Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.660
Filter
1.
Cardiovasc Toxicol ; 24(6): 539-549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703273

ABSTRACT

NaAsO2 is known as a harmful pollutant all over the world, and many chronic heart diseases can be attributed to its prolonged exposure in NaAsO2-contaminated water. Therefore, considering the anti-inflammatory and antioxidant effects of betaine (BET), in this study, our team investigated the cardioprotective effects of this phytochemical agent on sodium arsenite (NaAsO2)-induced cardiotoxicity. Forty male mice were randomly divided into 4 groups: (I) Control; (II) BET (500 mg/kg); (III) NaAsO2 (50 ppm); and (IV) NaAsO2 + BET. NaAsO2 was given to the animals for 8 weeks, but BET was given in the last two weeks. After decapitation, inflammatory factors and biochemical parameters were measured, and Western blot analyses were performed. BET decrease the activity level of alanine aspartate aminotransferase, creatine kinase MB, thiobarbituric acid reactive substances level, inflammatory factors (tumor necrosis factor-α) content, and nuclear factor kappa B expression. Furthermore, BET increased cardiac total thiol and activity levels of catalase, superoxide dismutase, and glutathione peroxidase and nuclear factor erythroid-2 expression. Hence, the administration of BET ameliorated the deleterious effects stemming from the imbalance of oxidative and antioxidant pathways and histopathological alterations observed in NaAsO2-intoxicated mice, thereby attenuating oxidative stress-induced damage and inflammation.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Arsenites , Betaine , Cardiotoxicity , Disease Models, Animal , Heart Diseases , Inflammation Mediators , Oxidative Stress , Signal Transduction , Sodium Compounds , Animals , Arsenites/toxicity , Sodium Compounds/toxicity , Male , Antioxidants/pharmacology , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , Mice , Betaine/pharmacology , Heart Diseases/prevention & control , Heart Diseases/chemically induced , Heart Diseases/pathology , Heart Diseases/metabolism , Inflammation Mediators/metabolism , Signal Transduction/drug effects , Biomarkers/metabolism , Biomarkers/blood , Cytoprotection , Myocardium/pathology , Myocardium/metabolism
2.
J Physiol Pharmacol ; 75(1)2024 02.
Article in English | MEDLINE | ID: mdl-38583442

ABSTRACT

Using duodenocolic fistula in rats, this study attempts to highlight the particular cytoprotection aspects of the healing of fistulas and therapy potential of the stable gastric pentadecapeptide BPC 157, a cytoprotection mediator (i.e. upgrading minor vessels to induce healing at both fistula's sides). Upon duodenocolic fistula creation (two 'perforated' lesions put together) (assessed at 3, 6, 9, 12, and 15 min), BPC 157, given locally at the fistula, or intragastrically (10 µg/kg, 10 ng/kg), rapidly induces vessel 'recruitment', 'running' toward the defect, simultaneously at duodenum and colon, providing numerous collaterals and branching. The mRNA expression studies done at that time provided strongly elevated (nitric oxide synthase 2) and decreased (cyclooxygenase-2, vascular endothelial growth factor A, nitric oxide synthase (NOS)-1, NOS-3, nuclear factor-kappa-B-activating protein) gene expression. As therapy, rats with duodenocolic fistulas, received BPC 157 10 µg/kg, 10 ng/kg, per-orally, in drinking water till sacrifice, or alternatively, intraperitoneally, first application at 30 min after surgery, last at 24 h before sacrifice, at day 1, 3, 7, 14, 21, and 28. Controls exhibited both defects persisting, continuous fistula leakage, diarrhea, continuous weight loss, advanced adhesion formation and intestinal obstruction. Contrary, all BPC 157-treated rats have closed both defects, duodenal and colonic, no fistula leakage (finally, maximal instilled volume corresponds to healthy rats), no cachexia, the same weight as before surgery, no diarrhea, markedly less adhesion formation and intestinal passage obstruction. Thus, BPC 157 regimens resolve the duodenal/colon lesions and duodenocolic fistulas in rats, and rapid vessels recovery appears as the essential point in the implementation of the cytoprotection concept in the fistula therapy.


Subject(s)
Anti-Ulcer Agents , Fistula , Proteins , Rats , Animals , Rats, Wistar , Vascular Endothelial Growth Factor A , Cytoprotection , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Nitric Oxide Synthase , Anti-Ulcer Agents/pharmacology
3.
Molecules ; 29(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675608

ABSTRACT

Increased oxidative stress is one of the critical pathologies inducing age-related macular degeneration (AMD), characterized by retinal pigment epithelial (RPE) cell damage and death. The unbalanced acetylation and deacetylation of histones have been implicated in AMD pathogenesis or hydrogen peroxide (H2O2)-induced cell damage. Therefore, strategies aimed at controlling the balance between acetylation and deacetylation may effectively protect RPE cells from oxidative damage. Artemisinin is an antimalarial lactone drug derived from Artemisia annua, with antioxidant activity known to modulate histone acetylation in the brain, but its effect on the retina is unknown. In this study, we aimed to investigate whether Artemisinin exerts a cytoprotective effect on oxidative stress-induced apoptosis in RPE cells by regulating histone acetylation. We hypothesized that Artemisinin confers cytoprotection toward H2O2-induced apoptosis in RPE cells through this mechanism. In the present study, we found that Artemisinin at a sub-clinic dosage of 20 µM inhibited the H2O2-induced cell viability decrease and B-cell lymphoma 2 (Bcl-2) protein level decrease and attenuated the H2O2-induced decrease in the histone H4 lysine (Lys) 8 acetylation [Acetyl-H4 (Lys 8)] level in the retinal RPE cell line D407. As expected, histone deacetylase inhibitor Trichostatin A at the concentration of 250 nM increased the Acetyl-H4 (Lys 8) level in D407 cells and attenuated the H2O2-induced cell viability decrease and apoptosis. Similar findings were obtained using adult RPE (ARPE)19 cells, another human RPE cell line, and primary human RPE cell cultures. In conclusion, these results confirmed our hypothesis and indicated that Artemisinin attenuated H2O2-induced apoptosis in apparent correlation with the increase in the Acetyl-H4 (Lys 8) level, which is associated with gene transcription and cell survival. By modulating histone acetylation, Artemisinin may restore the balance between acetylation and deacetylation and enhance the resistance and survival of RPE cells under oxidative stress. Our study provides novel mechanistic insights into the effect of Artemisinin on histone acetylation and apoptosis in RPE cells and supports the potential application of Artemisinin in the prevention and/or treatment of AMD.


Subject(s)
Apoptosis , Artemisinins , Cell Survival , Histones , Hydrogen Peroxide , Lysine , Oxidative Stress , Retinal Pigment Epithelium , Humans , Histones/metabolism , Apoptosis/drug effects , Acetylation/drug effects , Hydrogen Peroxide/pharmacology , Artemisinins/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Lysine/metabolism , Cell Survival/drug effects , Oxidative Stress/drug effects , Cell Line , Cytoprotection/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism
4.
Food Chem ; 446: 138600, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38452500

ABSTRACT

An ethanol/(NH4)2SO4 biphasic (aqueous two-phase) system was designed to effectively separate antioxidant peptides from Xuanwei ham, and its potential to prevent ultraviolet A-induced damage to skin cells was explored. Optimization via single factor experiments and response surface methodology revealed that under 20 % ethanol aqueous solution (w/w), 25.5 % (NH4)2SO4 aqueous solution (w/w), and pH 8.80 conditions, the optimal extraction ratio was 59.0 ± 1.73 %. In vitro antioxidant activity and cellular assays showed that the peptide purified in the upper phase exhibited strong antioxidant activity, increasing the viability of HaCat cells damaged by UVA irradiation from 56.14 ± 1.05 % to 66.3 ± 1.76 %. We used an in silico peptide screening strategy and identified 10 with potential antioxidant activity, emphasizing the important role of amino acids Pro, Gly, and Ala in antioxidant activity.


Subject(s)
Antioxidants , Cytoprotection , Antioxidants/chemistry , Peptides/pharmacology , Peptides/chemistry , Water , Ethanol/chemistry
5.
Blood ; 143(16): 1670-1675, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38427750

ABSTRACT

ABSTRACT: Activated protein C (APC) was shown to release extracellular vesicles (EVs). APC bound to the EVs was thought to be responsible for cytoprotection. Our study demonstrates that the cytoprotective effects of APC-released EVs are independent of APC. APC-released EVs carry anti-inflammatory microRNAs in their cargo.


Subject(s)
Cytoprotection , Extracellular Vesicles , Protein C , Cell Communication , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Protein C/metabolism , Humans
6.
J Ethnopharmacol ; 323: 117717, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38181937

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nerium oleander is used to treat liver-associated chronic metabolic diseases in traditional medicinal systems across the globe. The hepatoprotective effects of oleander are mentioned in Indian and Chinese traditional medicinal literature. AIM OF THE STUDY: The present study aimed to investigate the cellular mechanisms behind the hepatoprotective effects of a non-toxic dose of oleander (NO). MATERIALS AND METHODS: The hepatoprotective effects of NO were tested against lipopolysaccharide (LPS)-treated HepG2 cells. Oxidative stress response was studied using cellular enzymatic assays, and gene expression was analyzed using qRT-PCR. HepG2 cells were pretreated with TAK-242 (pharmacological inhibitor of TLR4) to decipher the anti-inflammatory mechanisms of NO. Cell-free metabolites were analyzed using GCMS and were subjected to pathway enrichment analysis. RESULTS: NO reduced systemic inflammation, serum lipid peroxidation byproducts, and glucose without affecting serum transaminase levels and hepatic histopathological features. NO attenuated the inflammation-induced loss of antioxidant enzyme activities and mRNA expressions of toll-like receptor-4 (TLR4)/nuclear factor κß (NFκß)-dependent inflammatory genes. In TAK-242 pretreated cells, LPS was unable to induce inflammatory and oxidative responses. However, NO treatment in TAK-242 pretreated cells with LPS stimulation further reduced the signs of inflammation and improved hepatoprotective activities. A comparative analysis of the intracellular global metabolome from HepG2 cells with and without NO treatment indicated NO-mediated favorable modulation of intracellular metabolic pathways that support cytoprotective activities. CONCLUSION: NO protects HepG2 cells from LPS-induced oxidative and inflammatory injury. The hepatoprotective effects of NO are mediated by a TLR4-independent process and through a favorable modulation of the intracellular global metabolome that supports cytoprotection.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nerium , Sulfonamides , Humans , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Cytoprotection , Antioxidants/pharmacology , Antioxidants/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Metabolome
7.
J Gen Virol ; 105(1)2024 01.
Article in English | MEDLINE | ID: mdl-38271001

ABSTRACT

Host control of mouse cytomegalovirus (MCMV) infection of MHCII- salivary gland acinar cells is mediated by CD4+ T cells, but how they protect is unclear. Here, we show CD4+ T cells control MCMV indirectly in the salivary gland, via IFNγ engagement with uninfected, but antigen+ MHCII+ APC and recruitment of NK cells to infected cell foci. This immune mechanism renders direct contact of CD4+ T cells with infected cells unnecessary and may represent a host strategy to overcome viral immune evasion.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Mice , Animals , T-Lymphocytes , Cytoprotection , Killer Cells, Natural , CD4-Positive T-Lymphocytes , Mice, Inbred C57BL
8.
Nat Immunol ; 25(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195702

ABSTRACT

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.


Subject(s)
Melanoma , Receptor, Nerve Growth Factor , Humans , Receptor, Nerve Growth Factor/genetics , Receptor, Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Tropomyosin , Melanoma/therapy , Receptor, trkA/genetics , Receptor, trkA/metabolism , Cytoprotection , Immune Checkpoint Inhibitors , Memory T Cells , Immunosuppression Therapy , Immunotherapy , Receptors, Antigen, T-Cell
9.
Adv Mater ; 36(9): e2305277, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37526952

ABSTRACT

Nanomaterial-mediated ferroptosis has garnered considerable interest in the antibacterial field, as it invokes the disequilibrium of ion homeostasis and boosts lipid peroxidation in extra- and intracellular bacteria. However, current ferroptosis-associated antibacterial strategies indiscriminately pose damage to healthy cells, ultimately compromising their biocompatibility. To address this daunting issue, this work has designed a precise ferroptosis bio-heterojunction (F-bio-HJ) consisting of Fe2 O3 , Ti3 C2 -MXene, and glucose oxidase (GOx) to induce extra-intracellular bacteria-targeted ferroptosis for infected diabetic cutaneous regeneration. Fe2 O3 /Ti3 C2 -MXene@GOx (FMG) catalytically generates a considerable amount of ROS which assaults the membrane of extracellular bacteria, facilitating the permeation of synchronously generated Fe2+ /Fe3+ into bacteria under near-infrared (NIR) irradiation, causing planktonic bacterial death via ferroptosis, Fe2+ overload, and lipid peroxidation. Additionally, FMG facilitates intracellular bacterial ferroptosis by transporting Fe2+ into intracellular bacteria via inward ferroportin (FPN). With GOx consuming glucose, FMG creates hunger protection which helps macrophages escape cell ferroptosis by activating the adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) pathway. In vivo results authenticate that FMG boosts diabetic infectious cutaneous regeneration without triggering ferroptosis in normal cells. As envisaged, the proposed tactic provides a promising approach to combat intractable infections by precisely terminating extra-intracellular infection via steerable ferroptosis, thereby markedly elevating the biocompatibility of therapeutic ferroptosis-mediated strategies.


Subject(s)
Diabetes Mellitus , Ferroptosis , Nitrites , Transition Elements , Cytoprotection , Hunger , Anti-Bacterial Agents/pharmacology , Glucose Oxidase
10.
Trends Biotechnol ; 42(1): 91-103, 2024 01.
Article in English | MEDLINE | ID: mdl-37507294

ABSTRACT

Single cell modification or hybridization technology has become a popular direction in bioengineering in recent years, with applications in clean energy, environmental stewardship, and sustainable human development. Here, we draw attention to nanoarmor, a representative achievement of cytoprotection and functionalization technology. The fundamental principles of nanoarmor need to be studied with input from multiple disciplines, including biology, chemistry, and material science. In this review, we explain the role of nanoarmor and review progress in its applications. We also discuss three main challenges associated with its development: self-driving ability, heterojunction characteristics, and mineralization formation. Finally, we propose a preliminary classification system for nanoarmor.


Subject(s)
Cytoprotection , Nanotechnology , Humans
11.
Exp Eye Res ; 238: 109743, 2024 01.
Article in English | MEDLINE | ID: mdl-38056550

ABSTRACT

Pigment epithelium-derived factor (PEDF) is widely recognized as a neuroprotective factor expressed in the retina and has shown therapeutic potential in several retinal diseases. Our study aimed to identify the neuroprotective fragment in PEDF and investigate its protective activity in retinas under ischemia-reperfusion (IR) condition. We synthesized a series of shorter synthetic peptides, 6-mer (Ser93-Gln98) and its d-form variant (6 dS) derived from the 44-mer (Val78-Thr121; a PEDF neurotrophic fragment), to determine their cytoprotective activity in IR injury, which was induced in rat retinas by injection of saline into the anterior chamber to increase the intraocular pressure (IOP) followed by reperfusion. We found the cytoprotective effect of 6-mer on glutamate-treated Neuro-2a cells and tert-butyl hydroperoxide (tBHP)-treated 661W cells were 2.6-fold and 1.5-fold higher than the 44-mer, respectively. The cytoprotective effect was blocked by a chemical inhibitor atglistatin and blocking antibody targeting PEDF receptor (PEDF-R). IR induced several impairments in retina, including cell apoptosis, activation of microglia/macroglia, degeneration of retinal capillaries, reduction in electroretinography (ERG) amplitudes, and retinal atrophy. Such IR injuries were ameliorated by treatment with 6-mer and 6 dS eye drops. Also, the neuroprotective activity of 6-mer and 6 dS in ischemic retinas were dramatically reversed by atglistatin preconditioning. Taken together, our data demonstrate smallest neuroprotective fragment of PEDF has potential to treat retinal degeneration-related diseases.


Subject(s)
Eye Proteins , Nerve Growth Factors , Reperfusion Injury , Retina , Retinitis , Serpins , Animals , Rats , Rabbits , Nerve Growth Factors/administration & dosage , Nerve Growth Factors/chemistry , Nerve Growth Factors/metabolism , Eye Proteins/administration & dosage , Eye Proteins/chemistry , Eye Proteins/metabolism , Serpins/administration & dosage , Serpins/chemistry , Serpins/metabolism , Retina/metabolism , Retina/pathology , Reperfusion Injury/metabolism , Cytoprotection , Apoptosis , Neurons/metabolism , Retinitis/drug therapy , Retinitis/metabolism , Administration, Topical , Peptides/administration & dosage , Peptides/metabolism
12.
Am J Pathol ; 194(1): 150-164, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37827217

ABSTRACT

Corneal endothelial cells (CEnCs) regulate corneal hydration and maintain tissue transparency through their barrier and pump function. However, these cells exhibit limited regenerative capacity following injury. Currently, corneal transplantation is the only established therapy for restoring endothelial function, and there are no pharmacologic interventions available for restoring endothelial function. This study investigated the efficacy of the neuropeptide α-melanocyte-stimulating hormone (α-MSH) in promoting endothelial regeneration during the critical window between ocular injury and the onset of endothelial decompensation using an established murine model of injury using transcorneal freezing. Local administration of α-MSH following injury prevented corneal edema and opacity, reduced leukocyte infiltration, and limited CEnC apoptosis while promoting their proliferation. These results suggest that α-MSH has a proregenerative and cytoprotective function on CEnCs and shows promise as a therapy for the prevention and management of corneal endothelial dysfunction.


Subject(s)
Cornea , Corneal Edema , alpha-MSH , Female , Pregnancy , Animals , Mice , Mice, Inbred BALB C , Humans , Cell Line , Cornea/cytology , Endothelial Cells , Corneal Edema/drug therapy , Corneal Edema/pathology , Tissue Preservation , alpha-MSH/therapeutic use , Cytoprotection , Neutrophil Infiltration , Monocytes/metabolism , Macrophages/metabolism , Wound Healing/drug effects
13.
Mar Drugs ; 21(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37888466

ABSTRACT

Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTß, IL-22R, RANK, LTßR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.


Subject(s)
NF-kappa B , Thymocytes , Humans , Mice , Animals , NF-kappa B/metabolism , Cytoprotection , Thymus Gland , Epithelial Cells , Collagen/metabolism , Gene Expression , Cell Proliferation , Cyclophosphamide/adverse effects
14.
Transl Vis Sci Technol ; 12(9): 22, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37750744

ABSTRACT

Purpose: The purpose of this study was to assess the retinal protective activity and ocular hemodynamics after NCX 470 (0.1%) compared to bimatoprost administered as the US Food and Drug Administration (FDA)-approved drug (Lumigan - 0.01% ophthalmic solution, LUM) and at an equimolar dose (0.072%, BIM) to that released by NCX 470. Methods: Endothelin-1 (ET-1) induced ischemia/reperfusion injury model in rabbits was used. ET-1 was injected nearby the optic nerve head (ONH) twice/week for 6 weeks. Starting on week 3, the animals received vehicle (VEH), NCX 470, LUM, or BIM (30 µL/eye, twice daily, 6 days/week) until the end of ET-1 treatment. Intraocular pressure (IOP), ophthalmic artery resistive index (OA-RI), and electroretinogram (ERG) data were collected prior to dosing and at different time points postdosing. Reduced glutathione, 8-Hydroxy 2-deoxyguanosine, and Caspase-3 were determined in the retina of treated eyes. DNA fragmentation was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. Results: ET-1 increased IOP (VEHIOP_Baseline = 20.5 ± 0.8 and VEHIOP_Week6 = 24.8 ± 0.3 mmHg) and OA-RI (VEHOA-RI_Baseline = 0.36 ± 0.02 and VEHOA-RI_Week6 = 0.55 ± 0.01) and reduced rod/cone responses over time. Oxidative stress, inflammation, and apoptotic markers increased in ET-1-treated eyes. NCX 470 prevented IOP (NCX 470IOP_Week6 = 18.1 ± 0.6 mmHg) and OA-RI changes (NCX 470OA-RI_Week6 = 0.33 ± 0.01) and restored ERG amplitude leaving unaltered the respective latency; these effects were only partially demonstrated by LUM or BIM. Additionally, NCX 470 reduced oxidative stress, inflammation, and apoptosis in the retinas of treated eyes. BIM and LUM were numerically less effective on these parameters. Conclusions: NCX 470 repeated ocular dosing ameliorates ocular hemodynamics and retinal cell dysfunction caused by ischemia/reperfusion via nitric oxide- and bimatoprost-mediated mechanisms. Translational Relevance: If confirmed in clinical setting our data may open new therapeutic opportunities to reduce visual field loss in glaucoma.


Subject(s)
Glaucoma , Optic Disk , Reperfusion Injury , United States , Animals , Rabbits , Bimatoprost , Cytoprotection , Ophthalmic Artery , Hemodynamics , Retina , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control
15.
Pharmacol Res Perspect ; 11(5): e01135, 2023 10.
Article in English | MEDLINE | ID: mdl-37740715

ABSTRACT

The importance of vesicular monoamine transporter 2 (VMAT2) in dopamine regulation, which is considered crucial for neuropsychiatric disorders, is currently being studied. Moreover, the development of disease treatments using histone deacetylase (HDAC) inhibitors (HDACi) is actively progressing in various fields. Recently, research on the possibility of regulating neuropsychiatric disorders has been conducted. In this study, we evaluated whether VMAT2 expression increased by an HDACi can fine-tune neuropsychotic behavior, such as attention deficit hyperactivity disorder (ADHD) and protect against the cell toxicity through oxidized dopamine. First, approximately 300 candidate HDACi compounds were added to the SH-SY5Y dopaminergic cell line to identify the possible changes in the VMAT2 expression levels, which were measured using quantitative polymerase chain reaction. The results demonstrated, that treatment with pimelic diphenylamide 106 (TC-H 106), a class I HDACi, increased VMAT2 expression in both the SH-SY5Y cells and mouse brain. The increased VMAT2 expression induced by TC-H 106 alleviated the cytotoxicity attributed to 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium (MPP+ ) and free dopamine treatment. Moreover, dopamine concentrations, both intracellularly and in the synaptosomes, were significantly elevated by increased VMAT2 expression. These results suggest that dopamine concentration regulation by VMAT2 expression induced by TC-H 106 could alter several related behavioral aspects that was confirmed by attenuation of hyperactivity and impulsivity, which were major characteristics of animal model showing ADHD-like behaviors. These results indicate that HDACi-increased VMAT2 expression offers sufficient protections against dopaminergic cell death induced by oxidative stress. Thus, the epigenetic approach could be considered as therapeutic candidate for neuropsychiatric disease regulation.


Subject(s)
Histone Deacetylase Inhibitors , Neuroblastoma , Humans , Animals , Mice , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Vesicular Monoamine Transport Proteins/genetics , Cytoprotection , Dopamine , Oxidopamine
16.
ChemMedChem ; 18(19): e202300325, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37610129

ABSTRACT

Reactive oxygen species (ROS) refer to various partially reduced oxygen moieties that are naturally generated due to biochemical processes. Elevated formation of ROS leads to damage to biomolecules, resulting in oxidative stress and cell death. The increased level of ROS also affects therapeutics based on stem cell transplantation. Nanomaterials-based enzyme mimetics have attracted immense attention, but there are several challenges to be addressed in terms of selectivity, efficiency, and biocompatibility. This highlight focuses on a recent investigation by Cheng and coworkers, who engineered an Mn-superoxide dismutase (Mn-SOD)-inspired material with Mn-N5 sites having an axial ligand and 2D d-π-conjugated network. This engineering approach enhances antioxidase-like function and effectively rescues stem cells from ROS. In addition, it also protects osteogenesis-related gene transcription, ensuring survival rates and osteogenic differentiation of hMSCs under ROS environment. This versatile and robust artificial antioxidase holds promise for stem cell therapies and ROS-originated diseases.


Subject(s)
Cytoprotection , Osteogenesis , Reactive Oxygen Species/metabolism , Ligands , Oxidative Stress , Superoxide Dismutase/metabolism
17.
ACS Appl Mater Interfaces ; 15(32): 38335-38345, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37539960

ABSTRACT

Functional amyloid fibers are crucial in melanogenesis, but their roles are incompletely understood. In particular, their relationship with intrinsic spin characters of melanin remains unexplored. Here, we show that adding an amyloid scaffold greatly augments the spin density in synthetic melanin. It also brings about concurrent alterations in water dispersibility, bandgaps, and radical scavenging properties of the synthetic melanin, which facilitates its applications in solar water remediation and protection of human keratinocytes from UV irradiation. This work provides implications in the unrevealed role of functional amyloid in melanogenesis and in the origin of the superiority of natural melanin toward its synthetic variants in terms of the spin-related properties.


Subject(s)
Amyloid , Amyloid/chemistry , Free Radicals/chemistry , Melanins/chemistry , Ultraviolet Rays , Electrochemical Techniques , Cytoprotection
18.
J Exp Clin Cancer Res ; 42(1): 223, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653435

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) patients bearing the ITD mutation in the tyrosine kinase receptor FLT3 (FLT3-ITD) present a poor prognosis and a high risk of relapse. FLT3-ITD is retained in the endoplasmic reticulum (ER) and generates intrinsic proteotoxic stress. We devised a strategy based on proteotoxic stress, generated by the combination of low doses of the differentiating agent retinoic acid (R), the proteasome inhibitor bortezomib (B), and the oxidative stress inducer arsenic trioxide (A). METHODS: We treated FLT3-ITD+ AML cells with low doses of the aforementioned drugs, used alone or in combinations and we investigated the induction of ER and oxidative stress. We then performed the same experiments in an in vitro co-culture system of FLT3-ITD+ AML cells and bone marrow stromal cells (BMSCs) to assess the protective role of the niche on AML blasts. Eventually, we tested the combination of drugs in an orthotopic murine model of human AML. RESULTS: The combination RBA exerts strong cytotoxic activity on FLT3-ITD+ AML cell lines and primary blasts isolated from patients, due to ER homeostasis imbalance and generation of oxidative stress. AML cells become completely resistant to the combination RBA when treated in co-culture with BMSCs. Nonetheless, we could overcome such protective effects by using high doses of ascorbic acid (Vitamin C) as an adjuvant. Importantly, the combination RBA plus ascorbic acid significantly prolongs the life span of a murine model of human FLT3-ITD+ AML without toxic effects. Furthermore, we show for the first time that the cross-talk between AML and BMSCs upon treatment involves disruption of the actin cytoskeleton and the actin cap, increased thickness of the nuclei, and relocalization of the transcriptional co-regulator YAP in the cytosol of the BMSCs. CONCLUSIONS: Our findings strengthen our previous work indicating induction of proteotoxic stress as a possible strategy in FLT3-ITD+ AML therapy and open to the possibility of identifying new therapeutic targets in the crosstalk between AML and BMSCs, involving mechanotransduction and YAP signaling.


Subject(s)
Cytoprotection , Tretinoin , Humans , Animals , Mice , Tretinoin/pharmacology , Disease Models, Animal , Mechanotransduction, Cellular , Proteotoxic Stress , Ascorbic Acid , Cell Death
19.
Planta ; 258(2): 39, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410253

ABSTRACT

MAIN CONCLUSION: The comparison of the changes of the lipid content in plant cell boundary membranes demonstrates a substantial role of the vacuolar membrane in response to hyperosmotic stress. Comparison of variations in the lipid content of plant cell boundary membranes (vacuolar and plasma membranes) isolated from beet root tissues (Beta vulgaris L.) was conducted after the effect of hyperosmotic stress. Both types of membranes participate in the formation of protective mechanisms, but the role of the vacuolar membrane was considered as more essential. This conclusion was connected with more significant adaptive variations in the content and composition of sterols and fatty acids in the vacuolar membrane (although some of the adaptive variations, especially, in the composition of phospholipids and glycoglycerolipids were similar for both types of membranes). In the plasma membrane under hyperosmotic stress, the increase in the content of sphingolipids was noted that was not observed in the tonoplast.


Subject(s)
Cytoprotection , Membrane Lipids , Membrane Lipids/metabolism , Plant Cells/metabolism , Cell Membrane/metabolism , Vacuoles/metabolism , Plants/metabolism
20.
Phytomedicine ; 119: 154997, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37523836

ABSTRACT

BACKGROUND: Several clinical and experimental studies have shown that therapeutic strategies targeting oxidative damage are beneficial for subarachnoid hemorrhage (SAH). A brain-permeable flavonoid, dihydromyricetin (DHM), can modulate redox/oxidative stress and has cerebroprotective effects in several neurological disorders. The effects of DHM on post-SAH early brain injury (EBI) and the underlying mechanism have yet to be clarified. PURPOSE: This work investigated a potential role for DHM in SAH, together with the underlying mechanisms. METHODS: Cerebroprotection by DHM was studied using a SAH rat model and primary cortical neurons. Atorvastatin (Ato) was a positive control drug in this investigation. The effects of DHM on behavior after SAH were evaluated by performing the neurological rotarod and Morris water maze tests, as well as by examining its effects on brain morphology and on the molecular and functional phenotypes of primary cortical neurons using dichlorodihydrofluorescein diacetate (DCFH-DA), immunofluorescent staining, biochemical analysis, and Western blot. RESULTS: DHM was found to significantly reduce the amount of reactive oxygen species (ROS), suppress mitochondrial disruption, and increase intrinsic antioxidant enzymatic activity following SAH. DHM also significantly reduced neuronal apoptosis in SAH rats and improved short- and long-term neurological functions. DHM induced significant increases in peroxiredoxin 2 (Prx2) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression, while decreasing phosphorylation of p38 and apoptotic signal-regulated kinase 1 (ASK1). In contrast, reduction of Prx2 expression using small interfering ribonucleic acid or by inhibiting Nrf2 with ML385 attenuated the neuroprotective effect of DHM against SAH. Moreover, DHM dose-dependently inhibited oxidative damage, decreased neuronal apoptosis, and increased the viability of primary cultured neurons in vitro. These positive effects were associated with Nrf2 activation and stimulation of Prx2 signaling, whereas ML385 attenuated the beneficial effects. CONCLUSION: These results reveal that DHM protects against SAH primarily by modulating the Prx2 signaling cascade through the Nrf2-dependent pathway. Hence, DHM could be a valuable therapeutic candidate for SAH treatment.


Subject(s)
Signal Transduction , Signal Transduction/drug effects , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Cytoprotection , Male , Animals , Rats , Rats, Sprague-Dawley , Cells, Cultured , Oxidative Stress/drug effects , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...