growth Regulators , Ethylenes/metabolism , Abscisic Acid/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Plant Growth Regulators/metabolism , Blueberry Plants/genetics , Blueberry Plants/growth & development , Blueberry Plants/metabolism , Blueberry Plants/physiology , Fruit/growth & development , Fruit/genetics , Fruit/drug effects , Oxylipins/metabolism , Down-Regulation , Organophosphorus Compounds/pharmacology , Gene Expression Profiling
6.
BMC Genom Data ; 25(1): 41, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711007

ABSTRACT

BACKGROUND: Class III peroxidase (POD) enzymes play vital roles in plant development, hormone signaling, and stress responses. Despite extensive research on POD families in various plant species, the knowledge regarding the POD family in Chinese pear (Pyrus bretschenedri) is notably limited. RESULTS: We systematically characterized 113 POD family genes, designated as PbPOD1 to PbPOD113 based on their chromosomal locations. Phylogenetic analysis categorized these genes into seven distinct subfamilies (I to VII). The segmental duplication events were identified as a prevalent mechanism driving the expansion of the POD gene family. Microsynteny analysis, involving comparisons with Pyrus bretschenedri, Fragaria vesca, Prunus avium, Prunus mume and Prunus persica, highlighted the conservation of duplicated POD regions and their persistence through purifying selection during the evolutionary process. The expression patterns of PbPOD genes were performed across various plant organs and diverse fruit development stages using transcriptomic data. Furthermore, we identified stress-related cis-acting elements within the promoters of PbPOD genes, underscoring their involvement in hormonal and environmental stress responses. Notably, qRT-PCR analyses revealed distinctive expression patterns of PbPOD genes in response to melatonin (MEL), salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA), reflecting their responsiveness to abiotic stress and their role in fruit growth and development. CONCLUSIONS: In this study, we investigated the potential functions and evolutionary dynamics of PbPOD genes in Pyrus bretschenedri, positioning them as promising candidates for further research and valuable indicators for enhancing fruit quality through molecular breeding strategies.


Subject(s)
Gene Expression Regulation, Plant , Phylogeny , Plant Growth Regulators , Pyrus , Pyrus/genetics , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Melatonin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Peroxidase/genetics , Peroxidase/metabolism , Acetates/pharmacology , Acetates/metabolism , Fruit/genetics , Fruit/growth & development
7.
PeerJ ; 12: e17371, 2024.
Article in English | MEDLINE | ID: mdl-38708338

ABSTRACT

Background: Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods: P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions: Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.


Subject(s)
Acetates , Basic-Leucine Zipper Transcription Factors , Cyclopentanes , Gene Expression Regulation, Plant , Oxylipins , Phylogeny , Platycodon , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Acetates/pharmacology , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant/drug effects , Platycodon/genetics , Platycodon/metabolism , Stress, Physiological/genetics , Stress, Physiological/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Cold Temperature , Plant Growth Regulators/pharmacology
8.
Biochem Pharmacol ; 223: 116198, 2024 May.
Article in English | MEDLINE | ID: mdl-38588830

ABSTRACT

Agents that inhibit bromodomain and extra-terminal domain (BET) proteins have been actively tested in the clinic as potential anticancer drugs. NEDD8-activating enzyme (NAE) inhibitors, represented by MLN4924, target the only activation enzyme in the neddylation pathway that has been identified as an attractive target for cancer therapy. In this study, we focus on the combination of BET inhibitors (BETis) and NAE inhibitors (NAEis) as a cancer therapeutic strategy and investigate its underlying mechanisms to explore and expand the application scope of both types of drugs. The results showed that this combination synergistically inhibited the proliferative activity of tumor cells from different tissues. Compared to a single drug, combination therapy had a weak effect on cycle arrest but significantly enhanced cell apoptosis. Furthermore, the growth of NCI-H1975 xenografts in nude mice was significantly inhibited by the combination without obvious body weight loss. Research on the synergistic mechanism demonstrated that combination therapy significantly increased the mRNA and protein levels of the proapoptotic gene BIM. The inhibition and knockout of BIM significantly attenuated the apoptosis induced by the combination, whereas the re-expression of BIM restored the synergistic effects, indicating that BIM induction plays a critical role in mediating the enhanced apoptosis induced by the co-inhibition of BET and NAE. Together, the enhanced transcription mediated by miR-17-92 cluster inhibition and reduced degradation promoted the increase in BIM levels, resulting in a synergistic effect. Collectively, these findings highlight the need for further clinical investigation into the combination of BETi and NAEi as a promising strategy for cancer therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cyclopentanes/pharmacology , Mice, Nude , Bcl-2-Like Protein 11/metabolism
9.
Free Radic Biol Med ; 219: 127-140, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614228

ABSTRACT

Doxorubicin (DOX) is a widely utilized chemotherapeutic agent in clinical oncology for treating various cancers. However, its clinical use is constrained by its significant side effects. Among these, the development of cardiomyopathy, characterized by cardiac remodeling and eventual heart failure, stands as a major concern following DOX chemotherapy. In our current investigation, we have showcased the efficacy of MLN4924 in mitigating doxorubicin-induced cardiotoxicity through direct inhibition of the NEDD8-activating enzyme, NAE. MLN4924 demonstrated the ability to stabilize mitochondrial function post-doxorubicin treatment, diminish cardiomyocyte apoptosis, alleviate oxidative stress-induced damage in the myocardium, enhance cardiac contractile function, mitigate cardiac fibrosis, and impede cardiac remodeling associated with heart failure. At the mechanistic level, MLN4924 intervened in the neddylation process by inhibiting the NEDD8 activating enzyme, NAE, within the murine cardiac tissue subsequent to doxorubicin treatment. This intervention resulted in the suppression of NEDD8 protein expression, reduction in neddylation activity, and consequential manifestation of cardioprotective effects. Collectively, our findings posit MLN4924 as a potential therapeutic avenue for mitigating doxorubicin-induced cardiotoxicity by attenuating heightened neddylation activity through NAE inhibition, thereby offering a viable and promising treatment modality for afflicted patients.


Subject(s)
Apoptosis , Cardiotoxicity , Cyclopentanes , Doxorubicin , Myocytes, Cardiac , NEDD8 Protein , Pyrimidines , Animals , Doxorubicin/adverse effects , Cyclopentanes/pharmacology , Cyclopentanes/therapeutic use , Pyrimidines/pharmacology , Mice , NEDD8 Protein/metabolism , NEDD8 Protein/antagonists & inhibitors , Cardiotoxicity/drug therapy , Cardiotoxicity/pathology , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis/drug effects , Oxidative Stress/drug effects , Humans , Male , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/genetics , Mice, Inbred C57BL
10.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1170-1194, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658156

ABSTRACT

Sorghum aphid (Melanaphis sacchari) and head smut fungi (Sporisorium reilianum) infesting sorghum cause delayed growth and development, and reduce yield and quality. This study use bioinformatics and molecular biological approaches to profile the gene expression pattern during sorghum development and under pest infestation, and analyzed the natural allelic DNA variation of sorghum MYC gene family. The findings provide insights for potential application in breeding the stress resistant and high productivity sorghum varieties. The results indicated that there are 28 MYC genes identified in sorghum genome, distributed on 10 chromosomes. The bHLH_MYC_N and HLH domains are the conserved domains of the MYC gene in sorghum. Gene expression analysis showed that SbbHLH35.7g exhibited high expression levels in leaves, SbAbaIn showed strong expression in early grains, and SbMYC2.1g showed high expression levels in mature pollen. In anti-aphid strains at the 5-leaf stage, SbAbaIn, SbLHW.4g and SbLHW.2g were significantly induced in leaves, while SbbHLH35.7g displayed the highest expression level in panicle tissue, which was significantly induced by the infection of head smut. Promoter cis-element analysis identified methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA) and MYB-binding sites related to drought-stress inducibility. Furthermore, genomic resequencing data analysis revealed natural allelic DNA variations such as single nucleotide polymorphism (SNP) and insertion-deletion (INDEL) for the key SbMYCs. Protein interaction network analysis using STRING indicated that SbAbaIn interacts with TIFYdomain protein, and SbbHLH35.7g interacts with MDR and imporin. SbMYCs exhibited temporal and spatial expression patterns and played vital roles during the sorghum development. Infestation by sugarcane aphids and head smut fungi induced the expression of SbAbaIn and SbbHLH35.7g, respectively. SbAbaIn modulated the jasmonic acid (JA) pathway to regulate the expression of defensive genes, conferring resistance to insects. On the other hand, SbbHLH35.7g participated in detoxification reactions to defend against pathogens.


Subject(s)
Acetates , Alleles , Aphids , Cyclopentanes , Sorghum , Sorghum/genetics , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Aphids/genetics , Oxylipins/pharmacology , Oxylipins/metabolism , Gene Expression Profiling , Animals , Gene Expression Regulation, Plant , Genetic Variation , Genes, myc/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/parasitology
11.
BMC Genomics ; 25(1): 390, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649807

ABSTRACT

Medicinal plants are rich sources for treating various diseases due their bioactive secondary metabolites. Fenugreek (Trigonella foenum-graecum) is one of the medicinal plants traditionally used in human nutrition and medicine which contains an active substance, called diosgenin, with anticancer properties. Biosynthesis of this important anticancer compound in fenugreek can be enhanced using eliciting agents which involves in manipulation of metabolite and biochemical pathways stimulating defense responses. Methyl jasmonate elicitor was used to increase diosgenin biosynthesis in fenugreek plants. However, the molecular mechanism and gene expression profiles underlying diosgening accumulation remain unexplored. In the current study we performed an extensive analysis of publicly available RNA-sequencing datasets to elucidate the biosynthesis and expression profile of fenugreek plants treated with methyl jasmonate. For this purpose, seven read datasets of methyl jasmonate treated plants were obtained that were covering several post-treatment time points (6-120 h). Transcriptomics analysis revealed upregulation of several key genes involved in diosgenein biosynthetic pathway including Squalene synthase (SQS) as the first committed step in diosgenin biosynthesis as well as Squalene Epoxidase (SEP) and Cycloartenol Synthase (CAS) upon methyl jasmonate application. Bioinformatics analysis, including gene ontology enrichment and pathway analysis, further supported the involvement of these genes in diosgenin biosynthesis. The bioinformatics analysis led to a comprehensive validation, with expression profiling across three different fenugreek populations treated with the same methyl jasmonate application. Initially, key genes like SQS, SEP, and CAS showed upregulation, followed by later upregulation of Δ24, suggesting dynamic pathway regulation. Real-time PCR confirmed consistent upregulation of SQS and SEP, peaking at 72 h. Additionally, candidate genes Δ24 and SMT1 highlighted roles in directing metabolic flux towards diosgenin biosynthesis. This integrated approach validates the bioinformatics findings and elucidates fenugreek's molecular response to methyl jasmonate elicitation, offering insights for enhancing diosgenin yield. The assembled transcripts and gene expression profiles are deposited in the Zenodo open repository at https://doi.org/10.5281/zenodo.8155183 .


Subject(s)
Biosynthetic Pathways , Gene Expression Profiling , Oxylipins , Terpenes , Transcriptome , Trigonella , Trigonella/metabolism , Trigonella/genetics , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Terpenes/metabolism , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Acetates/pharmacology , Gene Expression Regulation, Plant/drug effects
12.
Brain Behav ; 14(5): e3502, 2024 May.
Article in English | MEDLINE | ID: mdl-38680072

ABSTRACT

OBJECTIVE: Orofacial pain with high prevalence is one of the substantial human health issues. The importance of this matter became more apparent when it was revealed that orofacial pain, directly and indirectly, affects cognition performances. Currently, researchers have focused on investigating pharmaceutics to alleviate pain and ameliorate its subsequent cognitive impairments. DESIGN: In this study, the rats were first treated with the central administration of methyl jasmonate (MeJA), which is an antioxidant and anti-inflammatory bio-compound. After 20 min, orofacial pain was induced in the rats by the injection of capsaicin in their dental pulp. Subsequently, the animals' pain behaviors were analyzed, and the effects of pain and MeJA treatments on rats learning and memory were evaluated/compared using the Morris water maze (MWM) test. In addition, the expression of tumor necrosis factor-α (TNF-α), IL-1ß, BDNF, and COX-2 genes in the rats' hippocampus was evaluated using real-time polymerase chain reaction. RESULTS: Experiencing orofacial pain resulted in a significant decline in the rats learning and memory. However, the central administration of 20 µg/rat of MeJA effectively mitigated these impairments. In the MWM, the performance of the MeJA-treated rats showed a two- to threefold improvement compared to the nontreated ones. Moreover, in the hippocampus of pain-induced rats, the expression of pro-inflammatory factors TNF-α, IL-1ß, and COX-2 significantly increased, whereas the BDNF expression decreased. In contrast, MeJA downregulated the pro-inflammatory factors and upregulated the BDNF by more than 50%. CONCLUSIONS: These findings highlight the notable antinociceptive potential of MeJA and its ability to inhibit pain-induced learning and memory dysfunction through its anti-inflammatory effect.


Subject(s)
Acetates , Cyclopentanes , Hippocampus , Neuroinflammatory Diseases , Oxylipins , Animals , Oxylipins/pharmacology , Oxylipins/administration & dosage , Cyclopentanes/pharmacology , Cyclopentanes/administration & dosage , Acetates/pharmacology , Acetates/administration & dosage , Rats , Male , Neuroinflammatory Diseases/drug therapy , Hippocampus/metabolism , Hippocampus/drug effects , Facial Pain/drug therapy , Memory Disorders/drug therapy , Memory Disorders/etiology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Maze Learning/drug effects , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Rats, Wistar
13.
BMC Plant Biol ; 24(1): 351, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38684962

ABSTRACT

BACKGROUND: Rose (Rosa hybrida) is a globally recognized ornamental plant whose growth and distribution are strongly limited by drought stress. The role of Mediator, a multiprotein complex crucial for RNA polymerase II-driven transcription, has been elucidated in drought stress responses in plants. However, its physiological function and regulatory mechanism in horticultural crop species remain elusive. RESULTS: In this study, we identified a Tail module subunit of Mediator, RhMED15a-like, in rose. Drought stress, as well as treatment with methyl jasmonate (MeJA) and abscisic acid (ABA), significantly suppressed the transcript level of RhMED15a-like. Overexpressing RhMED15a-like markedly bolstered the osmotic stress tolerance of Arabidopsis, as evidenced by increased germination rate, root length, and fresh weight. In contrast, the silencing of RhMED15a-like through virus induced gene silencing in rose resulted in elevated malondialdehyde accumulation, exacerbated leaf wilting, reduced survival rate, and downregulated expression of drought-responsive genes during drought stress. Additionally, using RNA-seq, we identified 972 differentially expressed genes (DEGs) between tobacco rattle virus (TRV)-RhMED15a-like plants and TRV controls. Gene Ontology (GO) analysis revealed that some DEGs were predominantly associated with terms related to the oxidative stress response, such as 'response to reactive oxygen species' and 'peroxisome'. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted pathways related to 'plant hormone signal transduction', in which the majority of DEGs in the jasmonate (JA) and ABA signalling pathways were induced in TRV-RhMED15a-like plants. CONCLUSION: Our findings underscore the pivotal role of the Mediator subunit RhMED15a-like in the ability of rose to withstand drought stress, probably by controlling the transcript levels of drought-responsive genes and signalling pathway elements of stress-related hormones, providing a solid foundation for future research into the molecular mechanisms underlying drought tolerance in rose.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Plant Viruses , Rosa , Rosa/genetics , Rosa/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Stress, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Acetates/pharmacology , Plants, Genetically Modified
14.
J Plant Physiol ; 296: 154218, 2024 May.
Article in English | MEDLINE | ID: mdl-38490054

ABSTRACT

Jasmonates (JAs) are among the main phytohormones, regulating plant growth and development, stress responses, and secondary metabolism. As the major regulator of the JA signaling pathway, MYC2 also plays an important role in plant secondary metabolite synthesis and accumulation. In this study, we performed a comparative transcriptome analysis of Lycoris aurea seedlings subjected to methyl jasmonate (MeJA) at different treatment times. A total of 31,193 differentially expressed genes (DEGs) were identified by RNA sequencing. Among them, 732 differentially expressed transcription factors (TFs) comprising 51 TF families were characterized. The most abundant TF family was WRKY proteins (80), followed by AP2/ERF-EFR (67), MYB (59), bHLH (52), and NAC protein (49) families. Subsequently, by calculating the Pearson's correlation coefficient (PCC) between the expression level of TF DEGs and the lycorine contents, 41 potential TF genes (|PCC| >0.8) involved in lycorine accumulation were identified, including 36 positive regulators and 5 negative regulators. Moreover, a MeJA-inducible MYC2 gene (namely LaMYC2) was cloned on the basis of transcriptome sequencing. Bioinformatic analyses revealed that LaMYC2 proteins contain the bHLH-MYC_N domain and bHLH-AtAIB_like motif. LaMYC2 protein is localized in the cell nucleus, and can partly rescue the MYC2 mutant in Arabidopsis thaliana. LaMYC2 protein could interact with most LaJAZs (especially LaJAZ3 and LaJAZ4) identified previously. Transient overexpression of LaMYC2 increased lycorine contents in L. aurea petals, which might be associated with the activation of the transcript levels of tyrosine decarboxylase (TYDC) and phenylalanine ammonia lyase (PAL) genes. By isolating the 887-bp-length promoter fragment upstream of the start codon (ATG) of LaTYDC, we found several different types of E-box motifs (CANNTG) in the promoter of LaTYDC. Further study demonstrated that LaMYC2 was indeed able to bind the E-box (CACATG) present in the LaTYDC promoter, verifying that the pathway genes involved in lycorine biosynthesis could be regulated by LaMYC2, and that LaMYC2 has positive roles in the regulation of lycorine biosynthesis. These findings demonstrate that LaMYC2 is a positive regulator of lycorine biosynthesis and may facilitate further functional research of the LaMYC2 gene, especially its potential regulatory roles in Amaryllidaceae alkaloid accumulation in L. aurea.


Subject(s)
Acetates , Amaryllidaceae Alkaloids , Arabidopsis , Lycoris , Phenanthridines , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Amaryllidaceae Alkaloids/metabolism , Lycoris/genetics , Lycoris/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Transcriptome , Arabidopsis/genetics , Gene Expression Regulation, Plant
15.
Plant Physiol Biochem ; 208: 108483, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457948

ABSTRACT

Plants produce a myriad of specialized compounds in response to threats such as pathogens or pests and different abiotic factors. The stress-related induction of specialized metabolites can be mimicked using silver nitrate (AgNO3) as an elicitor, which application in conservation agriculture has gained interest. In Arabidopsis thaliana, AgNO3 triggers the accumulation of indole glucosinolates (IGs) and the phytoalexin camalexin as well as pheylpropanoid-derived defensive metabolites such as coumaroylagmatins and scopoletin through a yet unknown mechanism. In this work, the role of jasmonic (JA) and salicylic acid (SA) signaling in the AgNO3-triggered specialized metabolite production was investigated. To attain this objective, AgNO3, MeJA and SA were applied to A. thaliana lines impaired in JA or SA signaling, or affected in the endogenous levels of IGs and AGs. Metabolomics data indicated that AgNO3 elicitation required an intact JA and SA signaling to elicit the metabolic response, although mutants impaired in hormone signaling retained certain capacity to induce specialized metabolites. In turn, plants overproducing or abolishing IGs production had also an altered hormonal signaling response, both in the accumulation of signaling molecules and the molecular response mechanisms (ORA59, PDF1.2, VSP2 and PR1 gene expression), which pointed out to a crosstalk between defense hormones and specialized metabolites. The present work provides evidence of a crosstalk mechanism between JA and SA underlying AgNO3 defense metabolite elicitation in A. thaliana. In this mechanism, IGs would act as retrograde feedback signals dampening the hormonal response; hence, expanding the signaling molecule concept.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Plant Growth Regulators/metabolism , Arabidopsis Proteins/genetics , Silver Nitrate/pharmacology , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Salicylic Acid/pharmacology , Gene Expression Regulation, Plant , Plant Diseases/genetics
16.
Horm Behav ; 161: 105516, 2024 May.
Article in English | MEDLINE | ID: mdl-38428223

ABSTRACT

Studies in ovariectomized (OVX) female rodents suggest that G protein-coupled estrogen receptor (GPER) is a key regulator of memory, yet little is known about its importance to memory in males or the cellular mechanisms underlying its mnemonic effects in either sex. In OVX mice, bilateral infusion of the GPER agonist G-1 into the dorsal hippocampus (DH) enhances object recognition and spatial memory consolidation in a manner dependent on rapid activation of c-Jun N-terminal kinase (JNK) signaling, cofilin phosphorylation, and actin polymerization in the DH. However, the effects of GPER on memory consolidation and DH cell signaling in males are unknown. Thus, the present study first assessed effects of DH infusion of G-1 or the GPER antagonist G-15 on object recognition and spatial memory consolidation in gonadectomized (GDX) male mice. As in OVX mice, immediate post-training bilateral DH infusion of G-1 enhanced, whereas G-15 impaired, memory consolidation in the object recognition and object placement tasks. However, G-1 did not increase levels of phosphorylated JNK (p46, p54) or cofilin in the DH 5, 15, or 30 min after infusion, nor did it affect phosphorylation of ERK (p42, p44), PI3K, or Akt. Levels of phospho-cAMP-responsive element binding protein (CREB) were elevated in the DH 30 min following G-1 infusion, indicating that GPER in males activates a yet unknown signaling mechanism that triggers CREB-mediated gene transcription. Our findings show for the first time that GPER in the DH regulates memory consolidation in males and suggests sex differences in underlying signaling mechanisms.


Subject(s)
Hippocampus , Memory Consolidation , Quinolines , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Male , Memory Consolidation/physiology , Memory Consolidation/drug effects , Female , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Signal Transduction/drug effects , Receptors, Estrogen/metabolism , Ovariectomy , Orchiectomy , Cyclopentanes/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Mice, Inbred C57BL
17.
Plant J ; 118(4): 1155-1173, 2024 May.
Article in English | MEDLINE | ID: mdl-38332528

ABSTRACT

Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.


Subject(s)
Acetates , Cannabis , Cyclopentanes , Deep Learning , Gene Expression Profiling , Gene Expression Regulation, Plant , Oxylipins , Trichomes , Oxylipins/pharmacology , Oxylipins/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Acetates/pharmacology , Trichomes/genetics , Trichomes/metabolism , Trichomes/growth & development , Gene Expression Profiling/methods , Transcriptome , Plant Growth Regulators/metabolism
18.
Plant Physiol ; 195(1): 518-533, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38365203

ABSTRACT

Shoot branching is an important biological trait affecting alfalfa (Medicago sativa L.) production, but its development is complicated and the mechanism is not fully clear. In the present study, pectin acetylesterase 12 (MsPAE12) and NAM/ATAF/CUC-domain transcription factor gene (MsNAC73) were isolated from alfalfa. MsPAE12 was highly expressed in shoot apexes, and MsNAC73 was found to be a key transcriptional repressor of MsPAE12 by directly binding to salicylic acid (SA) and jasmonic acid (JA) elements in the MsPAE12 promoter. The biological functions of MsPAE12 and MsNAC73 were studied through overexpression (OE) and down-expression (RNAi) of the 2 genes in alfalfa. The numbers of shoot branches increased in MsPAE12-OE lines but decreased in MsPAE12-RNAi and MsNAC73-OE plants, which was negatively related to their indole-3-acetic acid (IAA) accumulation in shoot apexes. Furthermore, the contents of acetic acid (AA) in shoot apexes decreased in MsPAE12-OE plants but increased in MsPAE12-RNAi and MsNAC73-OE plants. The changes of AA contents were positively related to the expression of TRYPTOPHAN AMINOTRANSFERASE 1 (MsTAA1), TRYPTOPHAN AMINOTRANSFERASE-RELATED 2 (MsTAR2), and YUCCA flavin monooxygenase (MsYUCC4) and the contents of tryptophan (Trp), indole-3-pyruvic acid (IPA), and IAA in shoot apexes of MsPAE12-OE, MsPAE12-RNAi, and MsNAC73-OE plants. Exogenous application of AA to wild type (WT) and MsPAE12-OE plants increased Trp, IPA, and IAA contents and decreased branch number. Exogenous IAA suppressed shoot branching in MsPAE12-OE plants, but exogenous IAA inhibitors increased shoot branching in MsPAE12-RNAi plants. These results indicate that the MsNAC73-MsPAE12 module regulates auxin-modulated shoot branching via affecting AA accumulation in shoot apexes of alfalfa.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Medicago sativa , Plant Proteins , Plant Shoots , Indoleacetic Acids/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Medicago sativa/growth & development , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Acetic Acid/metabolism , Plants, Genetically Modified , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Promoter Regions, Genetic/genetics , Salicylic Acid/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology
19.
Bioorg Med Chem Lett ; 100: 129647, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38320715

ABSTRACT

The overexpression of neddylation modification is frequently observed in human tumor cells. Targeting the neddylation pathway has been recognized as a promising anticancer therapeutic strategy, thus discovering potent and selective neddylation inhibitors is of great importance. In this study, we designed and synthesized a series of novel neddylation inhibitors bearing benzothiazole scaffolds by molecular hybridization strategy and all compounds were evaluated for antiproliferative activity against MGC-803, MCF-7, A549 and KYSE-30 cell lines. In vitro anti-tumor studies showed that the most promising compound X-10, effectively suppressed MGC-803 cells growth and migration, induced apoptosis and arrested cell cycle at G2/M phase. Importantly, by directly interacting with NAE1, X-10 blocked NAE1 activity, specifically preventing neddylation of Cullin 3 and Cullin 1, and produced a dose-response decline in the level of UBC12-NEDD8 complex. Overall, our data indicate that X-10 inhibits the process of neddylation, making it a potentially agent for both cancer prevention and therapy purposes.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Cell Cycle , Benzothiazoles/pharmacology , Cyclopentanes/pharmacology , Cell Line, Tumor , Apoptosis
20.
Z Naturforsch C J Biosci ; 79(1-2): 41-46, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38414412

ABSTRACT

A set of cyclopenten-[g]annelated isoindigos (5a-g) has been prepared and tested for their in vitro antiproliferative activities against MCF-7 and HL60 cells. Among, the N-1-methyl-5'-nitro derivative (5g) displayed the highest activity against HL60 cells (IC50 = 67 nM) and acted as the most potent Flt3 inhibitor. Compounds 5d-g exhibited moderate activity against MCF-7 (IC50 = 50-80 µM).


Subject(s)
Antineoplastic Agents , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Cyclopentanes/pharmacology , Indoles/pharmacology , Structure-Activity Relationship , Cell Proliferation , Molecular Structure , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...