Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biochem ; 479(4): 825-829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37198322

ABSTRACT

One in 700 children is born with the down syndrome (DS). In DS, there is an extra copy of X chromosome 21 (trisomy). Interestingly, the chromosome 21 also contains an extra copy of the cystathionine beta synthase (CBS) gene. The CBS activity is known to contribute in mitochondrial sulfur metabolism via trans-sulfuration pathway. We hypothesize that due to an extra copy of the CBS gene there is hyper trans-sulfuration in DS. We believe that understanding the mechanism of hyper trans-sulfuration during DS will be important in improving the quality of DS patients and towards developing new treatment strategies. We know that folic acid "1-carbon" metabolism (FOCM) cycle transfers the "1-carbon" methyl group to DNA (H3K4) via conversion of s-adenosyl methionine (SAM) to s-adenosyl homocysteine (SAH) by DNMTs (the gene writers). The demethylation reaction is carried out by ten-eleven translocation methylcytosine dioxygenases (TETs; the gene erasers) through epigenetics thus turning the genes off/on and opening the chromatin by altering the acetylation/HDAC ratio. The S-adenosyl homocysteine hydrolase (SAHH) hydrolyzes SAH to homocysteine (Hcy) and adenosine. The Hcy is converted to cystathionine, cysteine and hydrogen sulfide (H2S) via CBS/cystathioneγ lyase (CSE)/3-mercaptopyruvate sulfurtransferase (3MST) pathways. Adenosine by deaminase is converted to inosine and then to uric acid. All these molecules remain high in DS patients. H2S is a potent inhibitor of mitochondrial complexes I-IV, and regulated by UCP1. Therefore, decreased UCP1 levels and ATP production can ensue in DS subjects. Interestingly, children born with DS show elevated levels of CBS/CSE/3MST/Superoxide dismutase (SOD)/cystathionine/cysteine/H2S. We opine that increased levels of epigenetic gene writers (DNMTs) and decreased in gene erasers (TETs) activity cause folic acid exhaustion, leading to an increase in trans-sulphuration by CBS/CSE/3MST/SOD pathways. Thus, it is important to determine whether SIRT3 (inhibitor of HDAC3) can decrease the trans-sulfuration activity in DS patients. Since there is an increase in H3K4 and HDAC3 via epigenetics in DS, we propose that sirtuin-3 (Sirt3) may decrease H3K4 and HDAC3 and hence may be able to decrease the trans-sulfuration in DS. It would be worth to determine whether the lactobacillus, a folic acid producing probiotic, mitigates hyper-trans-sulphuration pathway in DS subjects. Further, as we know that in DS patients the folic acid is exhausted due to increase in CBS, Hcy and re-methylation. In this context, we suggest that folic acid producing probiotics such as lactobacillus might be able to improve re-methylation process and hence may help decrease the trans-sulfuration pathway in the DS patients.


Subject(s)
Down Syndrome , Hydrogen Sulfide , Kidney Diseases , Sirtuin 3 , Child , Humans , Cystathionine/genetics , Cystathionine/metabolism , Down Syndrome/genetics , Trisomy , Cysteine , Sirtuin 3/genetics , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/metabolism , S-Adenosylmethionine , Superoxide Dismutase/metabolism , Adenosine , Kidney Diseases/metabolism , Folic Acid , Homocysteine , Carbon , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism
2.
Hum Mol Genet ; 27(12): 2113-2124, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29635516

ABSTRACT

Tuberous sclerosis complex (TSC) is an autosomal dominant neurodevelopmental disorder and the quintessential disorder of mechanistic Target of Rapamycin Complex 1 (mTORC1) dysregulation. Loss of either causative gene, TSC1 or TSC2, leads to constitutive mTORC1 kinase activation and a pathologically anabolic state of macromolecular biosynthesis. Little is known about the organ-specific metabolic reprogramming that occurs in TSC-affected organs. Using a mouse model of TSC in which Tsc2 is disrupted in radial glial precursors and their neuronal and glial descendants, we performed an unbiased metabolomic analysis of hippocampi to identify Tsc2-dependent metabolic changes. Significant metabolic reprogramming was found in well-established pathways associated with mTORC1 activation, including redox homeostasis, glutamine/tricarboxylic acid cycle, pentose and nucleotide metabolism. Changes in two novel pathways were identified: transmethylation and polyamine metabolism. Changes in transmethylation included reduced methionine, cystathionine, S-adenosylmethionine (SAM-the major methyl donor), reduced SAM/S-adenosylhomocysteine ratio (cellular methylation potential), and elevated betaine, an alternative methyl donor. These changes were associated with alterations in SAM-dependent methylation pathways and expression of the enzymes methionine adenosyltransferase 2A and cystathionine beta synthase. We also found increased levels of the polyamine putrescine due to increased activity of ornithine decarboxylase, the rate-determining enzyme in polyamine synthesis. Treatment of Tsc2+/- mice with the ornithine decarboxylase inhibitor α-difluoromethylornithine, to reduce putrescine synthesis dose-dependently reduced hippocampal astrogliosis. These data establish roles for SAM-dependent methylation reactions and polyamine metabolism in TSC neuropathology. Importantly, both pathways are amenable to nutritional or pharmacologic therapy.


Subject(s)
Brain/metabolism , Metabolomics , Tuberous Sclerosis/metabolism , Animals , Brain/pathology , Cystathionine/genetics , Cystathionine beta-Synthase/genetics , DNA Methylation/genetics , Disease Models, Animal , Eflornithine/administration & dosage , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Methionine Adenosyltransferase/genetics , Mice , Neurons/metabolism , Neurons/pathology , Polyamines/metabolism , Putrescine/biosynthesis , S-Adenosylmethionine/metabolism , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics
3.
Amino Acids ; 47(6): 1215-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25772816

ABSTRACT

Our investigation showed that hepatocytes isolated from cysteine dioxygenase knockout mice (Cdo1(-/-)) had lower levels of hypotaurine and taurine than Cdo1 (+/+) hepatocytes. Interestingly, hypotaurine accumulates in cultured wild-type hepatocytes. DL-propargylglycine (PPG, inhibitor of cystathionine γ-lyase and H2S production) dramatically decreased both taurine and hypotaurine levels in wild-type hepatocytes compared to untreated cells. Addition of 2 mM PPG resulted in the decrease of the intracellular taurine levels: from 10.25 ± 5.00 observed in control, to 2.53 ± 0.68 nmol/mg protein (24 h of culture) and from 17.06 ± 9.40 to 2.43 ± 0.26 nmol/mg protein (control vs. PPG; 48 h). Addition of PPG reduced also intracellular hypotaurine levels: from 7.46 ± 3.55 to 0.31 ± 0.12 nmol/mg protein (control vs. PPG; 24 h) and from 4.54 ± 3.20 to 0.42 ± 0.11 nmol/mg protein (control vs. PPG; 48 h). The similar effects of PPG on hypotaurine and taurine levels were observed in culture medium. PPG blocked hypotaurine/taurine synthesis in wild-type hepatocytes, suggesting that it strongly inhibits cysteinesulfinate decarboxylase (pyridoxal 5'-phosphate-dependent enzyme) as well as cystathionine γ-lyase. In the presence of PPG, intracellular and medium cystathionine levels for both wild-type and Cdo1 (-/-) cells were increased. Addition of homocysteine or methionine resulted in higher intracellular concentrations of homocysteine, which is a cosubstrate for cystathionine ß-synthase (CBS). It seems that PPG increases CBS-mediated desulfhydration by enhancing homocysteine levels in hepatocytes. There were no overall effects of PPG or genotype on intracellular or medium glutathione levels.


Subject(s)
Alkynes/pharmacology , Cystathionine/metabolism , Glycine/analogs & derivatives , Hepatocytes/metabolism , Homocysteine/metabolism , Taurine/analogs & derivatives , Animals , Cells, Cultured , Cystathionine/genetics , Cysteine Dioxygenase/genetics , Cysteine Dioxygenase/metabolism , Female , Glycine/pharmacology , Hepatocytes/cytology , Homocysteine/genetics , Male , Mice , Mice, Knockout , Primary Cell Culture , Taurine/biosynthesis , Taurine/genetics
4.
Biosci Biotechnol Biochem ; 72(9): 2318-23, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18776696

ABSTRACT

Human cystathionine beta-synthase (CBS) catalyzes a pyridoxal 5'-phosphate (PLP) dependent beta-replacement reaction to synthesize cystathionine from serine and homocysteine. The enzyme is unique in bearing not only a catalytically important PLP but also heme. In order to study a regulatory process mediated by heme, we performed mutagenesis of Arg-51 and Arg-224, which have hydrogen-bonding interactions with propionate side chains of the prosthetic group. It was found that the arginine mutations decrease CBS activity by approximately 50%. The results indicate that structural changes in the heme vicinity are transmitted to PLP existing 20 A away from heme. A possible explanation of our results is discussed on the basis of CBS structure.


Subject(s)
Cystathionine beta-Synthase/genetics , Mutation , Alanine/metabolism , Amino Acid Sequence , Amino Acid Substitution , Catalysis , Cystathionine/genetics , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/isolation & purification , Cystathionine beta-Synthase/metabolism , Heme/chemistry , Heme/genetics , Heme/metabolism , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Structure, Secondary/genetics , Protein Structure, Tertiary/genetics , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/genetics , Pyridoxal Phosphate/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
5.
Hum Genet ; 112(4): 404-8, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12574942

ABSTRACT

Hereditary cystathioninuria (MIM 219500) is presumed to be caused by deficiency of the activity of cystathionine gamma-lyase (cystathionase; CTH EC 4.4.1.1), which is normally required for the conversion of methionine into cysteine. To date, no mutations have been described among patients with cystathioninuria. From genomic DNA, we sequenced CTH in four unrelated probands with cystathioninuria. We found two nonsense mutations, namely exon 8 c.940-941delCT and exon 11 c.1220delC, and two missense mutations, namely exon 2 c.356C>T (T67I) and exon 7 c.874C>G (Q240E). All affected subjects were either simple homozygotes or compound heterozygotes. A common non-synonymous single nucleotide polymorphism in exon 12, namely c.1364G>T (S403I), was also identified and characterized in four ethnic groups. The reagents described in this report make the molecular diagnosis of cystathioninuria possible, allowing for studies of phenotype-genotype correlation. Also, the availability of a common non-synonymous SNP can allow for testing of association of the CTH gene with biochemical traits affected by trans-sulfuration, such as plasma concentrations of homocysteine or even cystathionine itself, in addition to more downstream clinical phenotypes, such as vascular disease.


Subject(s)
Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/genetics , Cystathionine gamma-Lyase/genetics , Cystathionine/genetics , Cystathionine/urine , Mutation , Base Sequence , Cell Line , Codon, Nonsense , Genotype , Humans , Lymphocytes , Molecular Sequence Data , Mutation, Missense , Sequence Analysis, DNA
6.
Biochemistry ; 21(13): 3064-9, 1982 Jun 22.
Article in English | MEDLINE | ID: mdl-7049234

ABSTRACT

The Clarke-Carbon clone bank of hybrid plasmid Escherichia coli DNA has been screened for plasmids able to complement an E. coli strain deficient for the production of beta-cystathionase. Clone 4-14 had the ability to complement a deletion mutation at this locus and expressed higher levels of beta-cystathionase than the wild-type strain. The transfer of the plasmid carried by this clone to a strain that constitutively expresses all the enzymes of the methionine biosynthetic pathway results in 100-fold overproduction of beta-cystathionase as compared to wild-type levels. With use of this strain, an efficient three-step purification scheme is described that gives 90% pure enzyme in 54% yield with a specific activity of 215 IU/mg. This enzyme is characterized as to molecular weight (280 000), number of subunits (six), pyridoxal phosphate binding (5.7 mol of pyridoxal phosphate bound/mol of protein, Km of 0.005 mM), amino acid composition, substrate specificity, and kinetic properties.


Subject(s)
Cloning, Molecular , Escherichia coli/enzymology , Lyases/genetics , Amino Acids/analysis , Cystathionine/genetics , Homocysteine/genetics , Kinetics , Molecular Weight , Plasmids , Pyridoxal Phosphate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...