Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
Ann Rheum Dis ; 83(7): 830-837, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38749573

ABSTRACT

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by antibodies to DNA (anti-DNA) and other nuclear macromolecules. Anti-DNA antibodies are markers for classification and disease activity and promote pathogenesis by forming immune complexes that deposit in the tissue or stimulate cytokine production. Studies on the antibody response to DNA have focused primarily on a conformation of DNA known as B-DNA, the classic right-handed double helix. Among other conformations of DNA, Z-DNA is a left-handed helix with a zig-zag backbone; hence, the term Z-DNA. Z-DNA formation is favoured by certain base sequences, with the energetically unfavourable flip from B-DNA to Z-DNA dependent on conditions. Z-DNA differs from B-DNA in its immunogenicity in animal models. Furthermore, anti-Z-DNA antibodies, but not anti-B-DNA antibodies, can be present in otherwise healthy individuals. In SLE, antibodies to Z-DNA can occur in association with antibodies to B-DNA as a cross-reactive response, rising and falling together. While formed transiently in chromosomal DNA, Z-DNA is stably present in bacterial biofilms; biofilms can provide protection against antibiotics and other challenges including elements of host defence. The high GC content of certain bacterial DNA also favours Z-DNA formation as do DNA-binding proteins of bacterial or host origin. Together, these findings suggest that sources of Z-DNA can enhance the immunogenicity of DNA and, in SLE, stimulate the production of cross-reactive antibodies that bind both B-DNA and Z-DNA. As such, DNA can act as a molecular chameleon that, when stabilised in the Z-DNA conformation, can drive autoimmunity.


Subject(s)
Antibodies, Antinuclear , DNA, Z-Form , Lupus Erythematosus, Systemic , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Humans , Antibodies, Antinuclear/immunology , DNA, Z-Form/immunology , DNA, Z-Form/genetics , DNA/immunology , DNA/genetics , Animals , DNA, B-Form/immunology , DNA, B-Form/genetics
2.
Nucleic Acids Res ; 52(12): 6791-6801, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38813824

ABSTRACT

We present CGeNArate, a new model for molecular dynamics simulations of very long segments of B-DNA in the context of biotechnological or chromatin studies. The developed method uses a coarse-grained Hamiltonian with trajectories that are back-mapped to the atomistic resolution level with extreme accuracy by means of Machine Learning Approaches. The method is sequence-dependent and reproduces very well not only local, but also global physical properties of DNA. The efficiency of the method allows us to recover with a reduced computational effort high-quality atomic-resolution ensembles of segments containing many kilobases of DNA, entering into the gene range or even the entire DNA of certain cellular organelles.


Subject(s)
Molecular Dynamics Simulation , Nucleic Acid Conformation , DNA, B-Form/chemistry , DNA/chemistry , Machine Learning , Base Sequence
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124231, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38574610

ABSTRACT

Hypochlorous acid (HClO), as an essential reactive oxygen species (ROS) in biological systems, plays a pivotal role in processes of physiology and pathology. Abnormal fluctuations in HClO concentration can lead to various diseases, such as inflammation, cardiovascular diseases, and neurodegeneration. Therefore, developing an approach to rapidly and sensitively quantify ClO- content is vital to biomedicine development and bioassays. Herein, we fabricated a novel "turn-on" label-free fluorescence DNA probe to specifically detect hypochlorite ion (ClO-) based on G-quadruplex formation. To this end, we designed a G-rich signal DNA sequence (S-DNA) and a block DNA sequence (B-DNA), followed by the introduction of ClO--responsive phosphorothioate (PS) into B-DNA. In the absence of ClO-, B-DNA hybridized with S-DNA, preventing G-quadruplex formation from S-DNA; this resulted in the relatively low fluorescence intensity of ThT. Once ClO- was added, the hydrolysis between PS and ClO- split the B-DNA into two fragments, resulting in B-DNA breaking away from S-DNA, allowing G-quadruplex formation from S-DNA and increasing the fluorescence intensity of ThT. Using this method, we can detect ClO- without the interference of additional reactive oxygen species. The detection limit of ClO- was as low as 10 nM. Furthermore, this method facilitates the detection of ClO- within the tissues of rats with stress-induced hypertension.


Subject(s)
Benzothiazoles , Biosensing Techniques , DNA, B-Form , G-Quadruplexes , Hypertension , Humans , Fluorescent Dyes , DNA , Biosensing Techniques/methods , Hypochlorous Acid
4.
Int J Biol Macromol ; 266(Pt 1): 131238, 2024 May.
Article in English | MEDLINE | ID: mdl-38554916

ABSTRACT

Zeta potential is commonly referred as surface charge density and is a key factor in modulating the structural and functional properties of nucleic acids. Although the negative charge density of B-DNA is well understood, there is no prior description of the zeta potential measurement of Z-DNA. In this study, for the first time we discover the zeta potential difference between B-DNA and lanthanum chloride-induced Z-DNA. A series of linear repeat i.e. (CG)n and (GC)n DNA as well as branched DNA (bDNA) structures was used for the B-to-Z DNA transition. Herein, the positive zeta potential of Z-DNA has been demonstrated as a powerful tool to discriminate between B-form and Z-form of DNA. The generality of the approach has been validated both in linear and bDNA nanostructures. Thus, we suggest zeta potential can be used as an ideal signature for the left-handed Z-DNA.


Subject(s)
DNA, B-Form , DNA, Z-Form , Nucleic Acid Conformation , DNA, Z-Form/chemistry , DNA, B-Form/chemistry , Lanthanum/chemistry , DNA/chemistry , Nanostructures/chemistry
5.
Chemistry ; 30(16): e202303650, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38193643

ABSTRACT

DNA mimic foldamers based on aromatic oligoamide helices bearing anionic phosphonate side chains have been shown to bind to DNA-binding proteins sometimes orders of magnitude better than DNA itself. Here, we introduce new features in the DNA mimic foldamers to facilitate structural investigations of their interactions with proteins. Thirteen new foldamer sequences have been synthesized and characterized using NMR, circular dichroism, molecular modeling, and X-ray crystallography. The results show that foldamer helix handedness can be quantitatively biased by means of a single stereogenic center, that the foldamer structure can be made C2-symmetrical as in palindromic B-DNA sequences, and that associations between foldamer helices can be promoted utilizing dedicated C-terminal residues that act as sticky ends in B-DNA structures.


Subject(s)
Amides , DNA, B-Form , Amides/chemistry , Models, Molecular , Proteins , Crystallography, X-Ray
6.
Dalton Trans ; 53(8): 3476-3483, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38270175

ABSTRACT

The reaction of Pt-based anticancer agents with arsenic trioxide affords robust complexes known as arsenoplatins. The prototype of this family of anticancer compounds is arsenoplatin-1 (AP-1) that contains an As(OH)2 fragment linked to a Pt(II) moiety derived from cisplatin. Crystallographic and spectrometric studies of AP-1 binding to a B-DNA double helix dodecamer are presented here, in comparison with cisplatin and transplatin. Results reveal that AP-1, cisplatin and transplatin react differently with the DNA model system. Notably, in the AP-1/DNA systems, the Pt-As bond can break down with time and As-containing fragments can be released. These results have implications for the understanding of the mechanism of action of arsenoplatins.


Subject(s)
Antineoplastic Agents , Arsenic Trioxide/analogs & derivatives , DNA, B-Form , Cisplatin/chemistry , Transcription Factor AP-1/metabolism , Antineoplastic Agents/chemistry , DNA/chemistry
7.
Nat Commun ; 15(1): 590, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238326

ABSTRACT

A safe and effective vaccine with long-term protection against SARS-CoV-2 variants of concern (VOCs) is a global health priority. Here, we develop lipid nanoparticles (LNPs) to provide safe and effective delivery of plasmid DNA (pDNA) and show protection against VOCs in female small animal models. Using a library of LNPs encapsulating unique barcoded DNA (b-DNA), we screen for b-DNA delivery after intramuscular administration. The top-performing LNPs are further tested for their capacity of pDNA uptake in antigen-presenting cells in vitro. The lead LNP is used to encapsulate pDNA encoding the HexaPro version of SARS-CoV-2 spike (LNP-HPS) and immunogenicity and protection is tested in vivo. LNP-HPS elicit a robust protective effect against SARS-CoV-2 Gamma (P.1), correlating with reduced lethality, decreased viral load in the lungs and reduced lung damage. LNP-HPS induce potent humoral and T cell responses against P.1, and generate high levels of neutralizing antibodies against P.1 and Omicron (B.1.1.529). Our findings indicate that the protective efficacy and immunogenicity elicited by LNP-HPS are comparable to those achieved by the approved COVID-19 vaccine from Biontech/Pfizer in animal models. Together, these findings suggest that LNP-HPS hold great promise as a vaccine candidate against VOCs.


Subject(s)
COVID-19 , DNA, B-Form , Vaccines, DNA , Female , Animals , Humans , SARS-CoV-2/genetics , Vaccines, DNA/genetics , Nanovaccines , COVID-19 Vaccines , COVID-19/prevention & control , DNA , Antibodies, Neutralizing , Antibodies, Viral
8.
Environ Mol Mutagen ; 65 Suppl 1: 25-39, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37606505

ABSTRACT

In response to oxidative damage, base excision repair (BER) enzymes perturb the structural equilibrium of the VEGF promoter between B-form and G4 DNA conformations, resulting in epigenetic-like modifications of gene expression. However, the mechanistic details remain enigmatic, including the activity and coordination of BER enzymes on the damaged G4 promoter. To address this, we investigated the ability of each BER factor to conduct its repair activity on VEGF promoter G4 DNA substrates by employing pre-steady-state kinetics assays and in vitro coupled BER assays. OGG1 was able to initiate BER on double-stranded VEGF promoter G4 DNA substrates. Moreover, pre-steady-state kinetics revealed that compared to B-form DNA, APE1 repair activity on the G4 was decreased ~two-fold and is the result of slower product release as opposed to inefficient strand cleavage. Interestingly, Pol ß performs multiple insertions on G4 substrates via strand displacement DNA synthesis in contrast to a single insertion on B-form DNA. The multiple insertions inhibit ligation of the Pol ß products, and hence BER is not completed on the VEGF G4 promoter substrates through canonical short-patch BER. Instead, repair requires the long-patch BER flap-endonuclease activity of FEN1 in response to the multiple insertions by Pol ß prior to ligation. Because the BER proteins and their repair activities are a key part of the VEGF transcriptional enhancement in response to oxidative DNA damage of the G4 VEGF promoter, the new insights reported here on BER activity in the context of this promoter are relevant toward understanding the mechanism of transcriptional regulation.


Subject(s)
DNA Repair , DNA, B-Form , DNA Repair/genetics , Vascular Endothelial Growth Factor A/genetics , Oxidative Stress/genetics , DNA/genetics , DNA Damage/genetics
9.
Laryngoscope ; 134(4): 1564-1571, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37597166

ABSTRACT

OBJECTIVES: We examined sinus mucosal samples recovered from pediatric chronic rhinosinusitis (CRS) patients for the presence of Z-form extracellular DNA (eDNA) due to its recently elucidated role in pathogenesis of disease. Further, we immunolabeled these specimens for the presence of both members of the bacterial DNA-binding DNABII protein family, integration host factor (IHF) and histone-like protein (HU), due to their known role in converting common B-DNA to the rare Z-form. METHODS: Sinus mucosa samples recovered from 20 patients during functional endoscopic sinus surgery (FESS) were immunolabelled for B- and Z-DNA, as well as for both bacterial DNABII proteins. RESULTS: Nineteen of 20 samples (95%) included areas rich in eDNA, with the majority in the Z-form. Areas positive for B-DNA were restricted to the most distal regions of the mucosal specimen. Labeling for both DNABII proteins was observed on B- and Z-DNA, which aligned with the role of these proteins in the B-to-Z DNA conversion. CONCLUSIONS: Abundant Z-form eDNA in culture-positive pediatric CRS samples suggested that bacterial DNABII proteins were responsible for the conversion of eukaryotic B-DNA that had been released into the luminal space by PMNs during NETosis, to the Z-form. The presence of both DNABII proteins on B-DNA and Z-DNA supported the known role of these bacterial proteins in the B-to-Z DNA conversion. Given that Z-form DNA both stabilizes the bacterial biofilm and inactivates PMN NET-mediated killing of trapped bacteria, we hypothesize that this conversion may be contributing to the chronicity and recalcitrance of CRS to treatment. LEVEL OF EVIDENCE: NA Laryngoscope, 134:1564-1571, 2024.


Subject(s)
DNA, B-Form , DNA, Z-Form , Rhinitis , Sinusitis , Humans , Child , Integration Host Factors , Biofilms , Sinusitis/surgery , Chronic Disease , Rhinitis/surgery
10.
J Chem Theory Comput ; 20(2): 625-643, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38157247

ABSTRACT

Molecular dynamics simulations can be used in combination with experimental techniques to uncover the intricacies of biomolecular structure, dynamics, and the resulting interactions. However, many noncanonical nucleic acid structures have proven to be challenging to replicate in accurate agreement with experimental data, often attributed to known force field deficiencies. A common force field criticism is the handling of van der Waals (vdW) parameters, which have not been updated since the regular use of Ewald's methods became routine. This work dives into the effects of minute vdW radii shifts on RNA tetranucleotide, B-DNA, and Z-DNA model systems described by commonly used Amber force fields. Using multidimensional replica exchange molecular dynamics (M-REMD), the GACC RNA tetranucleotide demonstrated changes in the structural distribution between the NMR minor and anomalous structure populations based on the O2' vdW radii scanning. However, no significant change in the NMR Major conformation population was observed. There were minimal changes in the B-DNA structure but there were more substantial improvements in Z-DNA structural descriptions, specifically with the Tumuc1 force field. This occurred with both LJbb vdW radii adjustments and incorporation of the CUFIX nonbonded parameter modifications. Though the limited vdW modifications tested did not provide a universal fix to the challenge of simulating the various known nucleic acid structures, they do provide direction and a greater understanding for future force field development efforts.


Subject(s)
DNA, B-Form , DNA, Z-Form , Nucleic Acid Conformation , RNA/chemistry , DNA , Molecular Dynamics Simulation
11.
BMC Genomics ; 24(1): 678, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950200

ABSTRACT

BACKGROUND: High oncogene expression in cancer cells is a major cause of rapid tumor progression and drug resistance. Recent cancer genome research has shown that oncogenes as well as regulatory elements can be amplified in the form of extrachromosomal DNA (ecDNA) or subsequently integrated into chromosomes as homogeneously staining regions (HSRs). These genome-level variants lead to the overexpression of the corresponding oncogenes, resulting in poor prognosis. Most existing detection methods identify ecDNA using whole genome sequencing (WGS) data. However, these techniques usually detect many false positive regions owing to chromosomal DNA interference. RESULTS: In the present study, an algorithm called "ATACAmp" that can identify ecDNA/HSRs in tumor genomes using ATAC-seq data has been described. High chromatin accessibility, one of the characteristics of ecDNA, makes ATAC-seq naturally enriched in ecDNA and reduces chromosomal DNA interference. The algorithm was validated using ATAC-seq data from cell lines that have been experimentally determined to contain ecDNA regions. ATACAmp accurately identified the majority of validated ecDNA regions. AmpliconArchitect, the widely used ecDNA detecting tool, was used to detect ecDNA regions based on the WGS data of the same cell lines. Additionally, the Circle-finder software, another tool that utilizes ATAC-seq data, was assessed. The results showed that ATACAmp exhibited higher accuracy than AmpliconArchitect and Circle-finder. Moreover, ATACAmp supported the analysis of single-cell ATAC-seq data, which linked ecDNA to specific cells. CONCLUSIONS: ATACAmp, written in Python, is freely available on GitHub under the MIT license: https://github.com/chsmiss/ATAC-amp . Using ATAC-seq data, ATACAmp offers a novel analytical approach that is distinct from the conventional use of WGS data. Thus, this method has the potential to reduce the cost and technical complexity associated ecDNA analysis.


Subject(s)
DNA, B-Form , Neoplasms , Humans , Chromatin Immunoprecipitation Sequencing , Chromatin , DNA/genetics , Oncogenes , Neoplasms/genetics
12.
J Chem Theory Comput ; 19(23): 8955-8966, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38014857

ABSTRACT

In addition to the well-characterized B-form of DNA, duplex DNA can adopt various conformations, such as A or Z-DNA. Though less common, these structures can be induced biologically through protein or ligand interactions or experimentally with niche environmental conditions, such as high salt concentrations or in mixed water-ethanol. Reproducing these alternate structures through molecular dynamics simulations in recent years has been quite challenging with the currently available force fields, simulation techniques, and time scales. In this study, the Drude polarizable force field is tested for its ability to facilitate transitions between A-DNA and B-DNA or maintain A-DNA. Though transitions away from B-DNA were observed in high concentrations of ethanol, the resulting structures had hybrid properties taken from both B-DNA and A-DNA structures. This was also true for A-DNA in ethanol, which lost some of the A-DNA properties that it was expected to maintain. When B-DNA was tested in high salt environments, the resulting B-DNA structures showed no distinguishable differences with the increasing salt concentrations tested. These results with the Drude FF and recent results with additive force fields suggest that at present the current additive and polarizable force fields do not facilitate a complete transition between B- to A-DNA conformations under the conditions simulated. At present, the Drude FF favors A-B DNA hybrid structures when simulated in nonphysiological conditions.


Subject(s)
DNA, A-Form , DNA, B-Form , DNA/chemistry , Molecular Dynamics Simulation , Ethanol
13.
Nano Lett ; 23(20): 9310-9318, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37843021

ABSTRACT

Nonviral gene delivery has emerged as a promising technology for gene therapy. Nonetheless, these approaches often face challenges, primarily associated with lower efficiency, which can be attributed to the inefficient transportation of DNA into the nucleus. Here, we report a two-stage condensation approach to achieve efficient nuclear transport of DNA. First, we utilize chemical linkers to cross-link DNA plasmids via a reversible covalent bond to form smaller-sized bundled DNA (b-DNA). Then, we package the b-DNA into cationic vectors to further condense b-DNA and enable efficient gene delivery to the nucleus. We demonstrate clear improvements in the gene transfection efficiency in vitro, including with 11.6 kbp plasmids and in primary cultured neurons. Moreover, we also observed a remarkable improvement in lung-selective gene transfection efficiency in vivo by this two-stage condensation approach following intravenous administration. This reversible covalent assembly strategy demonstrates substantial value of nonviral gene delivery for clinical therapeutic applications.


Subject(s)
DNA, B-Form , Transfection , Gene Transfer Techniques , Plasmids/genetics , DNA/genetics , Genetic Therapy
14.
Immunity ; 56(11): 2508-2522.e6, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37848037

ABSTRACT

Cyclic guanosine monophosphate (GMP)-AMP (cGAMP) synthase (cGAS) is a universal double-stranded DNA (dsDNA) sensor that recognizes foreign and self-DNA in the cytoplasm and initiates innate immune responses and has been implicated in various infectious and non-infectious contexts. cGAS binds to the backbone of dsDNA and generates the second messenger, cGAMP, which activates the stimulator of interferon genes (STING). Here, we show that the endogenous polyamines spermine and spermidine attenuated cGAS activity and innate immune responses. Mechanistically, spermine and spermidine induced the transition of B-form DNA to Z-form DNA (Z-DNA), thereby decreasing its binding affinity with cGAS. Spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme in polyamine catabolism that decreases the cellular concentrations of spermine and spermidine, enhanced cGAS activation by inhibiting cellular Z-DNA accumulation; SAT1 deficiency promoted herpes simplex virus 1 (HSV-1) replication in vivo. The results indicate that spermine and spermidine induce dsDNA to adopt the Z-form conformation and that SAT1-mediated polyamine metabolism orchestrates cGAS activity.


Subject(s)
DNA, B-Form , DNA, Z-Form , Spermine/metabolism , Spermidine/metabolism , DNA/metabolism , Nucleotidyltransferases/metabolism , Polyamines/metabolism , Immunity, Innate/genetics
15.
Biochem Biophys Res Commun ; 675: 130-138, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37473527

ABSTRACT

The mechanism of dihydroartemisinin (DHA) inhibiting the migration and invasion of glioma in an ROS-DSB-dependent manner has been revealed. Extrachromosomal DNAs (ecDNAs) which are generated by DNA damage have great potential in glioma treatment. However, the role of ecDNAs in DHA's pharmacological mechanisms in glioma is still unknown. In this study, DHA was found to inhibit proliferative activity, increase ROS levels and promote apoptosis in U87 and U251 cells. Migration and invasion have also been suppressed. ecDNA expression profiles were found in gliomas. EcDNA-BASP1 was found, by means of bioinformatics analysis, to be present in GBM tissues and positively correlated with patient prognosis. Proliferation, migration and invasion were upregulated after knockdown of ecDNA-BASP1. The expression of vimentin and N-cadherin also had the same tendency. Finally, we found that the ecDNA-BASP1 content in nude mouse transplant tumors was significantly increased after DHA treatment, which might exert a better suppressive effect on glioma. The upregulation of tumor suppressor ecDNA-BASP1 played an important role in the suppression of glioma progression induced by DHA. EcDNA-BASP1 may inhibit glioma migration and invasion through repressing epithelial-mesenchymal transition (EMT).


Subject(s)
Brain Neoplasms , DNA, B-Form , Glioma , Animals , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Reactive Oxygen Species/metabolism , Humans
16.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445918

ABSTRACT

The dynamic processes operating on genomic DNA, such as gene expression and cellular division, lead inexorably to topological challenges in the form of entanglements, catenanes, knots, "bubbles", R-loops, and other outcomes of supercoiling and helical disruption. The resolution of toxic topological stress is the function attributed to DNA topoisomerases. A prominent example is the negative supercoiling (nsc) trailing processive enzymes such as DNA and RNA polymerases. The multiple equilibrium states that nscDNA can adopt by redistribution of helical twist and writhe include the left-handed double-helical conformation known as Z-DNA. Thirty years ago, one of our labs isolated a protein from Drosophila cells and embryos with a 100-fold greater affinity for Z-DNA than for B-DNA, and identified it as topoisomerase II (gene Top2, orthologous to the human UniProt proteins TOP2A and TOP2B). GTP increased the affinity and selectivity for Z-DNA even further and also led to inhibition of the isomerase enzymatic activity. An allosteric mechanism was proposed, in which topoII acts as a Z-DNA-binding protein (ZBP) to stabilize given states of topological (sub)domains and associated multiprotein complexes. We have now explored this possibility by comprehensive bioinformatic analyses of the available protein sequences of topoII representing organisms covering the whole tree of life. Multiple alignment of these sequences revealed an extremely high level of evolutionary conservation, including a winged-helix protein segment, here denoted as Zτ, constituting the putative structural homolog of Zα, the canonical Z-DNA/Z-RNA binding domain previously identified in the interferon-inducible RNA Adenosine-to-Inosine-editing deaminase, ADAR1p150. In contrast to Zα, which is separate from the protein segment responsible for catalysis, Zτ encompasses the active site tyrosine of topoII; a GTP-binding site and a GxxG sequence motif are in close proximity. Quantitative Zτ-Zα similarity comparisons and molecular docking with interaction scoring further supported the "B-Z-topoII hypothesis" and has led to an expanded mechanism for topoII function incorporating the recognition of Z-DNA segments ("Z-flipons") as an inherent and essential element. We further propose that the two Zτ domains of the topoII homodimer exhibit a single-turnover "conformase" activity on given G(ate) B-DNA segments ("Z-flipins"), inducing their transition to the left-handed Z-conformation. Inasmuch as the topoII-Z-DNA complexes are isomerase inactive, we infer that they fulfill important structural roles in key processes such as mitosis. Topoisomerases are preeminent targets of anti-cancer drug discovery, and we anticipate that detailed elucidation of their structural-functional interactions with Z-DNA and GTP will facilitate the design of novel, more potent and selective anti-cancer chemotherapeutic agents.


Subject(s)
DNA, B-Form , DNA, Z-Form , Humans , Molecular Docking Simulation , DNA/chemistry , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Guanosine Triphosphate , Adenosine Deaminase/metabolism
17.
Phys Rev E ; 107(4-1): 044404, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37198817

ABSTRACT

DNA naturally exists in a solvent environment, comprising water and salt molecules such as sodium, potassium, magnesium, etc. Along with the sequence, the solvent conditions become a vital factor determining DNA structure and thus its conductance. Over the last two decades, researchers have measured DNA conductivity both in hydrated and almost dry (dehydrated) conditions. However, due to experimental limitations (the precise control of the environment), it is very difficult to analyze the conductance results in terms of individual contributions of the environment. Therefore, modeling studies can help us to gain a valuable understanding of various factors playing a role in charge transport phenomena. DNA naturally has negative charges located at the phosphate groups in the backbone, which provides both the connections between the base pairs and the structural support for the double helix. Positively charged ions such as the sodium ion (Na^{+}), one of the most commonly used counterions, balance the negative charges at the backbone. This modeling study investigates the role of counterions both with and without the solvent (water) environment in charge transport through double-stranded DNA. Our computational experiments show that in dry DNA, the presence of counterions affects electron transmission at the lowest unoccupied molecular orbital energies. However, in solution, the counterions have a negligible role in transmission. Using the polarizable continuum model calculations, we demonstrate that the transmission is significantly higher at both the highest occupied and lowest unoccupied molecular orbital energies in a water environment as opposed to in a dry one. Moreover, calculations also show that the energy levels of neighboring bases are more closely aligned to ease electron flow in the solution.


Subject(s)
DNA, B-Form , Solvents/chemistry , DNA/chemistry , Ions/chemistry , Sodium/chemistry , Water/chemistry
18.
Dalton Trans ; 52(21): 6992-6996, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37199244

ABSTRACT

The reaction of the cytotoxic compound dirhodium tetraacetate with a B-DNA double helical dodecamer was studied by X-ray crystallography and mass spectrometry. The structure of the dirhodium/DNA adduct reveals a dimetallic center binding to an adenine via axial coordination. Complementary information has been gained through ESI MS measurements. Comparison between the present data and those previously obtained for cisplatin indicates that the two metallodrugs react with this DNA dodecamer in a significantly different fashion.


Subject(s)
DNA, B-Form , Crystallography, X-Ray , DNA/chemistry , Mass Spectrometry
19.
Chem Biodivers ; 20(4): e202201137, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36891674

ABSTRACT

The rapidly growing human population has led to duplicate food production and also reduced product loss. Although the negative effects of synthetic chemicals were recorded, they are still used as agrochemical. The production of non-toxic synthetics makes their use particularly safe. The goal of our research is to evaluate antimicrobial activity of previously synthesized Poly(p-phenylene-1-(2,5-dimethylphenyl)-5-phenyl-1H-pyrazole-3,4-dicarboxy amide) (poly(PDPPD)) against selected Gram-negative, Gram-positive bacteria, and fungus. In addition, the possible genotoxic effects of the poly(PDPPD) were searched on Triticum vulgare and Amaranthus retroflexus seedlings using Random Amplified Polymorphic DNA (RAPD) marker. The binding affinity and binding energies of the synthesized chemical to B-DNA were simulated with AutoDock Vina. It was observed that the poly(PDPPD) affected most of the organisms in a dose-dependent manner. Pseudomonas aeruginosa was the most affected species in tested bacteria at 500 ppm with 21.5 mm diameters. Similarly, a prominent activity was observed for tested fungi. The poly(PDPPD) decreased root and stem length of the Triticum vulgare and Amaranthus retroflexus seedlings and also reduced the genomic template stability (GTS) value of Triticum vulgare more than Amaranthus retroflexus. The binding energy of poly(PDPPD) was found in range of -9.1 and -8.3 kcal/mol for nine residues of B-DNA.


Subject(s)
DNA, B-Form , Pyrazoles , Triticum , Humans , Genomics , Pyrazoles/pharmacology , Pyrazoles/toxicity , Random Amplified Polymorphic DNA Technique , Triticum/drug effects , Triticum/metabolism , Mutagens/analysis , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism
20.
Methods Mol Biol ; 2651: 1-32, 2023.
Article in English | MEDLINE | ID: mdl-36892756

ABSTRACT

The discovery of a reversible transition in the helical sense of a double-helical DNA was initiated by the first synthesis in 1967 of the alternating sequence poly[d(G-C)]. In 1968, exposure to high salt concentration led to a cooperative isomerization of the double helix manifested by an inversion in the CD spectrum in the 240-310 nm range and in an altered absorption spectrum. The tentative interpretation, reported in 1970 and then in detailed form in a 1972 publication by Pohl and Jovin, was that the conventional right-handed B-DNA structure (R) of poly[d(G-C)] transforms at high salt concentration into a novel, alternative left-handed (L) conformation. The historical course of this development and its aftermath, culminating in the first crystal structure of left-handed Z-DNA in 1979, is described in detail. The research conducted by Pohl and Jovin after 1979 is summarized, ending with an assessment of "unfinished business": condensed Z*-DNA; topoisomerase IIα (TOP2A) as an allosteric ZBP (Z-DNA-binding protein); B-Z transitions of phosphorothioate-modified DNAs; and parallel-stranded poly[d(G-A)], a double helix with high stability under physiological conditions and potentially also left-handed.


Subject(s)
DNA, B-Form , DNA , DNA/genetics , DNA/metabolism , Nucleic Acid Conformation , Polyribonucleotides
SELECTION OF CITATIONS
SEARCH DETAIL
...