Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters











Publication year range
1.
Biochemistry (Mosc) ; 88(5): 600-609, 2023 May.
Article in English | MEDLINE | ID: mdl-37331706

ABSTRACT

O-acetylhomoserine sulfhydrylase is one of the key enzymes in biosynthesis of methionine in Clostridioides difficile. The mechanism of γ-substitution reaction of O-acetyl-L-homoserine catalyzed by this enzyme is the least studied among the pyridoxal-5'-phosphate-dependent enzymes involved in metabolism of cysteine and methionine. To clarify the role of active site residues Tyr52 and Tyr107, four mutant forms of the enzyme with replacements of these residues with phenylalanine and alanine were generated. Catalytic and spectral properties of the mutant forms were investigated. The rate of γ-substitution reaction catalyzed by the mutant forms with replaced Tyr52 residue decreased by more than three orders of magnitude compared to the wild-type enzyme. The Tyr107Phe and Tyr107Ala mutant forms practically did not catalyze this reaction. Replacements of the Tyr52 and Tyr107 residues led to the decrease in affinity of apoenzyme to coenzyme by three orders of magnitude and changes in the ionic state of the internal aldimine of the enzyme. The obtained results allowed us to assume that Tyr52 is involved in ensuring optimal position of the catalytic coenzyme-binding lysine residue at the stages of C-α-proton elimination and elimination of the side group of the substrate. Tyr107 could act as a general acid catalyst at the stage of acetate elimination.


Subject(s)
Clostridioides difficile , Clostridioides difficile/metabolism , Cysteine Synthase/chemistry , Cysteine Synthase/metabolism , Catalytic Domain , Clostridioides/metabolism , Tyrosine , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/metabolism , Methionine , Kinetics
2.
Biosci Rep ; 42(10)2022 10 28.
Article in English | MEDLINE | ID: mdl-36148777

ABSTRACT

Antibiotics are the cornerstone of modern medicine and agriculture, and rising antibiotic resistance is one the biggest threats to global health and food security. Identifying new and different druggable targets for the development of new antibiotics is absolutely crucial to overcome resistance. Adjuvant strategies that either enhance the activity of existing antibiotics or improve clearance by the host immune system provide another mechanism to combat antibiotic resistance. Targeting a combination of essential and non-essential enzymes that play key roles in bacterial metabolism is a promising strategy to develop new antimicrobials and adjuvants, respectively. The enzymatic synthesis of L-cysteine is one such strategy. Cysteine plays a key role in proteins and is crucial for the synthesis of many biomolecules important for defense against the host immune system. Cysteine synthesis is a two-step process, catalyzed by two enzymes. Serine acetyltransferase (CysE) catalyzes the first step to synthesize the pathway intermediate O-acetylserine, and O-acetylserine sulfhydrylase (CysK/CysM) catalyzes the second step using sulfide or thiosulfate to produce cysteine. Disruption of the cysteine biosynthesis pathway results in dysregulated sulfur metabolism, altering the redox state of the cell leading to decreased fitness, enhanced susceptibility to oxidative stress and increased sensitivity to antibiotics. In this review, we summarize the structure and mechanism of characterized CysE and CysK/CysM enzymes from a variety of bacterial pathogens, and the evidence that support targeting these enzymes for the development of new antimicrobials or antibiotic adjuvants. In addition, we explore and compare compounds identified thus far that target these enzymes.


Subject(s)
Cysteine Synthase , Serine O-Acetyltransferase , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/metabolism , Cysteine/metabolism , Cysteine Synthase/chemistry , Cysteine Synthase/genetics , Drug Resistance, Bacterial , Serine O-Acetyltransferase/chemistry , Serine O-Acetyltransferase/metabolism , Sulfides , Sulfur/metabolism , Thiosulfates
3.
J Mol Biol ; 433(22): 167255, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34547327

ABSTRACT

Cysteine Synthase (CS), the enzyme that synthesizes cysteine, performs non-canonical regulatory roles by binding and modulating functions of disparate proteins. Beyond its role in catalysis and regulation in the cysteine biosynthesis pathway, it exerts its moonlighting effect by binding to few other proteins which possess a C-terminal "CS-binding motif", ending with a terminal ILE. Therefore, we hypothesized that CS might regulate many other disparate proteins with the "CS-binding motif". In this study, we developed an iterative sequence matching method for mapping moonlighting biochemistry of CS and validated our prediction by analytical and structural approaches. Using a minimal protein-peptide interaction system, we show that five previously unknown CS-binder proteins that participate in diverse metabolic processes interact with CS in a species-specific manner. Furthermore, results show that signatures of protein-protein interactions, including thermodynamic, competitive-inhibition, and structural features, highly match the known CS-Binder, serine acetyltransferase (SAT). Together, the results presented in this study allow us to map the extreme multifunctional space (EMS) of CS and reveal the biochemistry of moonlighting space, a subset of EMS. We believe that the integrated computational and experimental workflow developed here could be further modified and extended to study protein-specific moonlighting properties of multifunctional proteins.


Subject(s)
Computational Biology/methods , Cysteine Synthase/chemistry , Cysteine Synthase/metabolism , Azorhizobium/genetics , Binding Sites , Crystallography, X-Ray , Cysteine Synthase/genetics , Databases, Protein , Fluorescence , Haemophilus influenzae/enzymology , Histones/chemistry , Histones/metabolism , Kinetics , Models, Molecular , Planctomycetales/enzymology , Promoter Regions, Genetic , Protein Conformation , Protein Interaction Maps , Ribosomes/chemistry , Ribosomes/metabolism , Species Specificity , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Mol Cell Proteomics ; 20: 100098, 2021.
Article in English | MEDLINE | ID: mdl-34022432

ABSTRACT

CysE and CysK, the last two enzymes of the cysteine biosynthetic pathway, engage in a bienzyme complex, cysteine synthase, with yet incompletely characterized three-dimensional structure and regulatory function. Being absent in mammals, the two enzymes and their complex are attractive targets for antibacterial drugs. We have used hydrogen/deuterium exchange MS to unveil how complex formation affects the conformational dynamics of CysK and CysE. Our results support a model where CysE is present in solution as a dimer of trimers, and each trimer can bind one CysK homodimer. When CysK binds to one CysE monomer, intratrimer allosteric communication ensures conformational and dynamic symmetry within the trimer. Furthermore, a long-range allosteric signal propagates through CysE to induce stabilization of the interface between the two CysE trimers, preparing the second trimer for binding the second CysK with a nonrandom orientation. These results provide new molecular insights into the allosteric formation of the cysteine synthase complex and could help guide antibacterial drug design.


Subject(s)
Cysteine Synthase/chemistry , Chromatography, Liquid , Deuterium , Deuterium Exchange Measurement , Hydrogen , Mass Spectrometry
5.
Biochemistry ; 60(7): 524-536, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33539704

ABSTRACT

Serine synthase (SS) from Fusobacterium nucleatum is a fold type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the ß-replacement of l-cysteine with water to form l-serine and H2S. Herein, we show that SS can also function as a cysteine synthase, catalyzing the ß-replacement of l-serine with bisulfide to produce l-cysteine and H2O. The forward (serine synthase) and reverse (cysteine synthase) reactions occur with comparable turnover numbers and catalytic efficiencies for the amino acid substrate. Reaction of SS with l-cysteine leads to transient formation of a quinonoid species, suggesting that deprotonation of the Cα and ß-elimination of the thiolate group from l-cysteine occur via a stepwise mechanism. In contrast, the quinonoid species was not detected in the formation of the α-aminoacrylate intermediate following reaction of SS with l-serine. A key active site residue, D232, was shown to stabilize the more chemically reactive ketoenamine PLP tautomer and also function as an acid/base catalyst in the forward and reverse reactions. Fluorescence resonance energy transfer between PLP and W99, the enzyme's only tryptophan residue, supports ligand-induced closure of the active site, which shields the PLP cofactor from the solvent and increases the basicity of D232. These results provide new insight into amino acid metabolism in F. nucleatum and highlight the multiple catalytic roles of D232 in a new member of the fold type II family of PLP-dependent enzymes.


Subject(s)
Cysteine Synthase/metabolism , Fusobacterium nucleatum/metabolism , Alanine/analogs & derivatives , Binding Sites , Catalysis , Catalytic Domain , Cysteine/chemistry , Cysteine Synthase/chemistry , Fusobacterium nucleatum/enzymology , Kinetics , Ligands , Models, Molecular , Protein Conformation , Pyridoxal Phosphate/metabolism , Serine/chemistry
6.
J Biosci Bioeng ; 131(5): 483-490, 2021 May.
Article in English | MEDLINE | ID: mdl-33563496

ABSTRACT

Pyridoxal-5'-phosphate-dependent cysteine synthases synthesize l-cysteine from their primary substrates, O-acetyl-l-serine (OAS) and O-phospho-l-serine (OPS), and their secondary substrate, sulfide. The mechanism by which cysteine synthases recognize OPS remains unclear; hence, we investigated the OPS recognition mechanism of the OPS sulfhydrylase obtained from Aeropyrum pernix K1 (ApOPSS) and the OAS sulfhydrylase-B obtained from Escherichia coli (EcOASS-B), using protein engineering methods. From the amino acid sequence alignment data, we found that some OPS sulfhydrylases (OPSSs) had a Tyr corresponding to the Phe225 and Phe141 residues in ApOPSS and EcOASS-B, respectively, and that the Tyr residue could facilitate OPS recognition. The enzymatic activity of the ApOPSS F225Y mutant toward OPS decreased compared with that of the wild-type; the kcat value decreased 2.3-fold during cysteine synthesis. X-ray crystallography results of the complex of ApOPSS F225Y and F225Y/R297A mutants bound to OPS and l-cysteine showed that kcat might have decreased because of the stronger interactions of the reaction product phosphate with Tyr225, Thr203, and Arg297, and that of the l-cysteine with Tyr225. The specific activity of the EcOASS-B F141Y mutant toward OPS increased by 50-fold compared with that of the wild-type. Thus, a Tyr within a cysteine synthase corresponding to the Phe225 in ApOPSS and Phe141 in EcOASS-B could act as a key residue for classifying an unknown cysteine synthase as an OPSS. The elucidation of the substrate recognition system of cysteine synthases would enable us to effectively classify cysteine synthases and develop pathogen-specific drug targets, as OPSS is absent in mammalian hosts.


Subject(s)
Cysteine Synthase/chemistry , Cysteine Synthase/metabolism , Serine/chemistry , Serine/metabolism , Aeropyrum/enzymology , Amino Acid Sequence , Crystallography, X-Ray , Kinetics
7.
J Biol Chem ; 296: 100041, 2021.
Article in English | MEDLINE | ID: mdl-33162395

ABSTRACT

O-acetyl serine sulfhydrylase (OASS), referred to as cysteine synthase (CS), synthesizes cysteine from O-acetyl serine (OAS) and sulfur in bacteria and plants. The inherent challenge for CS is to overcome 4 to 6 log-folds stronger affinity for its natural inhibitor, serine acetyltransferase (SAT), as compared with its affinity for substrate, OAS. Our recent study showed that CS employs a novel competitive-allosteric mechanism to selectively recruit its substrate in the presence of natural inhibitor. In this study, we trace the molecular features that control selective substrate recruitment. To generalize our findings, we used CS from three different bacteria (Haemophilus, Salmonella, and Mycobacterium) as our model systems and analyzed structural and substrate-binding features of wild-type CS and its ∼13 mutants. Results show that CS uses a noncatalytic residue, M120, located 20 Šaway from the reaction center, to discriminate in favor of substrate. M120A and background mutants display significantly reduced substrate binding, catalytic efficiency, and inhibitor binding. Results shows that M120 favors the substrate binding by selectively enhancing the affinity for the substrate and disengaging the inhibitor by 20 to 286 and 5- to 3-folds, respectively. Together, M120 confers a net discriminative force in favor of substrate by 100- to 858-folds.


Subject(s)
Cysteine Synthase/metabolism , Allosteric Regulation , Amino Acid Sequence , Amino Acid Substitution , Catalysis , Circular Dichroism , Crystallography, X-Ray , Cysteine Synthase/antagonists & inhibitors , Cysteine Synthase/chemistry , Enzyme Inhibitors/pharmacology , Kinetics , Methionine/chemistry , Protein Conformation , Substrate Specificity
8.
Eur J Med Chem ; 192: 112157, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32145643

ABSTRACT

The l-cysteine is crucial for growth, survival, defense against oxidative stress, and pathogenesis of Entamoeba histolytica. The de novo biosynthesis of l-cysteine in E. histolytica, has a two-step pathway, where O-acetylserine sulfhydrylase (OASS) catalyses the last step by converting OAS to l-cysteine. This pathway is absent in humans and hence represents a promising target for novel therapeutics. E. histolytica expresses three isoforms of OASS and knockdown studies showed the importance of these enzymes for the survival of the pathogen. Here, we report the crystal structure of OASS isoform 3 from E. histolytica to 1.54 Å resolution. The active site geometries and kinetics of EhOASS3 and EhOASS1 structures were found to be very similar. Small-molecule libraries were screened against EhOASS3 and compounds were shortlisted based on the docking scores. F3226-1387 showed best inhibition with IC50 of 38 µM against EhOASS3 and was able to inhibit the growth of the organism to 72%.


Subject(s)
Cysteine Synthase/antagonists & inhibitors , Entamoeba histolytica/cytology , Entamoeba histolytica/enzymology , Enzyme Inhibitors/pharmacology , Crystallography, X-Ray , Cysteine Synthase/chemistry , Cysteine Synthase/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Entamoeba histolytica/growth & development , Enzyme Inhibitors/chemistry , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Isoenzymes/metabolism , Models, Molecular , Molecular Structure , Structure-Activity Relationship
9.
Int J Mol Sci ; 20(20)2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640223

ABSTRACT

The formation of multienzymatic complexes allows for the fine tuning of many aspects of enzymatic functions, such as efficiency, localization, stability, and moonlighting. Here, we investigated, in solution, the structure of bacterial cysteine synthase (CS) complex. CS is formed by serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase isozyme A (CysK), the enzymes that catalyze the last two steps of cysteine biosynthesis in bacteria. CysK and CysE have been proposed as potential targets for antibiotics, since cysteine and related metabolites are intimately linked to protection of bacterial cells against redox damage and to antibiotic resistance. We applied a combined approach of small-angle X-ray scattering (SAXS) spectroscopy and protein painting to obtain a model for the solution structure of CS. Protein painting allowed the identification of protein-protein interaction hotspots that were then used as constrains to model the CS quaternary assembly inside the SAXS envelope. We demonstrate that the active site entrance of CysK is involved in complex formation, as suggested by site-directed mutagenesis and functional studies. Furthermore, complex formation involves a conformational change in one CysK subunit that is likely transmitted through the dimer interface to the other subunit, with a regulatory effect. Finally, SAXS data indicate that only one active site of CysK is involved in direct interaction with CysE and unambiguously unveil the quaternary arrangement of CS.


Subject(s)
Bacteria/enzymology , Cysteine Synthase/chemistry , Cysteine Synthase/metabolism , Serine O-Acetyltransferase/chemistry , Serine O-Acetyltransferase/metabolism , Bacteria/chemistry , Bacteria/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cysteine Synthase/genetics , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Molecular , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Mutagenesis, Site-Directed , Protein Interaction Maps , Scattering, Small Angle , Serine O-Acetyltransferase/genetics , X-Ray Diffraction
10.
J Biomol Struct Dyn ; 37(2): 481-492, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29415627

ABSTRACT

OASS is a specific enzyme that helps Leishmania parasite to survive the oxidative stress condition in human macrophages. SAT C-terminal peptides in several organisms, including Leishmania, were reported to inhibit or reduce the activity of OASS. Small peptide and small molecules mimicking the SAT C-terminal residues are designed and tested for the inhibition of OASS in different organisms. Hence, in this study, all the possible tetra-peptide combinations were designed and screened based on the docking ability with Leishmania donovani OASS (Ld-OASS). The top ranked peptides were further validated for the stability using 50 ns molecular dynamic simulation. In order to identify the better binding capability of the peptides, the top peptides complexed with Ld-OASS were also subjected to molecular dynamic simulation. The docking and simulation results favored the peptide EWSI to possess greater advantage than previously reported peptide (DWSI) in binding with Ld-OASS active site. Also, screening of non-peptide inhibitor of Asinex Biodesign library based on the shape similarity of EWSI and DWSI was performed. The top similar molecules of each peptides were docked on to Ld-OASS active site and subsequently simulated for 20 ns. The results suggested that the ligand that shares high shape similarity with EWSI possess better binding capability than the ligand that shares high shape similarity with DWSI. This study revealed that the tetra-peptide EWSI had marginal advantage over DWSI in binding with Ld-OASS, thereby providing basis for defining a pharmacophoric scaffold for the design of peptidomimetic inhibitors as well as non-peptide inhibitors of Ld-OASS. Communicated by Ramaswamy H. Sarma.


Subject(s)
Cysteine Synthase/chemistry , Drug Discovery , Enzyme Inhibitors/chemistry , Leishmania donovani/enzymology , Models, Molecular , Peptides/chemistry , Quantitative Structure-Activity Relationship , Cysteine Synthase/antagonists & inhibitors , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Hydrogen Bonding , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/pharmacology
11.
J Chem Inf Model ; 58(3): 710-723, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29481752

ABSTRACT

Saturation transfer difference (STD) is an NMR technique conventionally applied in drug discovery to identify ligand moieties relevant for binding to protein cavities. This is important to direct medicinal chemistry efforts in small-molecule optimization processes. However, STD does not provide any structural details about the ligand-target complex under investigation. Herein, we report the application of a new integrated approach, which combines enhanced sampling methods with STD experiments, for the characterization of ligand-target complexes that are instrumental for drug design purposes. As an example, we have studied the interaction between StOASS-A, a potential antibacterial target, and an inhibitor previously reported. This approach allowed us to consider the ligand-target complex from a dynamic point of view, revealing the presence of an accessory subpocket which can be exploited to design novel StOASS-A inhibitors. As a proof of concept, a small library of derivatives was designed and evaluated in vitro, displaying the expected activity.


Subject(s)
Cysteine Synthase/antagonists & inhibitors , Cysteine Synthase/metabolism , Drug Discovery/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Salmonella typhimurium/enzymology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , Cysteine Synthase/chemistry , Drug Design , Ligands , Magnetic Resonance Spectroscopy/methods , Molecular Docking Simulation , Molecular Dynamics Simulation , Salmonella typhimurium/drug effects , Thermodynamics
12.
Biochem J ; 475(4): 733-748, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29343611

ABSTRACT

Hydrogen sulfide (H2S) plays important roles in the pathogenesis of periodontitis. Oral pathogens typically produce H2S from l-cysteine in addition to pyruvate and [Formula: see text] However, fn1055 from Fusobacterium nucleatum subsp. nucleatum ATCC 25586 encodes a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the production of H2S and l-serine from l-cysteine and H2O, an unusual cysteine (hydroxyl) lyase reaction (ß-replacement reaction). To reveal the reaction mechanism, the crystal structure of substrate-free Fn1055 was determined. Based on this structure, a model of the l-cysteine-PLP Schiff base suggested that the thiol group forms hydrogen bonds with Asp232 and Ser74, and the substrate α-carboxylate interacts with Thr73 and Gln147 Asp232 is a unique residue to Fn1055 and its substitution to asparagine (D232N) resulted in almost complete loss of ß-replacement activity. The D232N structure obtained in the presence of l-cysteine contained the α-aminoacrylate-PLP Schiff base in the active site, indicating that Asp232 is essential for the addition of water to the α-aminoacrylate to produce the l-serine-PLP Schiff base. Rapid-scan stopped-flow kinetic analyses showed an accumulation of the α-aminoacrylate intermediate during the reaction cycle, suggesting that water addition mediated by Asp232 is the rate-limiting step. In contrast, mutants containing substitutions of other active-site residues (Ser74, Thr73, and Gln147) exhibited reduced ß-replacement activity by more than 100-fold. Finally, based on the structural and biochemical analyses, we propose a mechanism of the cysteine (hydroxyl) lyase reaction by Fn1055. The present study leads to elucidation of the H2S-producing mechanism in F. nucleatum.


Subject(s)
Cysteine Synthase/chemistry , Cysteine/chemistry , Fusobacterium nucleatum/enzymology , Protein Conformation , Catalysis , Catalytic Domain , Crystallography, X-Ray , Cysteine/metabolism , Cysteine Synthase/genetics , Cysteine Synthase/metabolism , Fusobacterium nucleatum/pathogenicity , Humans , Hydrogen Sulfide/chemistry , Hydrogen Sulfide/metabolism , Hydroxyl Radical/chemistry , Kinetics , Models, Molecular , Schiff Bases/chemistry
13.
J Plant Res ; 131(2): 319-329, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29181648

ABSTRACT

In the cysteine and mimosine biosynthesis process, O-acetyl-L-serine (OAS) is the common substrate. In the presence of O-acetylserine (thiol) lyase (OASTL, cysteine synthase) the reaction of OAS with sulfide produces cysteine, while with 3-hydroxy-4-pyridone (3H4P) produces mimosine. The enzyme OASTL can either catalyze Cys synthesis or both Cys and mimosine. A cDNA for cytosolic OASTL was cloned from M. pudica for the first time containing 1,410 bp nucleotides. The purified protein product from overexpressed bacterial cells produced Cys only, but not mimosine, indicating it is Cys specific. Kinetic studies revealed that pH and temperature optima for Cys production were 6.5 and 50 °C, respectively. The measured Km, Kcat, and Kcat Km-1 values were 159 ± 21 µM, 33.56 s-1, and 211.07 mM-1s-1 for OAS and 252 ± 25 µM, 32.99 s-1, and 130.91 mM-1s-1 for Na2S according to the in vitro Cys assay. The Cy-OASTL of Mimosa pudica is specific to Cys production, although it contains sensory roles in sulfur assimilation and the reduction network in the intracellular environment of M. pudica.


Subject(s)
Cysteine Synthase/genetics , Mimosa/genetics , Mimosine/metabolism , Plant Proteins/genetics , Amino Acid Sequence , Cysteine Synthase/chemistry , Cysteine Synthase/metabolism , Cytosol/metabolism , Mimosa/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment
14.
Sci Rep ; 7(1): 8817, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821763

ABSTRACT

Contact-dependent growth inhibition (CDI) is a wide-spread mechanism of inter-bacterial competition. CDI+ bacteria deliver CdiA-CT toxins into neighboring bacteria and produce specific immunity proteins that protect against self-intoxication. The CdiA-CT toxin from uropathogenic Escherichia coli 536 is a latent tRNase that is only active when bound to the cysteine biosynthetic enzyme CysK. Remarkably, the CysK:CdiA-CT binding interaction mimics the 'cysteine synthase' complex of CysK:CysE. The C-terminal tails of CysE and CdiA-CT each insert into the CysK active-site cleft to anchor the respective complexes. The dissociation constant for CysK:CdiA-CT (K d ~ 11 nM) is comparable to that of the E. coli cysteine synthase complex (K d ~ 6 nM), and both complexes bind through a two-step mechanism with a slow isomerization phase after the initial encounter. However, the second-order rate constant for CysK:CdiA-CT binding is two orders of magnitude slower than that of the cysteine synthase complex, suggesting that CysE should outcompete the toxin for CysK occupancy. However, we find that CdiA-CT can effectively displace CysE from pre-formed cysteine synthase complexes, enabling toxin activation even in the presence of excess competing CysE. This adventitious binding, coupled with the very slow rate of CysK:CdiA-CT dissociation, ensures robust nuclease activity in target bacteria.


Subject(s)
Bacterial Toxins/antagonists & inhibitors , Cysteine Synthase/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Cysteine Synthase/chemistry , Models, Biological , Protein Binding , Protein Multimerization , Serine O-Acetyltransferase/chemistry , Serine O-Acetyltransferase/metabolism
15.
Biochemistry ; 56(37): 5011-5025, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28805060

ABSTRACT

By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (104-106) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.


Subject(s)
Alanine/analogs & derivatives , Bacterial Proteins/antagonists & inhibitors , Cysteine Synthase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Haemophilus influenzae/enzymology , Models, Molecular , Salmonella enterica/metabolism , Acetyl Coenzyme A/chemistry , Acetyl Coenzyme A/metabolism , Alanine/chemistry , Alanine/genetics , Alanine/metabolism , Alanine/pharmacology , Allosteric Regulation , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Binding, Competitive , Catalytic Domain , Crystallography, X-Ray , Cysteine Synthase/chemistry , Cysteine Synthase/genetics , Cysteine Synthase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Haemophilus influenzae/metabolism , Kinetics , Ligands , Molecular Conformation , Oligopeptides/chemistry , Oligopeptides/genetics , Oligopeptides/metabolism , Oligopeptides/pharmacology , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Salmonella enterica/enzymology , Serine/chemistry , Serine/metabolism , Serine O-Acetyltransferase/chemistry , Serine O-Acetyltransferase/genetics , Serine O-Acetyltransferase/metabolism , Serine O-Acetyltransferase/pharmacology
16.
Biochemistry ; 56(18): 2385-2399, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28414426

ABSTRACT

Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2.


Subject(s)
Cysteine Synthase/chemistry , Cysteine/chemistry , Gene Expression Regulation, Bacterial , Salmonella typhimurium/enzymology , Serine O-Acetyltransferase/chemistry , Binding Sites , Cloning, Molecular , Cysteine/biosynthesis , Cysteine Synthase/genetics , Cysteine Synthase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Kinetics , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salmonella typhimurium/genetics , Serine O-Acetyltransferase/genetics , Serine O-Acetyltransferase/metabolism , Substrate Specificity
17.
Biochem J ; 474(7): 1221-1239, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28126739

ABSTRACT

Cysteine biosynthesis takes place via a two-step pathway in bacteria, fungi, plants and protozoan parasites, but not in humans, and hence, the machinery of cysteine biosynthesis is an opportune target for therapeutics. The decameric cysteine synthase complex (CSC) is formed when the C-terminal tail of serine acetyltransferase (SAT) binds in the active site of O-acetylserine sulfydrylase (OASS), playing a role in the regulation of this pathway. Here, we show that OASS from Brucella abortus (BaOASS) does not interact with its cognate SAT C-terminal tail. Crystal structures of native BaOASS showed that residues Gln96 and Tyr125 occupy the active-site pocket and interfere with the entry of the SAT C-terminal tail. The BaOASS (Q96A-Y125A) mutant showed relatively strong binding (Kd = 32.4 µM) to BaSAT C-terminal peptides in comparison with native BaOASS. The mutant structure looks similar except that the active-site pocket has enough space to bind the SAT C-terminal end. Surface plasmon resonance results showed a relatively strong (7.3 µM Kd) interaction between BaSAT and the BaOASS (Q96A-Y125A), but no interaction with native BaOASS. Taken together, our observations suggest that the CSC does not form in B. abortus.


Subject(s)
Bacterial Proteins/chemistry , Brucella abortus/chemistry , Cysteine Synthase/chemistry , Cysteine/biosynthesis , Serine O-Acetyltransferase/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brucella abortus/enzymology , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Cysteine Synthase/genetics , Cysteine Synthase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Kinetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Serine O-Acetyltransferase/genetics , Serine O-Acetyltransferase/metabolism , Structure-Activity Relationship , Substrate Specificity
18.
J Mol Model ; 22(10): 244, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27665464

ABSTRACT

Trypanosoma cruzi is the protozoan pathogen responsible for Chagas disease, which is a major public health problem in tropical and subtropical regions of developing countries and particularly in Brazil. Despite many studies, there is no efficient treatment against Chagas disease, and the search for new therapeutic targets specific to T. cruzi is critical for drug development. Here, we have revisited 41 protein sequences proposed by the analogous enzyme pipeline, and found that it is possible to provide structures for T. cruzi sequences with clear homologs or analogs in H. sapiens and likely associated with trypanothione reductase, cysteine synthase, and ATPase functions, and structures for sequences specific to T. cruzi and absent in H. sapiens associated with 2,4-dienoyl-CoA reductase, and leishmanolysin activities. The implications of our structures refined by atomistic molecular dynamics (monomer or dimer states) in their in vitro environments (aqueous solution or membrane bilayers) are discussed for drug development and suggest that all protein targets, except cysteine synthase, merit further investigation.


Subject(s)
Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Chagas Disease/drug therapy , Chagas Disease/metabolism , Computer Simulation , Cysteine Synthase/chemistry , Cysteine Synthase/metabolism , Drug Discovery/methods , Models, Molecular , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/metabolism , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Trypanosoma cruzi/drug effects
19.
J Enzyme Inhib Med Chem ; 31(sup4): 78-87, 2016.
Article in English | MEDLINE | ID: mdl-27578398

ABSTRACT

Cysteine is a building block for many biomolecules that are crucial for living organisms. O-Acetylserine sulfhydrylase (OASS), present in bacteria and plants but absent in mammals, catalyzes the last step of cysteine biosynthesis. This enzyme has been deeply investigated because, beside the biosynthesis of cysteine, it exerts a series of "moonlighting" activities in bacteria. We have previously reported a series of molecules capable of inhibiting Salmonella typhimurium (S. typhymurium) OASS isoforms at nanomolar concentrations, using a combination of computational and spectroscopic approaches. The cyclopropane-1,2-dicarboxylic acids presented herein provide further insights into the binding mode of small molecules to OASS enzymes. Saturation transfer difference NMR (STD-NMR) was used to characterize the molecule/enzyme interactions for both OASS-A and B. Most of the compounds induce a several fold increase in fluorescence emission of the pyridoxal 5'-phosphate (PLP) coenzyme upon binding to either OASS-A or OASS-B, making these compounds excellent tools for the development of competition-binding experiments.


Subject(s)
Cyclopropanes/pharmacology , Cysteine Synthase/antagonists & inhibitors , Dicarboxylic Acids/pharmacology , Enzyme Inhibitors/pharmacology , Fluorometry , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Cysteine Synthase/chemistry , Cysteine Synthase/metabolism , Dicarboxylic Acids/chemical synthesis , Dicarboxylic Acids/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
20.
Proc Natl Acad Sci U S A ; 113(35): 9792-7, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27531961

ABSTRACT

Contact-dependent growth inhibition (CDI) is a widespread mechanism of bacterial competition. CDI(+) bacteria deliver the toxic C-terminal region of contact-dependent inhibition A proteins (CdiA-CT) into neighboring target bacteria and produce CDI immunity proteins (CdiI) to protect against self-inhibition. The CdiA-CT(EC536) deployed by uropathogenic Escherichia coli 536 (EC536) is a bacterial toxin 28 (Ntox28) domain that only exhibits ribonuclease activity when bound to the cysteine biosynthetic enzyme O-acetylserine sulfhydrylase A (CysK). Here, we present crystal structures of the CysK/CdiA-CT(EC536) binary complex and the neutralized ternary complex of CysK/CdiA-CT/CdiI(EC536) CdiA-CT(EC536) inserts its C-terminal Gly-Tyr-Gly-Ile peptide tail into the active-site cleft of CysK to anchor the interaction. Remarkably, E. coli serine O-acetyltransferase uses a similar Gly-Asp-Gly-Ile motif to form the "cysteine synthase" complex with CysK. The cysteine synthase complex is found throughout bacteria, protozoa, and plants, indicating that CdiA-CT(EC536) exploits a highly conserved protein-protein interaction to promote its toxicity. CysK significantly increases CdiA-CT(EC536) thermostability and is required for toxin interaction with tRNA substrates. These observations suggest that CysK stabilizes the toxin fold, thereby organizing the nuclease active site for substrate recognition and catalysis. By contrast, Ntox28 domains from Gram-positive bacteria lack C-terminal Gly-Tyr-Gly-Ile motifs, suggesting that they do not interact with CysK. We show that the Ntox28 domain from Ruminococcus lactaris is significantly more thermostable than CdiA-CT(EC536), and its intrinsic tRNA-binding properties support CysK-independent nuclease activity. The striking differences between related Ntox28 domains suggest that CDI toxins may be under evolutionary pressure to maintain low global stability.


Subject(s)
Bacterial Toxins/chemistry , Contact Inhibition/genetics , Cysteine Synthase/chemistry , Escherichia coli Proteins/chemistry , Uropathogenic Escherichia coli/chemistry , Amino Acid Sequence , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Cysteine Synthase/genetics , Cysteine Synthase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Secondary , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ruminococcus/chemistry , Ruminococcus/metabolism , Substrate Specificity , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL