Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
ACS Infect Dis ; 10(6): 2127-2150, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38771206

ABSTRACT

Antibiotic resistance is one of the most serious global health threats. Therefore, there is a need to develop antimicrobial agents with new mechanisms of action. Targeting of bacterial cystathionine γ-lyase (bCSE), an enzyme essential for bacterial survival, is a promising approach to overcome antibiotic resistance. Here, we described a series of (heteroarylmethyl)benzoic acid derivatives and evaluated their ability to inhibit bCSE or its human ortholog hCSE using known bCSE inhibitor NL2 as a lead compound. Derivatives bearing the 6-bromoindole group proved to be the most active, with IC50 values in the midmicromolar range, and highly selective for bCSE over hCSE. Furthermore, none of these compounds showed significant toxicity to HEK293T cells. The obtained data were rationalized by ligand-based and structure-based molecular modeling analyses. The most active compounds were also found to be an effective adjunct to several widely used antibacterial agents against clinically relevant antibiotic-resistant strains of such bacteria as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The most potent compounds, 3h and 3i, also showed a promising in vitro absorption, distribution, metabolism, and excretion (ADME) profile. Finally, compound 3i manifested potentiating activity in pneumonia, sepsis, and infected-wound in vivo models.


Subject(s)
Anti-Bacterial Agents , Cystathionine gamma-Lyase , Enzyme Inhibitors , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Animals , Microbial Sensitivity Tests , Models, Molecular , HEK293 Cells , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Benzoates/pharmacology , Benzoates/chemistry , Benzoates/chemical synthesis , Mice , Staphylococcus aureus/drug effects , Klebsiella pneumoniae/drug effects , Structure-Activity Relationship
2.
Eur J Pharmacol ; 963: 176266, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38096969

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter implied in metabolic diseases, insulin resistance, obesity, and type 2 Diabetes Mellitus. This study aimed to determine the effect of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor), L-Cysteine (L-Cys; substrate of H2S producing enzymes) and DL-Propargylglycine (DL-PAG; cystathionine-gamma-lyase inhibitor) on the vascular dysfunction induced by insulin resistance in rat thoracic aorta. For this purpose, 72 animals were divided into two main sets that received: 1) tap water (control group; n = 12); and 2) fructose 15% w/v in drinking water [insulin resistance group (IR); n = 60] for 20 weeks. After 16 weeks, the group 2 was divided into five subgroups (n = 12 each), which received daily i. p. injections during 4 weeks of: 1) non-treatment (control); 2) vehicle (phosphate buffer saline; PBS, 1 ml/kg); 3) NaHS (5.6 mg/kg); 4) L-Cys (300 mg/kg); and (5) DL-PAG (10 mg/kg). Hemodynamic variables, metabolic variables, vascular function, ROS levels and the expression of p-eNOS and eNOS were determined. IR induced: 1) hyperinsulinemia; 2) increased HOMA-index; 3) decreased Matsuda index; 4) hypertension, vascular dysfunction, increased ROS levels; 5) increased iNOS, and 6) decreased CSE, p-eNOS and eNOS expression. Furthermore, IR did not affect contractile responses to norepinephrine. Interestingly, NaHS and L-Cys treatment, reversed IR-induced impairments and DL-PAG treatment decreased and increased the HOMA and Matsuda index, respectively. Taken together, these results suggest that NaHS and L-Cys decrease the metabolic and vascular alterations induced by insulin resistance by reducing oxidative stress and activating eNOS. Thus, hydrogen sulfide may have a therapeutic application.


Subject(s)
Diabetes Mellitus, Type 2 , Hydrogen Sulfide , Hypertension , Insulin Resistance , Animals , Rats , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Cysteine/pharmacology , Cysteine/therapeutic use , Cysteine/metabolism , Diabetes Mellitus, Type 2/complications , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Hydrogen Sulfide/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Insulin Resistance/physiology , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species
3.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686458

ABSTRACT

Hydrogen sulfide (H2S), synthesized by cystathionine gamma-lyase (Cth), contributes to the inflammatory response observed in sepsis. This study examines the effect of Cth-derived H2S in adhesion molecules on endothelial cells of vital organs in mice in a cecal ligation puncture (CLP)-induced model of sepsis, using two different and complementary approaches: Cth gene deletion and pharmacological inhibition. Our findings revealed a decreased level of H2S-synthesizing activity (via Cth) in both Cth-/- mice and PAG-treated wild-type (WT) mice following CLP-induced sepsis. Both treatment groups had reduced MPO activity and expression of chemokines (MCP-1 and MIP-2α), adhesion molecules (ICAM-1 and VCAM-1), ERK1/2 phosphorylation, and NF-κB in the liver and lung compared with in CLP-WT mice. Additionally, we found that PAG treatment in Cth-/- mice had no additional effect on the expression of ERK1/2 phosphorylation, NF-κB, or the production of chemokines and adhesion molecules in the liver and lung compared to Cth-/- mice following CLP-induced sepsis. The WT group with sepsis had an increased immunoreactivity of adhesion molecules on endothelial cells in the liver and lung than the WT sham-operated control. The Cth-/-, PAG-treated WT, and Cth-/- groups of mice showed decreased immunoreactivity of adhesion molecules on endothelial cells in the liver and lung following sepsis. Inhibition of H2S production via both approaches reduced adhesion molecule expression on endothelial cells and reduced liver and lung injury in mice with sepsis. In conclusion, this study demonstrates that H2S has an important role in the pathogenesis of sepsis and validates PAG use as a suited tool for investigating the Cth/H2S-signalling axis in sepsis.


Subject(s)
Cystathionine gamma-Lyase , Sepsis , Animals , Mice , Cell Adhesion Molecules , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/genetics , Endothelial Cells , Gene Deletion , NF-kappa B , Sepsis/drug therapy , Sepsis/genetics
4.
Sci Rep ; 13(1): 16456, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777556

ABSTRACT

D,L-Propargylglycine (PAG) has been widely used as a selective inhibitor to investigate the biological functions of cystathionine γ-lyase (CSE), which catalyzes the formation of reactive sulfur species (RSS). However, PAG also inhibits other PLP (pyridoxal-5'-phosphate)-dependent enzymes such as methionine γ-lyase (MGL) and L-alanine transaminase (ALT), so highly selective CSE inhibitors are still required. Here, we performed high-throughput screening (HTS) of a large chemical library and identified oxamic hydrazide 1 as a potent inhibitor of CSE (IC50 = 13 ± 1 µM (mean ± S.E.)) with high selectivity over other PLP-dependent enzymes and RSS-generating enzymes. Inhibitor 1 inhibited the enzymatic activity of human CSE in living cells, indicating that it is sufficiently membrane-permeable. X-Ray crystal structure analysis of the complex of rat CSE (rCSE) with 1 revealed that 1 forms a Schiff base linkage with the cofactor PLP in the active site of rCSE. PLP in the active site may be a promising target for development of selective inhibitors of PLP-dependent enzymes, including RSS-generating enzymes such as cystathionine ß-synthase (CBS) and cysteinyl-tRNA synthetase 2 (CARS2), which have unique substrate binding pocket structures.


Subject(s)
Cystathionine gamma-Lyase , Schiff Bases , Animals , Humans , Rats , Catalytic Domain , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Phosphates , Pyridoxal Phosphate/metabolism
5.
Acta Physiol (Oxf) ; 239(1): e14021, 2023 09.
Article in English | MEDLINE | ID: mdl-37555636

ABSTRACT

AIM: In extracerebral vascular beds cystathionine-gamma lyase (CSE) activity plays a vasodilatory role but the role of this hydrogen sulfide (H2 S) producing enzyme in the intracerebral arterioles remain poorly understood. We hypothesized a similar function in the intracerebral arterioles. METHODS: Intracerebral arterioles were isolated from wild type C57BL/6J mouse (9-12 months old) brains and from human brain biopsies. The function (contractility and secondary dilatation) of the intracerebral arterioles was tested ex vivo by pressure myography using a perfusion set-up. Reverse transcription polymerase chain reaction was used for detecting CSE expression. RESULTS: CSE is expressed in human and mouse intracerebral arterioles. CSE inhibition with L-propargylglycine (PAG) significantly dampened the K+ -induced vasoconstriction in intracerebral arterioles of both species (% of maximum contraction: in human control: 45.4 ± 2.7 versus PAG: 27 ± 5.2 and in mouse control: 50 ± 1.5 versus PAG: 33 ± 5.2) but did not affect the secondary dilatation. This effect of PAG was significantly reversed by the H2 S donor sodium hydrosulfide (NaSH) in human (PAG + NaSH: 38.8 ± 7.2) and mouse (PAG + NaSH: 41.7 ± 3.1) arterioles, respectively. The endothelial NO synthase (eNOS) inhibitor, Nω-Nitro-l-arginine methyl ester (L-NAME), and the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reversed the effect of PAG on the K+ -induced vasoconstriction in the mouse arterioles and attenuated the K+ -induced secondary dilatation significantly. CONCLUSION: CSE contributes to the K+ -induced vasoconstriction via a mechanism involving H2 S, eNOS, and sGC whereas the secondary dilatation is regulated by eNOS and sGC but not by CSE.


Subject(s)
Arterioles , Cystathionine gamma-Lyase , Enzyme Inhibitors , Vasoconstriction , Animals , Humans , Mice , Arterioles/drug effects , Arterioles/metabolism , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Enzyme Inhibitors/pharmacology , Hydrogen Sulfide/metabolism , Mice, Inbred C57BL
6.
Bioorg Chem ; 116: 105400, 2021 11.
Article in English | MEDLINE | ID: mdl-34627118

ABSTRACT

Fifteen previously undescribed nor-clerodane diterpenoid glucosides tinosinesides C-Q (1-15), along with four known analogues (16-19), were isolated from the stems of Tinospora sinensis. The structures of the new compounds were elucidated by spectroscopic means, and their absolute configurations were established on the basis of time-dependent density functional theory (TD-DFT) based electronic circular dichroism (ECD) calculation and chemical methods. All the isolates were evaluated for their inhibitory effects on cystathionine γ-lyase (CSE), a natural enzyme responsible for the synthesis of H2S. Compounds 4 and 5 represent rare examples of natural CSE inhibitors and the possible binding mode to CSE was further probed by molecular docking experiment.


Subject(s)
Cystathionine gamma-Lyase/antagonists & inhibitors , Diterpenes/pharmacology , Enzyme Inhibitors/pharmacology , Glucosides/pharmacology , Tinospora/chemistry , Cystathionine gamma-Lyase/metabolism , Density Functional Theory , Diterpenes/chemistry , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Glucosides/chemistry , Glucosides/isolation & purification , Humans , Molecular Structure , Structure-Activity Relationship
7.
Science ; 372(6547): 1169-1175, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34112687

ABSTRACT

Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystathionine gamma-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydrogen Sulfide/metabolism , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Biofilms , Crystallography, X-Ray , Cystathionine gamma-Lyase/chemistry , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Drug Discovery , Drug Resistance, Bacterial , Drug Synergism , Drug Tolerance , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development
8.
Sci Rep ; 11(1): 8963, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903672

ABSTRACT

Triple-negative breast cancer (TNBC) is a high-risk subtype of breast cancer with high capacity for metastasis and lacking of therapeutic targets. Our previous studies indicated that cystathionine γ-lyase (CSE) may be a new target related to the recurrence or metastasis of TNBC. Downregulation of CSE could inhibit the growth and metastasis of TNBC. The purpose of this study was to investigate the activity of the novel CSE inhibitor I194496 against TNBC in vivo and in vitro. The anticancer activity of I194496 in vitro were detected by MTS, EdU, and transwell assays. Methylene blue assay was used to determine the H2S level. Western blot was performed to analyze the expression of related pathway proteins. Xenograft tumors in nude mice were used to analyze the anticancer activity of I194496 in vivo. I194496 exerted potent inhibitory effects than L-propargylglycine (PAG, an existing CSE inhibitor) on human TNBC cells and possessed lower toxicity in normal breast epithelial Hs578Bst cells. I194496 reduced the activity and expression of CSE protein and the release of H2S in human TNBC cells. Meanwhile, the protein levels of PI3K, Akt, phospho (p)-Akt, Ras, Raf, p-ERK, p-Anxa2, STAT3, p-STAT3, VEGF, FAK, and Paxillin were decreased in human TNBC cells administrated with I194496. Furthermore, I194496 showed more stronger inhibitory effects on human TNBC xenograft tumors in nude mice. I194496 could inhibit the growth of human TNBC cells via the dual targeting PI3K/Akt and Ras/Raf/ERK pathway and suppress the metastasis of human TNBC cells via down-regulating Anxa2/STAT3 and VEGF/FAK/Paxillin signaling pathways. CSE inhibitor I194496 might become a novel and potential agent in the treatment of TNBC.


Subject(s)
Cystathionine gamma-Lyase/antagonists & inhibitors , Down-Regulation/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Proteins , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/drug therapy , Animals , Cell Line, Tumor , Cystathionine gamma-Lyase/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
9.
Oncol Rep ; 45(5)2021 05.
Article in English | MEDLINE | ID: mdl-33760221

ABSTRACT

Hydrogen sulfide (H2S), the third gas signal molecule, is associated with the modulation of various physiological and pathological processes. Recent studies have reevealed that endogenous H2S may promote proliferation, induce angiogenesis and inhibit apoptosis, thereby stimulating oncogenesis. Conversely, decreased endogenous H2S release suppresses growth of various tumors including breast cancer. This observation suggests an alternative tumor therapy strategy by inhibiting H2S­producing enzymes to reduce the release of endogenous H2S. Breast cancer is the most common type of cancer in women. Due to the lack of approved targeted therapy, its recurrence and metastasis still affect its clinical treatment. In recent years, significant progress has been made in the control of breast cancer by using inhibitors on H2S­producing enzymes. This review summarized the roles of endogenous H2S­producing enzymes in breast cancer and the effects of the enzyme inhibitors on anticancer and anti­metastasis, with the aim of providing new insights for the treatment of breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Hydrogen Sulfide/antagonists & inhibitors , Neovascularization, Pathologic/drug therapy , Animals , Apoptosis/drug effects , Breast Neoplasms/pathology , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Enzyme Inhibitors/therapeutic use , Female , Humans , Hydrogen Sulfide/metabolism , Mice , Neovascularization, Pathologic/pathology , Signal Transduction/drug effects , Sulfurtransferases/antagonists & inhibitors , Sulfurtransferases/metabolism , Xenograft Model Antitumor Assays
10.
Arch Biochem Biophys ; 697: 108713, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33271147

ABSTRACT

Circadian clock genes are found in almost every cell that has a nucleus; they regulate the rhythmic nature of all processes that are cyclical. Among the genes controlled by the circadian clock, there are numerous factors that regulate key processes in the functioning of the cell. Disturbances in the functioning of the circadian clock are associated with numerous disorders. A recent study has shown the key role of H2S in regulating circadian rhythm. In this study, we investigated the in vitro effect of pharmacological inhibition of cystathionine-ß-synthase (CBS) and/or cystathionine-γ-lyase (CSE) on the circadian dynamics of Per2 expression in serum-shocked NIH-3T3 cells. Alternatively, Cbs and Cse were knocked down by transfection with siRNA. The 48-h treatment of serum-shocked NIH-3T3 cells with 1 mM dl-propargylglycine (PAG), a specific CSE inhibitor, significantly decreased the amplitude and baseline expression of Per2. During exposure to an effective CBS and CSE inhibitor (aminooxyacetic acid [AOAA]), the amplitude of oscillation and baseline expression of Per2 significantly increased. Incubation of NIH-3T3 cells with both inhibitors also significantly increased the amplitude and baseline expression of Per2 messenger RNA (mRNA). siCbs or siCse knockdowan significantly reduced the baseline and amplitude of oscillation of Per2. In conclusion, we showed that CBS/CSE/H2S pathway participates in the regulation of the circadian clock system. PAG and AOAA, change the general expression and dynamics of Per2 genes, but the increase of amplitude and overall Per2 mRNA level due to exposure to AOAA is probably caused by factors other than CBS and CSE activity.


Subject(s)
Circadian Rhythm/drug effects , Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine gamma-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Period Circadian Proteins/metabolism , Serum/metabolism , Animals , Cell Survival/drug effects , Cystathionine beta-Synthase/deficiency , Cystathionine beta-Synthase/genetics , Cystathionine gamma-Lyase/deficiency , Cystathionine gamma-Lyase/genetics , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Mice , NIH 3T3 Cells , RNA, Small Interfering/genetics
11.
Am J Physiol Heart Circ Physiol ; 320(2): H511-H519, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33275519

ABSTRACT

In sleep apnea, airway obstruction causes intermittent hypoxia (IH). In animal studies, IH-dependent hypertension is associated with loss of vasodilator hydrogen sulfide (H2S), and increased H2S activation of sympathetic nervous system (SNS) activity in the carotid body. We previously reported that inhibiting cystathionine γ-lyase (CSE) to prevent H2S synthesis augments vascular resistance in control rats. The goal of this study was to evaluate the contribution of IH-induced changes in CSE signaling to increased blood pressure and vascular resistance. We hypothesized that chronic IH exposure eliminates CSE regulation of blood pressure (BP) and vascular resistance. In rats instrumented with venous catheters, arterial telemeters, and flow probes on the main mesenteric artery, the CSE inhibitor dl-propargylglycine (PAG, 50 mg/kg/day i.v. for 5 days) increased BP in Sham rats but decreased BP in IH rats [in mmHg, Sham (n = 11): 114 ± 4 to 131 ± 6; IH (n = 8): 131 ± 8 to 115 ± 7 mmHg, P < 0.05]. PAG treatment increased mesenteric vascular resistance in Sham rats but decreased it in IH rats (day 5/day 1: Sham: 1.50 ± 0.07; IH: 0.85 ± 0.19, P < 0.05). Administration of the ganglionic blocker hexamethonium (to evaluate SNS activity) decreased mesenteric resistance in PAG-treated Sham rats more than in saline-treated Sham rats or PAG-treated IH rats. CSE immunoreactivity in IH carotid bodies compared with those from Sham rats. However, CSE staining in small mesenteric arteries was less in arteries from IH than in Sham rats but not different in larger arteries (inner diameter > 200 µm). These results suggest endogenous H2S regulates blood pressure and vascular resistance, but this control is lost after IH exposure with decreased CSE expression in resistance size arteries. IH exposure concurrently increases carotid body CSE expression and relative SNS control of blood pressure, suggesting both vascular and carotid body H2S generation contribute to blood pressure regulation.NEW & NOTEWORTHY These results suggest that CSE's protective role in the vasculature is impaired by simulated sleep apnea, which also upregulates CSE in the carotid body. Thus, this enzyme system can exert both pro- and antihypertensive effects and may contribute to elevated SNS outflow in sleep apnea.


Subject(s)
Blood Circulation , Blood Pressure , Gasotransmitters/metabolism , Hydrogen Sulfide/metabolism , Sleep Apnea Syndromes/metabolism , Alkynes/pharmacology , Animals , Antihypertensive Agents/pharmacology , Carotid Body/drug effects , Carotid Body/metabolism , Carotid Body/physiopathology , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Enzyme Inhibitors/pharmacology , Gasotransmitters/blood , Glycine/analogs & derivatives , Glycine/pharmacology , Hexamethonium/pharmacology , Hydrogen Sulfide/blood , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Rats , Rats, Sprague-Dawley , Sleep Apnea Syndromes/physiopathology , Vascular Resistance
12.
Mol Cell Biochem ; 476(2): 715-725, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33128215

ABSTRACT

The gaseous modulator hydrogen sulfide (H2S) is synthesized, among other routes, by the action of cystathionine-γ-lyase (CSE) and importantly participates in body fluid homeostasis. Therefore, the present study aimed to evaluate the participation of H2S in behavioral, renal and neuroendocrine homeostatic responses triggered by the acute consumption of a high Na+ diet. After habituation, adult male Wistar rats were randomly distributed and maintained for seven days on a control [CD (0.27% of Na+)] or hypersodic diet [HD (0.81% of Na+)]. CD and HD-fed animals were treated with DL-Propargylglycine (PAG, 25 mg/kg/day, ip) or vehicle (0.9% NaCl in equivalent volume) for the same period. At the end of the experiment, animals were euthanized for blood and tissue collection. We demonstrated that a short-term increase in dietary Na+ intake, in values that mimic the variations in human consumption (two times the recommended) significantly modified hydroelectrolytic homeostasis, with repercussions in the hypothalamic-neurohypophysial system and hypothalamic-pituitary-adrenal axis function. These findings were accompanied by the development of a clear inflammatory response in renal tubular cells and microvascular components. On the other hand, the inhibition of the endogenous production of H2S by CSE provided by PAG treatment prevented the inflammation induced by HD. In the kidney, PAG treatment induced the overexpression of inducible nitric oxide synthase in animals fed with HD. Taken together, these data suggest, therefore, that HD-induced H2S production plays an important proinflammatory role in the kidney, apparently counter regulating nitric oxide actions in renal tissue.


Subject(s)
Alkynes/pharmacology , Cystathionine gamma-Lyase/antagonists & inhibitors , Glycine/analogs & derivatives , Hydrogen Sulfide/antagonists & inhibitors , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Animals , Cystathionine gamma-Lyase/metabolism , Enzyme Inhibitors/pharmacology , Flavoring Agents/administration & dosage , Glycine/pharmacology , Homeostasis , Hydrogen Sulfide/metabolism , Hypothalamo-Hypophyseal System/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Kidney/drug effects , Kidney/metabolism , Male , Models, Animal , Pituitary-Adrenal System/metabolism , Rats , Sodium Chloride, Dietary/administration & dosage
13.
J Environ Pathol Toxicol Oncol ; 39(3): 281-290, 2020.
Article in English | MEDLINE | ID: mdl-32865918

ABSTRACT

Objective-To investigate cystathionine ß synthase (CBS)/hydrogen sulfide (H2S) signaling in multiple myeloma (MM) patients and to identify its effect on the proliferation of U266 cells. Methods-Bone marrow samples of 19 MM patients and 23 healthy donors were collected. qRT-PCR was performed to measure the mRNA expression levels of H2S synthases, cystathionine ß synthase, and cystathionine γ lyase. ELISA assays quantified the amount of H2S produced by the two enzymes CBS and CSE. CCK-8 experiment was used to investigate the influence of the CBS inhibitor amino oxyacetic acid and the CSE inhibitor propargylglycine on the proliferation of U266 cells. Flow cytometry and western blotting were performed to determine the effects of AOAA, PAG, and NaHS on cell cycle distribution as well as Caspase-3 and Bcl-2 expression. Results-Patients with MM had higher level of CBS compared with healthy donors. AOAA significantly inhibited cell proliferation in both a time and concentration dependent characteristic, whereas PAG does not. After 24 hours of treatment, AOAA significantly elevated the G0/G1 phase proportion of cells, and reduced the cell distribution in both S and G2/M phases, while NaHS accelerated cell cycle progression by reducing the relative number of cells in G0/G1 phase and increasing the proportion of cells in the G2/M phase. Moreover, AOAA abolished the impact of NaHS on cell cycle progression of U266 cells. AOAA treatment also led to a significant decrease in Bcl-2 expression and dramatic increase in Caspase-3 expression, though NaHS reversed these effects. Conclusion-CBS/H2S system might have a certain effect on the proliferation and apoptosis of MM cells.


Subject(s)
Apoptosis , Cell Proliferation , Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/metabolism , Multiple Myeloma/metabolism , Adult , Aged , Alkynes/pharmacology , Aminooxyacetic Acid/pharmacology , Apoptosis/drug effects , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Case-Control Studies , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Enzyme Inhibitors/pharmacology , Female , Glycine/analogs & derivatives , Glycine/pharmacology , Humans , Male , Middle Aged , Multiple Myeloma/pathology , Signal Transduction
14.
Proc Natl Acad Sci U S A ; 117(12): 6663-6674, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32139610

ABSTRACT

The ubiquitous gasotransmitter hydrogen sulfide (H2S) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of H2S in Mycobacterium tuberculosis (Mtb) pathogenesis. We showed that Mtb-infected CSE-/- mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro Mtb infection of macrophages resulted in reduced colony forming units in CSE-/- cells. Chemical complementation of infected WT and CSE-/- macrophages using the slow H2S releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that H2S is the effector molecule regulating Mtb survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1ß, IL-6, TNF-α, and IFN-γ levels in response to Mtb infection. Notably, Mtb infected CSE-/- macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between H2S and central metabolism. Our data suggest that excessive H2S produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1ß, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of H2S-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.


Subject(s)
Carbon/metabolism , Cystathionine gamma-Lyase/physiology , Hydrogen Sulfide/toxicity , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/etiology , Alkynes/pharmacology , Animals , Cystathionine gamma-Lyase/antagonists & inhibitors , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Glycolysis , Hydrogen Sulfide/metabolism , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/drug effects , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Signal Transduction , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology
15.
Cells ; 9(1)2020 01 17.
Article in English | MEDLINE | ID: mdl-31963573

ABSTRACT

The role of hydrogen sulfide (H2S) is addressed in Xenopuslaevis oocytes. Three enzymes involved in H2S metabolism, cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.


Subject(s)
Hydrogen Sulfide/metabolism , Maturation-Promoting Factor/metabolism , Meiosis/drug effects , Oocytes/metabolism , Sulfides/pharmacology , Animals , Apoptosis/drug effects , Catalase/metabolism , Cell Cycle Proteins/metabolism , Cell Survival/drug effects , Cyclin B/metabolism , Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Cytoplasm/metabolism , Female , Meiotic Prophase I/drug effects , Metaphase/drug effects , Oocytes/chemistry , Oocytes/enzymology , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sulfides/metabolism , Sulfurtransferases/antagonists & inhibitors , Sulfurtransferases/metabolism , Superoxide Dismutase/metabolism , Xenopus Proteins/metabolism , Xenopus laevis , cdc25 Phosphatases/metabolism
16.
J Cereb Blood Flow Metab ; 40(10): 1987-1996, 2020 10.
Article in English | MEDLINE | ID: mdl-31594422

ABSTRACT

We investigated the effects of sulforaphane (SFN), an isothiocyanate from cruciferous vegetables, in the regulation of cerebral blood flow using cranial windows in newborn pigs. SFN administered topically (10 µM-1 mM) or systemically (0.4 mg/kg ip) caused immediate and sustained dilation of pial arterioles concomitantly with elevated H2S in periarachnoid cortical cerebrospinal fluid. H2S is a potent vasodilator of cerebral arterioles. SFN is not a H2S donor but it acts via stimulating H2S generation in the brain catalyzed by cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS). CSE/CBS inhibitors propargylglycine, ß-cyano-L-alanine, and aminooxyacetic acid blocked brain H2S generation and cerebral vasodilation caused by SFN. The SFN-elicited vasodilation requires activation of potassium channels in cerebral arterioles. The inhibitors of KATP and BK channels glibenclamide, paxilline, and iberiotoxin blocked the vasodilator effects of topical and systemic SFN, supporting the concept that H2S is the mediator of the vasodilator properties of SFN in cerebral circulation. Overall, we provide first evidence that SFN is a brain permeable compound that increases cerebral blood flow via a non-genomic mechanism that is mediated via activation of CSE/CBS-catalyzed H2S formation in neurovascular cells followed by H2S-induced activation of KATP and BK channels in arteriolar smooth muscle.


Subject(s)
Arterioles/metabolism , Cerebrovascular Circulation/drug effects , Hydrogen Sulfide/metabolism , Isothiocyanates/pharmacology , KATP Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Muscle, Smooth, Vascular/metabolism , Vasodilator Agents/pharmacology , Animals , Animals, Newborn , Arterioles/drug effects , Brain/metabolism , Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Enzyme Inhibitors/pharmacology , Female , Isothiocyanates/antagonists & inhibitors , KATP Channels/drug effects , Large-Conductance Calcium-Activated Potassium Channels/drug effects , Male , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Sulfoxides , Swine
17.
Am J Physiol Heart Circ Physiol ; 317(5): H1157-H1165, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31625777

ABSTRACT

Hydrogen sulfide (H2S) dilates isolated arteries, and knockout of the H2S-synthesizing enzyme cystathionine γ-lyase (CSE) increases blood pressure. However, the contributions of endogenously produced H2S to blood flow regulation in specific vascular beds are unknown. Published studies in isolated arteries show that CSE production of H2S influences vascular tone more in small mesenteric arteries than in renal arteries or the aorta. Therefore, the goal of this study was to evaluate H2S regulation of blood pressure, vascular resistance, and regional blood flows using chronically instrumented rats. We hypothesized that during whole animal CSE inhibition, vascular resistance would increase more in the mesenteric than the renal circulation. Under anesthesia, CSE inhibition [ß-cyanoalanine (BCA), 30 mg/kg bolus + 5 mg·kg-1·min-1 for 20 min iv) rapidly increased mean arterial pressure (MAP) more than saline administration (%Δ: saline -1.4 ± 0.75 vs. BCA 7.1 ± 1.69, P < 0.05) but did not change resistance (MAP/flow) in either the mesenteric or renal circulation. In conscious rats, BCA infusion similarly increased MAP (%Δ: saline -0.8 ± 1.18 vs. BCA 8.2 ± 2.6, P < 0.05, n = 7) and significantly increased mesenteric resistance (saline 0.9 ± 3.1 vs. BCA 15.6 ± 6.5, P < 0.05, n = 12). The H2S donor Na2S (50 mg/kg) decreased blood pressure and mesenteric resistance ,but the fall in resistance was not significant. Inhibiting CSE for multiple days with dl-proparglycine (PAG, 50 mg·kg-1·min-1 iv bolus for 5 days) significantly increased vascular resistance in both mesenteric (ratio of day 1: saline 0.86 ± 0.033 vs. PAG 1.79 ± 0.38) and renal circulations (ratio of day 1: saline 1.26 ± 0.22 vs. 1.98 ± 0.14 PAG). These results support our hypothesis that CSE-derived H2S is an important regulator of blood pressure and vascular resistance in both mesenteric and renal circulations. Furthermore, inhalation anesthesia diminishes the effect of CSE inhibition on vascular tone.NEW & NOTEWORTHY These results suggest that CSE-derived H2S has a prominent role in regulating blood pressure and blood flow under physiological conditions, which may have been underestimated in prior studies in anesthetized subjects. Therefore, enhancing substrate availability or enzyme activity or dosing with H2S donors could be a novel therapeutic approach to treat cardiovascular diseases.


Subject(s)
Hydrogen Sulfide/metabolism , Mesenteric Arteries/metabolism , Renal Artery/metabolism , Renal Circulation , Splanchnic Circulation , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Arterial Pressure , Blood Flow Velocity , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Enzyme Inhibitors/pharmacology , Male , Mesenteric Arteries/drug effects , Rats, Sprague-Dawley , Renal Artery/drug effects , Renal Circulation/drug effects , Splanchnic Circulation/drug effects , Sulfides/pharmacology , Vascular Resistance
18.
Nitric Oxide ; 93: 90-101, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31604145

ABSTRACT

The mechanisms underlying temporomandibular disorders following orofacial pain remain unclear. Hydrogen sulfide (H2S), a newly identified gasotransmitter, has been reported to modulate inflammation. Cystathionine γ-lyase (CSE) is responsible for the systemical production of H2S, which exerts both pro- and antinociceptive effects through inflammation. In the current study, we investigated whether the endogenous H2S production pathway contributes to arousal and maintenance of orofacial inflammatory pain, through the investigation of the effects of a CSE inhibitor, propargyglycine (PAG), in a rat CFA (Complete Freund Adjuvant)-induced temporomandibular inflammation model to mimic persistent pain in the orofacial region. For this, rats received either CFA or saline in the temporomandibular joints (TMJs), and after 3 or 14 days, they received a single injection of PAG or saline and were evaluated for nociception with the von Frey and formalin test. Also, pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) were analyzed in TMJs and trigeminal ganglion (TG). In this last one, glial cells reactivity was also verified. Endogenous H2S production rate were measured in both, TMJ and TG. Our results indicated decreased allodynia and hyperalgesic responses in rats submitted to CFA after injection of PAG. Moreover, PAG inhibited leucocyte migration to temporomandibular synovial fluid after 3 and 14 days of inflammation. PAG was able to reduce levels of CBS, CSE, TNF-α, and IL-1ß in the TMJ and TG, after 13 days of CFA injection. The observed increased activation of glial cells in the trigeminal ganglia on the 14th day of inflammation can be prevented by the highest dose of PAG. Finally, CBS and CSE expression, and endogenous H2S production rate in the TMJ and TG was found higher in rats with persistent temporomandibular inflammation compared to rats injected with saline and PAG was able to prevent this elevation. Our results elucidated the molecular mechanisms by which H2S exerts its pro-inflammatory and pro-nociceptive role in the orofacial region by alterations in both local tissue and TG.


Subject(s)
Alkynes/therapeutic use , Glycine/analogs & derivatives , Hydrogen Sulfide/metabolism , Hyperalgesia/drug therapy , Inflammation/metabolism , Pain/drug therapy , Temporomandibular Joint/metabolism , Animals , Cystathionine gamma-Lyase/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Glycine/therapeutic use , Interleukin-1beta/metabolism , Male , Neuroglia/drug effects , Rats, Wistar , Trigeminal Ganglion/cytology , Trigeminal Ganglion/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Proc Natl Acad Sci U S A ; 116(26): 13016-13025, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31186362

ABSTRACT

Chronic hypoxia causes pulmonary hypertension (PH), vascular remodeling, right ventricular (RV) hypertrophy, and cardiac failure. Protein kinase G Iα (PKGIα) is susceptible to oxidation, forming an interprotein disulfide homodimer associated with kinase targeting involved in vasodilation. Here we report increased disulfide PKGIα in pulmonary arteries from mice with hypoxic PH or lungs from patients with pulmonary arterial hypertension. This oxidation is likely caused by oxidants derived from NADPH oxidase-4, superoxide dismutase 3, and cystathionine γ-lyase, enzymes that were concomitantly increased in these samples. Indeed, products that may arise from these enzymes, including hydrogen peroxide, glutathione disulfide, and protein-bound persulfides, were increased in the plasma of hypoxic mice. Furthermore, low-molecular-weight hydropersulfides, which can serve as "superreductants" were attenuated in hypoxic tissues, consistent with systemic oxidative stress and the oxidation of PKGIα observed. Inhibiting cystathionine γ-lyase resulted in decreased hypoxia-induced disulfide PKGIα and more severe PH phenotype in wild-type mice, but not in Cys42Ser PKGIα knock-in (KI) mice that are resistant to oxidation. In addition, KI mice also developed potentiated PH during hypoxia alone. Thus, oxidation of PKGIα is an adaptive mechanism that limits PH, a concept further supported by polysulfide treatment abrogating hypoxia-induced RV hypertrophy in wild-type, but not in the KI, mice. Unbiased transcriptomic analysis of hypoxic lungs before structural remodeling identified up-regulation of endothelial-to-mesenchymal transition pathways in the KI compared with wild-type mice. Thus, disulfide PKGIα is an intrinsic adaptive mechanism that attenuates PH progression not only by promoting vasodilation but also by limiting maladaptive growth and fibrosis signaling.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Hypertension, Pulmonary/pathology , Hypoxia/complications , Pulmonary Artery/pathology , Adult , Animals , Cell Line , Cyclic GMP-Dependent Protein Kinase Type I/chemistry , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Disease Models, Animal , Disease Progression , Disulfides/chemistry , Female , Fibrosis , Gene Knock-In Techniques , Humans , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/prevention & control , Hypoxia/blood , Hypoxia/drug therapy , Lung/blood supply , Lung/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Oxidants/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Sulfides/administration & dosage , Sulfides/blood , Sulfides/metabolism , Up-Regulation , Vasoconstriction/drug effects , Vasodilation/drug effects
20.
Cell Biochem Biophys ; 77(3): 261-272, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31065867

ABSTRACT

Our early studies have shown that sodium thiosulfate (STS) treatment attenuated the ischemia-reperfusion (IR)-induced injury in an isolated rat heart model by decreasing apoptosis, oxidative stress, and preserving mitochondrial function. Hydrogen sulfide, the precursor molecule is reported to have similar efficacy. This study aims to investigate the role of endogenous hydrogen sulfide in STS-mediated cardioprotection against IR in an isolated rat heart model. D, L-propargylglycine (PAG), an inhibitor of cystathionine γ-lyase was used as endogenous H2S blocker. In addition, we used the hypoxia-reoxygenation (HR) model to study the impact of STS in cardiomyocytes (H9C2) and fibroblast (3T3) cells. STS treatment to animal and cells prior to IR or HR decreased cell injury. The sensitivity of H9C2 and 3T3 cells towards HR (6 h hypoxia followed by 12 h reoxygenation) challenge varies, where, 3T3 cells exhibited higher cell death (54%). Cells treated with PAG prior to STS abrogate the protective effect in 3T3 (cell viability 61%) but not in H9C2 (cell viability 82%). Further evaluation in rat heart model showed partial recovery (46% RPP) of heart from those hearts pretreated with PAG prior to STS condition. In conclusion, we demonstrated that STS-mediated cardioprotection to IR-challenged rat heart is not fully dependent on endogenous H2S level and this dependency may be linked to higher fibroblast content in rat heart.


Subject(s)
Antidotes/pharmacology , Apoptosis/drug effects , Cystathionine gamma-Lyase/metabolism , Myocardium/enzymology , Thiosulfates/pharmacology , Alkynes/pharmacology , Animals , Antidotes/therapeutic use , Antioxidants/chemistry , Cell Hypoxia , Cell Line , Cell Survival/drug effects , Cystathionine gamma-Lyase/antagonists & inhibitors , Glycine/analogs & derivatives , Glycine/pharmacology , Heart/drug effects , Hydrogen Sulfide/metabolism , Lipid Peroxidation/drug effects , Male , Mice , Mitochondria/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Rats , Rats, Wistar , Thiosulfates/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL