Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
1.
Bioorg Chem ; 147: 107379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643567

ABSTRACT

Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. It belongs to the 'Coronaviridae family', responsible for various diseases, including the common cold, SARS, and MERS. The COVID-19 pandemic, which began in March 2020, has affected 209 countries, infected over a million people, and claimed over 50,000 lives. Significant efforts have been made by repurposing several approved drugs including antiviral, to combat the COVID-19 pandemic. Molnupiravir is found to be the first orally acting efficacious drug to treat COVID-19 cases. It was approved for medical use in the UK in November 2021 and other countries, including USFDA, which granted approval an emergency use authorization (EUA) for treating adults with mild to moderate COVID-19 patients. Considering the importance of molnupiravir, the present review deals with its various synthetic strategies, pharmacokinetics, bio-efficacy, toxicity, and safety profiles. The comprehensive information along with critical analysis will be very handy for a wide range of audience including medicinal chemists in the arena of antiviral drug discovery especially anti-viral drugs against any variant of COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Cytidine , Hydroxylamines , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Antiviral Agents/chemical synthesis , Hydroxylamines/therapeutic use , Hydroxylamines/chemistry , Hydroxylamines/pharmacology , COVID-19/virology , SARS-CoV-2/drug effects , Cytidine/analogs & derivatives , Cytidine/therapeutic use , Cytidine/pharmacology , Cytidine/chemistry , Cytidine/chemical synthesis , Uridine/pharmacology , Uridine/analogs & derivatives , Uridine/chemical synthesis , Uridine/chemistry , Uridine/therapeutic use , Pandemics , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy
2.
Nat Struct Mol Biol ; 31(5): 817-825, 2024 May.
Article in English | MEDLINE | ID: mdl-38538915

ABSTRACT

The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.


Subject(s)
Anticodon , Cryoelectron Microscopy , RNA, Transfer, Ile , RNA, Transfer, Ile/chemistry , RNA, Transfer, Ile/metabolism , RNA, Transfer, Ile/genetics , Anticodon/chemistry , Anticodon/metabolism , Ribosomes/metabolism , Ribosomes/chemistry , Nucleic Acid Conformation , Models, Molecular , Codon/genetics , Lysine/metabolism , Lysine/chemistry , Lysine/analogs & derivatives , Cytidine/analogs & derivatives , Cytidine/chemistry , Cytidine/metabolism , RNA, Transfer/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Protein Biosynthesis , Pyrimidine Nucleosides
3.
J Phys Chem Lett ; 14(48): 10856-10862, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38032072

ABSTRACT

5-Methylcytidine (5mCyd) has recently been investigated with renewed interest in its utilization in mRNA therapeutics. However, its photostability following exposure to electromagnetic radiation has been overlooked. This Letter compares the photostability and excited-state dynamics of 5mCyd with those of the canonical RNA nucleoside, cytidine (Cyd), using steady-state and femtosecond transient absorption spectroscopy under physiologic conditions. 5mCyd is shown to have a 5-fold higher fluorescence yield and a 5-fold longer 1ππ* excited-state decay lifetime. Importantly, however, the excited-state population in 5mCyd decays primarily by internal conversion, with a photodegradation rate 3 times smaller than that in Cyd. In Cyd, the population of a 1nπ* state with a lifetime of ca. 45 ps is implicated in the formation 6-hydroxycytidine and other photoproducts.


Subject(s)
Cytidine , Nucleosides , RNA, Messenger , Cytidine/chemistry , RNA
4.
Rapid Commun Mass Spectrom ; 37(24): e9661, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37953539

ABSTRACT

RATIONALE: Cytosine and its conjugates are prone to form protonated, triply-bonded dimers. Therefore, the nucleic-acid cytosine-rich sequence forms the four-stranded noncanonical secondary structure known as the intercalated motif (i-motif). This process has resulted in studies on cytosine protonated dimers. This communication focuses on the protonated dimers of cytosine and its nucleoside using the survival yield (SY) method and quantum mechanics calculations. METHODS: To obtain the precursor ion fragmentation curve, the plot of SY against Ecomδ , the product ion spectra of the protonated dimers were obtained using a Waters/Micromass Q-TOF Premier mass spectrometer. Quantum mechanics calculations were performed using GAUSSIAN 16, and full geometry optimizations and energy calculations were performed within the density functional theory framework at B3LYP/6-31G(d,p). RESULTS: The precursor ion fragmentation curve allowed the rating of the gas-phase stabilities of the analyzed protonated dimers. Substitution of sugar moiety at N1 cytosine atom decreased the gas-phase stabilities of the protonated dimers. The deoxycytidine dimer was found to be more stable than the cytidine dimer and cytidine-deoxycytidine dimer. Quantum chemical calculations indicated that cytosine aminohydroxy tautomer may be involved in the formation of protonated cytosine-cytosine nucleoside dimers but not in the formation of cytosine dimers. CONCLUSIONS: The results obtained for nucleoside dimers indicated that the SY method may reflect the i-motif stabilities observed under physiological conditions. Therefore, the analysis of other protonated dimers of variously substituted cytosine-cytosine nucleoside using the SY method may be important to study the effect of cytosine substitution on the i-motif stabilities. Cytosine tautomer containing C2-OH… N(2H)-C4 moiety may be involved in the formation of protonated cytosine-cytosine nucleoside dimers.


Subject(s)
Cytidine , Protons , Cytidine/chemistry , Cytosine/chemistry , Deoxycytidine
5.
Bioconjug Chem ; 34(6): 1061-1071, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37272590

ABSTRACT

Sequence-specific fluorescent probes for RNA are widely used in microscopy applications such as fluorescence in situ hybridization and a growing number of newer approaches to live-cell RNA imaging. The sequence specificity of most of these approaches relies on differential hybridization of the probe to the correct target. Competing sequences with only one or two base mismatches are prone to causing off-target recognition. Here, we report the sequence-specific fluorescent detection of model RNA targets using a tricyclic cytidine analogue DEAtC that is included as a surrogate for natural cytidine in DNA probe strands and that reports directly on Watson-Crick base pairing. The DEAtC-containing DNA oligonucleotide probes exhibit an average 8-fold increase in fluorescence intensity when hybridized to matched RNA with DEAtC base paired with G and little fluorescence turn-on when DEAtC is base paired with A. Duplex structure determination by NMR, time-resolved fluorescence studies, and Stern-Volmer quenching experiments suggest that the combination of greater π stacking and narrower grooves in the A-form DNA-RNA heteroduplex provides additional shielding and favorable electronic interactions between bases, explaining why DEAtC's fluorescence turn-on response to RNA targets is typically 3-fold greater than for DNA targets.


Subject(s)
Cytidine , RNA , RNA/chemistry , Cytidine/chemistry , In Situ Hybridization, Fluorescence , DNA/chemistry , DNA Probes , Oligonucleotide Probes/chemistry , Fluorescent Dyes/chemistry
6.
Biochemistry ; 61(22): 2568-2578, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36302365

ABSTRACT

Drug resistance is a major problem associated with anticancer chemo- and immunotherapies. Recent advances in the understanding of resistance mechanisms have revealed that enzymes of the APOBEC3 (A3) family contribute to the development of drug resistance in multiple cancers. A3 enzymes are polynucleotide cytidine deaminases that convert cytosine to uracil (C→U) in single-stranded DNA (ssDNA) and in this way protect humans against viruses and mobile retroelements. On the other hand, cancer cells use A3s, especially A3A and A3B, to mutate human DNA, and thus by increasing rates of evolution, cancer cells escape adaptive immune responses and resist drugs. However, as A3A and A3B are non-essential for primary metabolism, their inhibition opens up a strategy to augment existing anticancer therapies and suppress cancer evolution. To test our hypothesis that pre-shaped ssDNA mimicking the U-shape observed in ssDNA-A3 complexes can provide a better binder to A3 enzymes, a Cu(I)-catalyzed azide-alkyne cycloaddition was used to cross-link two distant modified nucleobases in ssDNA. The resultant cytosine-containing substrate, where the cytosine sits at the apex of the loop, was deaminated faster by the engineered C-terminal domain of A3B than a standard, linear substrate. The cross-linked ssDNA was converted into an A3 inhibitor by replacing the 2'-deoxycytidine in the preferred TCA substrate motif by 2'-deoxyzebularine, a known inhibitor of single nucleoside cytidine deaminases. This strategy yielded the first nanomolar inhibitor of engineered A3BCTD and wild-type A3A (Ki = 690 ± 140 and 360 ± 120 nM, respectively), providing a platform for further development of powerful A3 inhibitors.


Subject(s)
Cytidine Deaminase , Oligonucleotides , Humans , Cytidine Deaminase/metabolism , DNA, Single-Stranded , Cytidine/chemistry , Cytosine
7.
Angew Chem Int Ed Engl ; 61(45): e202211945, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36063071

ABSTRACT

The question of how RNA, as the principal carrier of genetic information evolved is fundamentally important for our understanding of the origin of life. The RNA molecule is far too complex to have formed in one evolutionary step, suggesting that ancestral proto-RNAs (first ancestor of RNA) may have existed, which evolved over time into the RNA of today. Here we show that isoxazole nucleosides, which are quickly formed from hydroxylamine, cyanoacetylene, urea and ribose, are plausible precursors for RNA. The isoxazole nucleoside can rearrange within an RNA-strand to give cytidine, which leads to an increase of pairing stability. If the proto-RNA contains a canonical seed-nucleoside with defined stereochemistry, the seed-nucleoside can control the configuration of the anomeric center that forms during the in-RNA transformation. The results demonstrate that RNA could have emerged from evolutionarily primitive precursor isoxazole ribosides after strand formation.


Subject(s)
Nucleosides , RNA , Nucleosides/chemistry , RNA/chemistry , Isoxazoles , Cytidine/chemistry , Urea/chemistry
8.
Biochemistry ; 61(7): 535-544, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35285626

ABSTRACT

Chemical modification of cytidine in noncoding RNAs plays a key role in regulating translation and disease. However, the distribution and dynamics of many of these modifications remain unknown due to a lack of sensitive site-specific sequencing technologies. Here, we report a protonation-dependent sequencing reaction for the detection of 5-formylcytidine (5fC) and 5-carboxycytidine (5caC) in RNA. First, we evaluate how protonation combined with electron-withdrawing substituents alters the molecular orbital energies and reduction of modified cytidine nucleosides, highlighting 5fC and 5caC as reactive species. Next, we apply this reaction to detect these modifications in synthetic oligonucleotides as well as endogenous human transfer RNA (tRNA). Finally, we demonstrate the utility of our method to characterize a patient-derived model of 5fC deficiency, where it enables facile monitoring of both pathogenic loss and exogenous rescue of NSUN3-dependent 5fC within the wobble base of human mitochondrial tRNAMet. These studies showcase the ability of protonation to enhance the reactivity and sensitive detection of 5fC in RNA and more broadly provide a molecular foundation for using optimized sequencing reactions to better understand the role of oxidized RNA cytidine residues in diseases.


Subject(s)
Cytidine , RNA , Cytidine/analogs & derivatives , Cytidine/chemistry , Humans , Oligonucleotides , RNA/chemistry , RNA, Transfer
9.
Drug Des Devel Ther ; 16: 685-715, 2022.
Article in English | MEDLINE | ID: mdl-35321497

ABSTRACT

The rising outbreak of SARS-CoV-2 continues to unfold all over the world. The development of novel effective antiviral drugs to fight against SARS-CoV-2 is a time cost. As a result, some specific FDA-approved drugs have already been repurposed and authorized for COVID-19 treatment. The repurposed drugs used were either antiviral or non-antiviral drugs. Accordingly, the present review thoroughly focuses on the repurposing efficacy of these drugs including clinical trials experienced, the combination therapies used, the novel methods followed for treatment, and their future perspective. Therefore, drug repurposing was regarded as an effective avenue for COVID-19 treatment. Recently, molnupiravir is a prodrug antiviral medication that was approved in the United Kingdom in November 2021 for the treatment of COVID-19. On the other hand, PF-07321332 is an oral antiviral drug developed by Pfizer. For the treatment of COVID-19, the PF-07321332/ritonavir combination medication is used in Phase III studies and was marketed as Paxlovid. Herein, we represented the almost history of combating COVID-19 from repurposing to the recently available oral anti-SARS-CoV-2 candidates, as a new hope to end the current pandemic.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cytidine/analogs & derivatives , Drug Approval , Hydroxylamines/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Cytidine/chemistry , Cytidine/pharmacology , Drug Repositioning , Humans , Hydroxylamines/chemistry , Microbial Sensitivity Tests
10.
Bioengineered ; 13(2): 4441-4454, 2022 02.
Article in English | MEDLINE | ID: mdl-35112992

ABSTRACT

Blood-brain-barrier (BBB) disruption is an important pathological characteristic of ischemic stroke (IS) and mainly results from dysfunction of brain vascular endothelial cells and tight junctions. Zebularine is a novel inhibitor of DNA methyltransferase (DNMT). Here, we assessed its effects on BBB disruption in IS. Firstly, we reported that Zebularine maintained BBB integrity in middle cerebral artery occlusion (MCAO) mice by increasing the expressions of zona occludens-1 (ZO-1) and vascular endothelial (VE)-cadherin. Importantly, we found that Zebularine reduced the production of pro-inflammatory cytokines, attenuated brain edema, and improved neurological deficits. In in vitro experiments, the bEnd.3 brain endothelial cells were exposed to oxygen and glucose deprivation/reoxygenation (OGD/R), and the protective effects of Zebularine were assessed. Our findings demonstrated that Zebularine prevented OGD/R-induced cytotoxicity by reducing the release of lactate dehydrogenase (LDH). Additionally, Zebularine protected bEnd.3 cells against OGD/R-induced hyper-permeability and reduction of trans-endothelial electrical resistance (TEER). Notably, we found that treatment with Zebularine activated the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway by increasing the phosphorylation of adenosine monophosphate-activated protein kinase α (AMPKα). Blockage of AMPKα using its specific inhibitor compound C abolished the beneficial effects of Zebularine in mitigating endothelial hyper-permeability by reducing the expressions of ZO-1 and VE-cadherin. These findings suggest that the protective effects of Zebularine against OGD/R-induced endothelial hyper-permeability are mediated by the activation of AMPKα. In conclusion, our study sheds light on the potential application of Zebularine in the treatment of IS.


Subject(s)
Blood-Brain Barrier/drug effects , Cadherins/genetics , Cytidine/analogs & derivatives , Protective Agents , Zonula Occludens-1 Protein/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Blood-Brain Barrier/physiopathology , Cadherins/metabolism , Cytidine/chemistry , Cytidine/pharmacology , Endothelium, Vascular/cytology , Inflammation/metabolism , Mice , Protective Agents/chemistry , Protective Agents/pharmacology , Stroke/metabolism , Zonula Occludens-1 Protein/metabolism
11.
Int J Mol Sci ; 23(3)2022 01 28.
Article in English | MEDLINE | ID: mdl-35163429

ABSTRACT

In this work, we report in-depth computational studies of three plausible tautomeric forms, generated through the migration of two acidic protons of the N4-hydroxylcytosine fragment, of molnupiravir, which is emerging as an efficient drug to treat COVID-19. The DFT calculations were performed to verify the structure of these tautomers, as well as their electronic and optical properties. Molecular docking was applied to examine the influence of the structures of the keto-oxime, keto-hydroxylamine and hydroxyl-oxime tautomers on a series of the SARS-CoV-2 proteins. These tautomers exhibited the best affinity behavior (-9.90, -7.90, and -9.30 kcal/mol, respectively) towards RdRp-RTR and Nonstructural protein 3 (nsp3_range 207-379-MES).


Subject(s)
Cytidine/analogs & derivatives , Hydroxylamines/chemistry , Hydroxylamines/metabolism , Hydroxylamines/pharmacokinetics , Antiviral Agents/chemistry , COVID-19/metabolism , Computational Biology/methods , Cytidine/chemistry , Cytidine/metabolism , Cytidine/pharmacokinetics , Humans , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
12.
Molecules ; 27(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35056802

ABSTRACT

A novel series of 1-aryl-N-[4-phenyl-5-(arylazo)thiazol-2-yl)methanimines has been synthesized via the condensation of 2-amino-4-phenyl-5-arylazothiazole with various aromatic aldehydes. The synthesized imines were characterized by spectroscopic techniques, namely 1H and 13C-NMR, FTIR, MS, and Elemental Analysis. A molecular comparative docking study for 3a-f was calculated, with reference to two approved drugs, Molnupiravir and Remdesivir, using 7BQY (Mpro; PDB code 7BQY; resolution: 1.7 A°) under identical conditions. The binding scores against 7BQY were in the range of -7.7 to -8.7 kcal/mol for 3a-f. The high scores of the compounds indicated an enhanced binding affinity of the molecules to the receptor. This is due to the hydrophobic interactions and multi-hydrogen bonds between 3a-f ligands and the receptor's active amino acid residues. The main aim of using in silco molecular docking was to rank 3a-f with respect to the approved drugs, Molnupiravir and Remdesivir, using free energy methods as greener pastures. A further interesting comparison presented the laydown of the ligands before and after molecular docking. These results and other supporting statistical analyses suggested that ligands 3a-f deserve further investigation in the context of potential therapeutic agents for COVID-19. Free-cost, PASS, SwissADME, and Way2drug were used in this research paper to determine the possible biological activities and cytotoxicity of 3a-f.


Subject(s)
Antiviral Agents/chemistry , COVID-19 Drug Treatment , Imines/chemistry , Thiazoles/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Binding Sites , Computer Simulation , Coronavirus 3C Proteases/chemistry , Cytidine/analogs & derivatives , Cytidine/chemistry , Hydroxylamines/chemistry , Imines/chemical synthesis , Imines/pharmacokinetics , Imines/toxicity , Molecular Docking Simulation , SARS-CoV-2/drug effects , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics , Thiazoles/toxicity
13.
J Phys Chem Lett ; 13(1): 251-257, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34968067

ABSTRACT

Joint femtosecond fluorescence upconversion experiments and theoretical calculations provide a hitherto unattained degree of characterization and understanding of the mutagenic etheno adduct 3,N4-etheno-2'-deoxycytidine (εdC) excited state relaxation. This endogenously formed lesion is attracting great interest because of its ubiquity in human tissues and its highly mutagenic properties. The εdC fluorescence is modified with respect to that of the canonical base dC, with a 3-fold increased lifetime and quantum yield at neutral pH. This behavior is amplified upon protonation of the etheno ring (εdCH+). Quantum mechanical calculations show that the lowest energy state ππ*1 is responsible for the fluorescence and that the main nonradiative decay pathway to the ground state goes through an ethene-like conical intersection, involving the out-of-plane motion of the C5 and C6 substituents. This conical intersection is lower in energy than the ππ* state (ππ*1) minimum, but a sizable energy barrier explains the increase of εdC and εdCH+ fluorescence lifetimes with respect to that of dC.


Subject(s)
Cytidine/chemistry , Mutagens/chemistry , Quantum Theory , Thermodynamics , Fluorescence Polarization , Humans , Time Factors
14.
Molecules ; 26(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34834019

ABSTRACT

2'-O-(N-(Aminoethyl)carbamoyl)methyl-modified 5-methyluridine (AECM-MeU) and 5-methylcytidine (AECM-MeC) phosphoramidites are reported for the first time and prepared in multigram quantities. The syntheses of AECM-MeU and AECM-MeC nucleosides are designed for larger scales (approx. 20 g up until phosphoramidite preparation steps) using low-cost reagents and minimizing chromatographic purifications. Several steps were screened for best conditions, focusing on the most crucial steps such as N3 and/or 2'-OH alkylations, which were improved for larger scale synthesis using phase transfer catalysis (PTC). Moreover, the need of chromatographic purifications was substantially reduced by employing one-pot synthesis and improved work-up strategies.


Subject(s)
Cytidine/analogs & derivatives , Oligonucleotides/chemistry , Oligonucleotides/chemical synthesis , Organophosphorus Compounds/chemistry , Uridine/analogs & derivatives , Cytidine/chemistry , Uridine/chemistry
15.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641339

ABSTRACT

The COVID-19 pandemic needs no introduction at present. Only a few treatments are available for this disease, including remdesivir and favipiravir. Accordingly, the pharmaceutical industry is striving to develop new treatments for COVID-19. Molnupiravir, an orally active RdRp inhibitor, is in a phase 3 clinical trial against COVID-19. The objective of this review article is to enlighten the researchers working on COVID-19 about the discovery, recent developments, and patents related to molnupiravir. Molnupiravir was originally developed for the treatment of influenza at Emory University, USA. However, this drug has also demonstrated activity against a variety of viruses, including SARS-CoV-2. Now it is being jointly developed by Emory University, Ridgeback Biotherapeutics, and Merck to treat COVID-19. The published clinical data indicate a good safety profile, tolerability, and oral bioavailability of molnupiravir in humans. The patient-compliant oral dosage form of molnupiravir may hit the market in the first or second quarter of 2022. The patent data of molnupiravir revealed its granted compound patent and process-related patent applications. We also anticipate patent filing related to oral dosage forms, inhalers, and a combination of molnupiravir with marketed drugs like remdesivir, favipiravir, and baricitinib. The current pandemic demands a patient compliant, safe, tolerable, and orally effective COVID-19 treatment. The authors believe that molnupiravir meets these requirements and is a breakthrough COVID-19 treatment.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Cytidine/analogs & derivatives , Drug Discovery , Hydroxylamines/therapeutic use , SARS-CoV-2/drug effects , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Clinical Trials as Topic , Cytidine/administration & dosage , Cytidine/chemistry , Cytidine/therapeutic use , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/chemistry , Patents as Topic , RNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Inhibitors/administration & dosage , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/therapeutic use , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
16.
Nucleic Acids Res ; 49(19): 10851-10867, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34648028

ABSTRACT

We recently reported that RNAi-mediated off-target effects are important drivers of the hepatotoxicity observed for a subset of GalNAc-siRNA conjugates in rodents, and that these findings could be mitigated by seed-pairing destabilization using a single GNA nucleotide placed within the seed region of the guide strand. Here, we report further investigation of the unique and poorly understood GNA/RNA cross-pairing behavior to better inform GNA-containing siRNA design. A reexamination of published GNA homoduplex crystal structures, along with a novel structure containing a single (S)-GNA-A residue in duplex RNA, indicated that GNA nucleotides universally adopt a rotated nucleobase orientation within all duplex contexts. Such an orientation strongly affects GNA-C and GNA-G but not GNA-A or GNA-T pairing in GNA/RNA heteroduplexes. Transposition of the hydrogen-bond donor/acceptor pairs using the novel (S)-GNA-isocytidine and -isoguanosine nucleotides could rescue productive base-pairing with the complementary G or C ribonucleotides, respectively. GalNAc-siRNAs containing these GNA isonucleotides showed an improved in vitro activity, a similar improvement in off-target profile, and maintained in vivo activity and guide strand liver levels more consistent with the parent siRNAs than those modified with isomeric GNA-C or -G, thereby expanding our toolbox for the design of siRNAs with minimized off-target activity.


Subject(s)
Adenosine/chemistry , Cytidine/chemistry , Glycols/chemistry , Guanosine/chemistry , Oligoribonucleotides/chemistry , RNA, Double-Stranded/chemistry , RNA, Small Interfering/chemistry , Acetylgalactosamine , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Base Pairing , COS Cells , Chlorocebus aethiops , Dimethylformamide/analogs & derivatives , Dimethylformamide/chemistry , Ethylamines/chemistry , Female , Hepatocytes/cytology , Hepatocytes/metabolism , Hydrogen Bonding , Mice , Mice, Inbred C57BL , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , Organophosphorus Compounds/chemistry , Prealbumin/antagonists & inhibitors , Prealbumin/genetics , Prealbumin/metabolism , Primary Cell Culture , RNA Stability , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
18.
Article in English | MEDLINE | ID: mdl-34555541

ABSTRACT

The novel antiviral prodrug molnupiravir is under evaluation for the treatment of SARS-CoV-2. Molnupiravir is converted to ß-D-N4-hydroxycytidine (NHC), which is the primary form found in systemic circulation. ß-D-N4-hydroxycytidine-triphosphate (NHCtp) is the bioactive anabolite produced intracellularly. Sensitive and accurate bioanalytical methods are required to characterize NHC and NHCtp pharmacokinetics in clinical trials. Human K2EDTA plasma or peripheral blood mononuclear cell (PBMC) lysates were spiked with NHC (plasma) or NHCtp (PBMC), respectively. Following the addition of isotopically-labeled internal standards and sample extraction via protein precipitation or lysate dilution, respectively, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis. Methods were validated in accordance with FDA Bioanalytical Method Validation recommendations. NHC can be quantified in plasma with a lower limit of quantification (LLOQ) of 1 ng/mL; the primary linearity of the assay is 1-5000 ng/mL. Assay precision and accuracy were ≤ 6.40% and ≤ ± 6.37%, respectively. NHC is unstable in whole blood and has limited stability in plasma at room temperature. The calibration range for NHCtp in PBMC lysates is 1-1500 pmol/sample, and the assay has an LLOQ of 1 pmol/sample. Assay precision and accuracy were ≤ 11.8% and ≤± 11.2%. Ion suppression was observed for both analytes; isotopically-labeled internal standards showed comparable ion suppression, resulting in negligible (<5%) relative matrix effects. Sensitive, specific, and dynamic LC-MS/MS assays have been developed and validated for the quantification of NHC in plasma and NHCtp in PBMC lysates. The described methods are appropriate for use in clinical trials.


Subject(s)
Cytidine/analogs & derivatives , Cytidine/blood , Cytidine/chemistry , Humans , Reproducibility of Results
19.
Nat Struct Mol Biol ; 28(9): 740-746, 2021 09.
Article in English | MEDLINE | ID: mdl-34381216

ABSTRACT

Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.


Subject(s)
COVID-19/prevention & control , Cytidine/analogs & derivatives , Hydroxylamines/metabolism , Mutagenesis/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Base Sequence , COVID-19/virology , Cytidine/chemistry , Cytidine/metabolism , Cytidine/pharmacology , Humans , Hydroxylamines/chemistry , Hydroxylamines/pharmacology , Models, Molecular , Molecular Structure , Mutagenesis/drug effects , Mutation/drug effects , Mutation/genetics , Nucleic Acid Conformation , Protein Binding/drug effects , Protein Conformation , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , Virus Replication/genetics , COVID-19 Drug Treatment
20.
RNA Biol ; 18(sup1): 278-286, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34224320

ABSTRACT

In kinetoplastid protists, all mitochondrial tRNAs are encoded in the nucleus and imported from the cytoplasm to maintain organellar translation. This also applies to the tryptophanyl tRNA (tRNATrp) encoded by a single-copy nuclear gene, with a CCA anticodon to read UGG codon used in the cytosolic translation. Yet, in the mitochondrion it is unable to decode the UGA codon specifying tryptophan. Following mitochondrial import of tRNATrp, this problem is solved at the RNA level by a single C34 to U34 editing event that creates the UCA anticodon, recognizing UGA. To identify the enzyme responsible for this critical editing activity, we scrutinized the genome of Trypanosoma brucei for putative cytidine deaminases as the most likely candidates. Using RNAi silencing and poisoned primer extension, we have identified a novel deaminase enzyme, named here TbmCDAT for mitochondrial Cytidine Deaminase Acting on tRNA, which is responsible for this organelle-specific activity in T. brucei. The ablation of TbmCDAT led to the downregulation of mitochondrial protein synthesis, supporting its role in decoding the UGA tryptophan codon.


Subject(s)
Codon, Terminator , Cytidine Deaminase/metabolism , Cytidine/genetics , Mitochondria/enzymology , RNA, Protozoan/genetics , Trypanosoma brucei brucei/genetics , Uridine/genetics , Amino Acid Sequence , Base Sequence , Cytidine/chemistry , Cytidine Deaminase/genetics , Mitochondria/genetics , Nucleic Acid Conformation , RNA, Mitochondrial/analysis , RNA, Mitochondrial/genetics , RNA, Protozoan/analysis , RNA, Transfer, Trp , Sequence Homology , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism , Uridine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...