Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 973
Filter
1.
Med Vet Entomol ; 38(2): 216-226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563591

ABSTRACT

Vector control remains one of the best strategies to prevent the transmission of trypanosome infections in humans and livestock and, thus, a good way to achieve the elimination of human African trypanosomiasis and animal African trypanosomiasis. A key prerequisite for the success of any vector control strategy is the accurate identification and correct mapping of tsetse species. In this work, we updated the tsetse fly species identification and distribution in many geographical areas in Cameroon. Tsetse flies were captured from six localities in Cameroon, and their species were morphologically identified. Thereafter, DNA was extracted from legs of each tsetse fly and the length polymorphism of internal transcribed spacer-1 (ITS1) region of each fly was investigated using PCR. ITS1 DNA fragments of each tsetse species were sequenced. The sequences obtained were analysed and compared to those available in GenBank. This enabled to confirm/infirm results of the morphologic identification and then, to establish the phylogenetic relationships between tsetse species. Morphologic features allowed to clearly distinguish all the tsetse species captured in the South Region of Cameroon, that is, Glossina palpalis palpalis, G. pallicera, G. caliginea and G. nigrofusca. In the northern area, G. morsitans submorsitans could also be distinguished from G. palpalis palpalis, G. tachinoides and G. fuscipes, but these three later could not be distinguished with routine morphological characters. The ITS1 length polymorphism was high among most of the studied species and allowed to identify the following similar species with a single PCR, that is, G. palpalis palpalis with 241 or 242 bp and G. tachinoides with 221 or 222 bp, G. fuscipes with 236 or 237 bp. We also updated the old distribution of tsetse species in the areas assessed, highlighting the presence of G. palpalis palpalis instead of G. fuscipes in Mbakaou, or in sympatry with G. morsitans submorsitans in Dodeo (northern Cameroon). This study confirms the presence of G. palpalis palpalis in the Adamawa Region of Cameroon. It highlights the limits of using morphological criteria to differentiate some tsetse species. Molecular tools based on the polymorphism of ITS1 of tsetse flies can differentiate tsetse species through a simple PCR before downstream analyses or vector control planning.


Subject(s)
Insect Vectors , Polymorphism, Genetic , Tsetse Flies , Animals , Cameroon , Tsetse Flies/genetics , Insect Vectors/genetics , Insect Vectors/classification , Animal Distribution , Phylogeny , DNA, Intergenic/genetics , Female , Insect Control , Male , DNA, Ribosomal Spacer/analysis , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA
2.
Exp Appl Acarol ; 92(4): 871-883, 2024 May.
Article in English | MEDLINE | ID: mdl-38656472

ABSTRACT

The growing concern about migratory birds potentially spreading ticks due to global warming has become a significant issue. The city of Nantong in this study is situated along the East Asia-Australasian Flyway (EAAF), with numerous wetlands serving as roosting sites for migratory birds. We conducted an investigation of hard ticks and determined the phylogenetic characteristics of tick species in this city. We utilized three different genes for our study: the mitochondrial cytochrome oxidase subunit 1 (COX1) gene, the second internal transcribed spacer (ITS2), and the mitochondrial small subunit rRNA (12 S rRNA) gene. The predominant tick species were Haemaphysalis flava (H. flava) and Haemaphysalis longicornis (H. longicornis). Additionally, specimens of Haemaphysalis campanulata (H. campanulata) and Rhipicephalus sanguineus (R. sanguineus) were collected. The H. flava specimens in this study showed a close genetic relationship with those from inland provinces of China, as well as South Korea and Japan. Furthermore, samples of H. longicornis exhibited a close genetic relationship with those from South Korea, Japan, Australia, and the USA, as well as specific provinces in China. Furthermore, R. sanguineus specimens captured in Nantong showed genetic similarities with specimens from Egypt, Nigeria, and Argentina.


Subject(s)
Animal Migration , Birds , Electron Transport Complex IV , Ixodidae , Phylogeny , Animals , China , Ixodidae/genetics , Ixodidae/classification , Ixodidae/physiology , Electron Transport Complex IV/genetics , Electron Transport Complex IV/analysis , RNA, Ribosomal/genetics , RNA, Ribosomal/analysis , Nymph/growth & development , Nymph/classification , Nymph/genetics , Nymph/physiology , Arthropod Proteins/genetics , Arthropod Proteins/analysis , DNA, Ribosomal Spacer/analysis
3.
Sci Rep ; 11(1): 19466, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593929

ABSTRACT

Mud volcanoes (MVs) are visible signs of oil and gas reserves present deep beneath land and sea. The Marac MV in Trinidad is the only MV associated with natural hydrocarbon seeps. Petrogenic polyaromatic hydrocarbons (PAHs) in its sediments must undergo biogeochemical cycles of detoxification as they can enter the water table and aquifers threatening ecosystems and biota. Recurrent hydrocarbon seep activity of MVs consolidates the growth of hydrocarbonoclastic fungal communities. Fungi possess advantageous metabolic and ecophysiological features for remediation but are underexplored compared to bacteria. Additionally, indigenous fungi are more efficient at PAH detoxification than commercial/foreign counterparts and remediation strategies remain site-specific. Few studies have focused on hydrocarbonoclastic fungal incidence and potential in MVs, an aspect that has not been explored in Trinidad. This study determined the unique biodiversity of culturable fungi from the Marac MV capable of metabolizing PAHs in vitro and investigated their extracellular peroxidase activity to utilize different substrates ergo their extracellular oxidoreductase activity (> 50% of the strains decolourized of methylene blue dye). Dothideomycetes and Eurotiomycetes (89% combined incidence) were predominantly isolated. ITS rDNA sequence cluster analysis confirmed strain identities. 18 indigenous hydrocarbonoclastic strains not previously reported in the literature and some of which were biosurfactant-producing, were identified. Intra-strain variability was apparent for PAH utilization, oil-tolerance and hydroxylase substrate specificity. Comparatively high levels of extracellular protein were detected for strains that demonstrated low substrate specificity. Halotolerant strains were also recovered which indicated marine-mixed substrata of the MV as a result of deep sea conduits. This work highlighted novel MV fungal strains as potential bioremediators and biocatalysts with a broad industrial applications.


Subject(s)
Biotransformation , Fungi/isolation & purification , Fungi/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Biodiversity , DNA, Fungal/analysis , DNA, Ribosomal/analysis , DNA, Ribosomal Spacer/analysis , Enzymes , Fungi/enzymology , Geologic Sediments/microbiology , Peroxidase , Petroleum , Salinity , Sequence Analysis, DNA , Trinidad and Tobago
4.
Parasitol Int ; 84: 102409, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34157414

ABSTRACT

Paradiplozoon opsariichthydis (Jiang, Wu et Wang, 1984) Jiang, Wu et Wang, 1989 (Platyhelminthes, Monogenea, Diplozoidae) is blood-feeding parasite from the gills of Asian cyprinid fish Opsariichthys bidens Günther, 1873. In this study, we present a morphological redescription of P. opsariichthydis neotype main morphological features e.g. size of body and clamps due to the fact that the type material is missing. We decided to supplement morphological descriptions by the relevant molecular data (internal transcribed spacer - ITS2) related to P. opsariichthydis adult worm isolates and other representatives of genus Paradiplozoon to cross verify our findings. In addition to that, this study also brings an attention to the host identification. Thus, parasite data were complemented by the determinant cytochrome oxidase b (cytb) sequences of its hosts. All novel sequences are deposited in GenBank. This combination of the morphological and molecular data related to both the parasite and its host seems to be the optimal approach to the general process of (re)description of highly host-specific parasitic organisms, which can then lead to a meaningful phylogenetic analysis.


Subject(s)
Cyprinidae , Host-Parasite Interactions , Phylogeny , Trematoda/anatomy & histology , Animals , Cytochromes b/analysis , DNA, Helminth/analysis , DNA, Ribosomal Spacer/analysis , Female , Fish Diseases/parasitology , Fish Proteins/analysis , Male , Trematoda/classification , Trematoda/genetics , Trematode Infections/parasitology
5.
J Microbiol Methods ; 187: 106258, 2021 08.
Article in English | MEDLINE | ID: mdl-34082051

ABSTRACT

The superfamily Opisthorchioidea encompasses the families Cryptogonimidae, Opisthorchiidae and Heterophyidae. These parasites depend on the aquatic environment and include marine and freshwater species. Some species, such as Clonorchis sinensis and Opisthorchis viverrini, have a high impact on public health with millions of infected people worldwide and have thus been the object of many studies and tool developments. However, for many species, tools for identification and detection are scarce. Although morphological descriptions have been used and are still important, they are often not efficient on the immature stages of these parasites. Thus, during the past few decades, molecular approaches for parasite identification have become commonplace. These approaches are efficient, quick and reliable. Nonetheless, for some parasites of the superfamily Opisthorchioidea, reference genomic data are limited. This study reviews available genetic data and molecular tools for the identification and/or the detection of this superfamily. Molecular data on this superfamily are mostly based on mitochondrial and ribosomal gene sequence analyses, especially on the cytochrome c oxidase subunit 1 gene and internal transcribed spacer regions respectively.


Subject(s)
DNA, Helminth/genetics , Parasitology/methods , Trematoda/classification , Animals , DNA Primers , DNA, Helminth/analysis , DNA, Mitochondrial/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/analysis , Electron Transport Complex IV/genetics , Genes, Helminth , Heterophyidae/classification , Heterophyidae/genetics , Heterophyidae/isolation & purification , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Opisthorchidae/classification , Opisthorchidae/genetics , Opisthorchidae/isolation & purification , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Random Amplified Polymorphic DNA Technique , Trematoda/genetics , Trematoda/isolation & purification
6.
Ticks Tick Borne Dis ; 12(4): 101695, 2021 07.
Article in English | MEDLINE | ID: mdl-33677233

ABSTRACT

Wild animals often act as reservoirs of tick-borne Babesia and Theileria spp., which cause piroplasmosis. Therefore, epidemiological investigations about the distribution of these parasites in wild animals are important for evaluating the transmission risk to humans and livestock. In this study, we surveyed Babesia and Theileria spp. infecting wild boar (Sus scrofa) in Kagoshima and Yamaguchi prefectures and Tsushima island, which are all in western Japan, and performed molecular genetic analyses on the samples. DNA was extracted from either blood or liver samples of wild boar captured in Kagoshima prefecture in 2015, 2016, and 2018 and from blood samples from wild boar captured in Yamaguchi prefecture in 2013-2015 and Tsushima island in 2018. PCR screening for the partial 18S ribosomal RNA gene (18S rRNA) of both Babesia and Theileria spp. in wild boar revealed that 63.9 % (140 of 219 samples) were positive. Sequencing of all positive samples revealed that they were all the same Babesia species. Subsequent phylogenetic analyses showed that the parasite is closely related to Babesia sp. previously detected in the hard tick, Amblyomma testudinarium in Kagoshima, and further analyses suggested that this species is genetically related to Babesia gibsoni. On the other hand, no Theileria were detected in any of the samples. In summary, we observed a high prevalence of B. gibsoni-like Babesia sp. in wild boar in western regions of Japan. The host range, distribution, pathogenicity, and life cycle of this protozoan should be further evaluated.


Subject(s)
Babesia/isolation & purification , Babesiosis/epidemiology , Swine Diseases/epidemiology , Animals , Babesia/genetics , Babesiosis/parasitology , Cytochromes b/analysis , DNA, Protozoan/analysis , DNA, Ribosomal Spacer/analysis , Japan/epidemiology , Phylogeny , Prevalence , Protozoan Proteins/analysis , RNA, Protozoan/analysis , RNA, Ribosomal, 18S/analysis , Sus scrofa , Swine , Swine Diseases/parasitology
7.
Malar J ; 20(1): 141, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33691700

ABSTRACT

BACKGROUND: The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. METHODS: In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. RESULTS: The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. CONCLUSIONS: This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


Subject(s)
Animal Distribution , Anopheles/classification , DNA, Ribosomal Spacer/analysis , Mosquito Vectors/classification , Polymorphism, Restriction Fragment Length , Animals , Anopheles/genetics , Anopheles/physiology , Florida , Iowa , Malaria/transmission , Minnesota , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Virginia
8.
J Ethnopharmacol ; 274: 113909, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-33588011

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The roots and stems of several Salacia species have been used as traditional medicines, especially in Ayurvedic medical system for the treatment of diabetes, rheumatism, gonorrhea, amenorrhea, skin diseases, etc. Due to reported evidence supporting Salacia's beneficial effects in early-stage diabetes and other lifestyle-related diseases, Salacia-based dietary supplements and health foods have been gaining popularity in Japan and other countries in recent years. However, due to the morphological similarities between Salacia plants, particularly in the medicinally used parts (roots and stems), the authentication of the botanical identities of Salacia-derived products is challenging. AIM OF THIS STUDY: This study aims to develop a genetic approach to authenticate the medicinally used Salacia species and to determine the botanical sources of the commercially available Salacia-derived products. MATERIALS AND METHODS: The sequences of nuclear DNA internal transcribed spacer (ITS) and chloroplast trnK-rps16 region were determined and compared between 10 plant specimens from three medicinally used Salacia species as well as 48 samples of commercial crude drugs. Moreover, a PCR-restriction fragment length polymorphism (RFLP) assay was developed for rapid identification based on the ITS sequences. RESULTS: The plant specimens from the three medicinally used Salacia species showed three main types of sequences in both ITS (types I, II, III) and trnK-rps16 (i, ii, iii) regions. Combined the sequences of ITS and trnK-rps16 regions, S. reticulata and S. oblonga had type I-i and type III-iii or similar sequences, respectively. S. chinensis had type II-ii or II(536M)-i sequences. Forty-eight samples of commercial crude drugs were identified based on ITS and trnK-rps16 DNA barcode. A convenient PCR-RFLP assay using Cac8I restriction enzyme was established and applied to identify the botanical sources of health food products purchased from online retailers. All the twelve samples were identified as S. chinensis. CONCLUSION: The nrDNA ITS sequences provided useful information to authenticate Salacia species and to elucidate the phylogenetic relationship within the Salacia genus. Genetic identification results revealed that S. chinensis and S. reticulata are the major sources of commercially available Salacia-products. Based on the ITS sequences, a convenient PCR-RFLP assay was established for the identification of the medicinally used Salacia species as well as their derived health food products.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/isolation & purification , Polymerase Chain Reaction/methods , Salacia/classification , Salacia/genetics , DNA, Chloroplast/analysis , DNA, Chloroplast/genetics , DNA, Ribosomal Spacer/analysis , Dietary Supplements/analysis , Food Analysis , Phylogeny , Polymorphism, Restriction Fragment Length
9.
J Med Entomol ; 58(1): 222-240, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33432351

ABSTRACT

Given that accurately identifying pathogen vectors is vital for designing efficient mosquito control programs based on the proper surveillance of the epidemiologically important species, it has been suggested the complementary use of independently evolving genes and morphometric traits as a reliable approach for the characterization and delimitation of related species. Hence, we examined the spatial distribution of COI mtDNA and ITS2 rDNA variation from the historical perspective of Ochlerotatus caspius (Pallas, 1771) and O. dorsalis (Meigen, 1830), while simultaneously testing the utility of the two markers in integrative species delimitation when combined with phenotypic character analyses of larvae and adults. Despite the striking difference in haplotype diversity (high in COI mtDNA, low in ITS2 rDNA), no evident phylogeographic structure was apparent in the Palearctic O. caspius. The Holarctic O. dorsalis species was subdivided into two highly distinctive COI mtDNA phylogroups which corresponded to the Nearctic and Palearctic regions. Strong support for the independence of the two allopatric evolutionary lineages suggested that geographical barrier and climatic changes during Pleistocene caused vicariance of the ancestral range. COI mtDNA reliably distinguished O. caspius and O. dorsalis, while ITS2 rDNA yet again lacked the proper resolution for solving this problem. An integrative approach based on the larval and adult morphological traits have varying taxonomic applications due to their differential diagnostic values. Thus, by the implementation of an integrative taxonomic approach, we successfully detected species borders between the two epidemiologically relevant species and uncovered the presence of cryptic diversity within O. dorsalis.


Subject(s)
Genetic Variation , Ochlerotatus/classification , Ochlerotatus/genetics , Animals , DNA, Ribosomal Spacer/analysis , Electron Transport Complex IV/analysis , Female , Genetic Markers/genetics , Haplotypes , Insect Proteins/analysis , Larva/classification , Larva/enzymology , Larva/genetics , Male , Ochlerotatus/enzymology , Phylogeography , Species Specificity
10.
Ticks Tick Borne Dis ; 12(1): 101572, 2021 01.
Article in English | MEDLINE | ID: mdl-33068841

ABSTRACT

Females, nymphs, and larvae of Ixodes silvanus n. sp. collected from birds and from the vegetation in northwestern Argentina (Yungas Phytogeographic Province) are described herein. The new species belongs to the subgenus Trichotoixodes (Acari: Ixodidae). The female is diagnosed by a combination of the following characters: scutum with setae moderately long and more numerous in central field, fewer and moderately long setae on lateral fields, and inconspicuous setae in anterior field; basis capituli subtriangular dorsally; porose areas large and irregular in shape, lacking distinct margins; auriculae with straight edges diverging posterolaterally and ending with small blunt processes; hypostome narrow and pointed with dental formula 4/4 in the anterior third, then 3/3 and 2/2 near the base; coxae I with two spurs, sub-equal in size, internal slightly slimmer than external. The nymph is diagnosed by notum with numerous and long setae, ventral surface covered by numerous whitish setae, scutum with short scapulae and few and shallow punctations, setae on scutum few, short and irregularly distributed, basis capituli sub-triangular dorsally with posterior margin straight, cornua large and directed postero-laterally, auriculae large and projected laterally, lateral margin of basis capituli above auriculae with a lateral and triangular projection, hypostome pointed with dental formula 3/3 in the anterior third and then 2/2, and coxa I with two short, sub-equal, triangular spurs. The diagnostic characters of the larva are: basis capituli dorsally sub-triangular with lateral angles acute and posterior margin straight, auriculae as large triangular lateral projections, hypostome with apex bluntly pointed and dental formula 3/3 in the anterior third and then 2/2, coxa I with two short, sub-equal, triangular spurs, and pattern of dorsal and ventral body setae. This new species is phylogenetically related to Ixodes brunneus, Ixodes turdus and Ixodes frontalis, and the principal hosts for all its parasitic stages are birds.


Subject(s)
Ixodes/anatomy & histology , Ixodes/classification , Animals , Argentina , DNA, Ribosomal Spacer/analysis , Electron Transport Complex IV/analysis , Female , Ixodes/growth & development , Ixodes/ultrastructure , Larva/anatomy & histology , Larva/classification , Larva/growth & development , Larva/ultrastructure , Microscopy , Microscopy, Electron, Scanning , Nymph/anatomy & histology , Nymph/classification , Nymph/growth & development , Nymph/ultrastructure , Phylogeny , RNA, Ribosomal, 16S/analysis
11.
Parasitol Int ; 80: 102203, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33027710

ABSTRACT

Extralymphatic filariasis is an uncommon phenomenon that can be caused by several lymphatic filarial species, including zoonotic filaria of animal origins. In this study, we report a case of a 64-year-old Thai woman who presented with a lump in her left breast that was diagnosed with invasive ductal carcinoma. At the same time, a small nodule was found in her right breast, via imaging study, without any abnormal symptoms. A core needle biopsy of the right breast nodule revealed a filarial-like nematode compatible with the adult stage of Brugia sp. A molecular identification of the nematode partial mt 12rRNA gene and ITS1 suggested the causative species as closely related to Brugia pahangi, a zoonotic lymphatic filaria of animals such as cats and dogs. The sequence of the partial mt 12rRNA and ITS1 gene in this patient was 94% and 99% identical to the previously reported sequence of mt 12rRNA and ITS1 genes of B. pahangi. The sequence of ITS1 gene is 99% similar to B. pahangi microfilaria from infected dogs in Bangkok, which was highly suspected of having a zoonotic origin. As far as we know, this is the first case report of B. pahangi filariasis presented with a breast mass concomitantly found in a patient with invasive ductal carcinoma. This raised serious concern regarding the zoonotic transmission of filariasis from natural animal reservoirs.


Subject(s)
Breast Diseases/diagnosis , Breast Neoplasms/pathology , Brugia pahangi/isolation & purification , Carcinoma, Ductal, Breast/pathology , Filariasis/diagnosis , Animals , Breast Diseases/parasitology , Brugia pahangi/classification , DNA, Ribosomal Spacer/analysis , Female , Filariasis/parasitology , Humans , Middle Aged , RNA, Helminth/analysis , RNA, Ribosomal/analysis , Thailand
12.
Transbound Emerg Dis ; 68(3): 1493-1503, 2021 May.
Article in English | MEDLINE | ID: mdl-32881318

ABSTRACT

Cutaneous leishmaniasis (CL) is a major health problem in Iran, with a heavy burden on human health and society. There is little knowledge about the molecular epidemiology of the disease, as well as phylogenetic relationship of causative agents in south-eastern Iran. The aim of the present study was to investigate the molecular aspects of CL, especially atypical CL in the Bam district, Kerman province, south-eastern Iran, as an endemic region of CL in Iran. The smears were collected from lesion samples of 353 patients clinically suspected to CL, who attended local health centres in the Bam district during 2016-2017. Direct smears were examined for Leishmania parasites using the Giemsa staining technique. Amplification of kinetoplast DNA (kDNA) and the ribosomal internal transcribed spacer 1(ITS-1) gene were carried out using polymerase chain reaction (PCR). Then, the ITS1-PCR products were sequenced for phylogenetic analysis. Overall, 278 cases were confirmed as CL by microscopic examination of Giemsa-stained slides. Clinical presentation of the lesions was basically of two types: (a) typical lesions and (b) atypical including lupoid ulcers, sporotrichoid, nodular and exudative lesions. The PCR assay on all specimens of skin lesions proved L. tropica as the main pathogenic agent. Phylogenic analysis revealed high similarity among isolates from the Bam district in the south-east with isolates from Birjand in eastern Iran, as well as with isolates from Herat province in western Afghanistan. The study provided valuable information concerning the genetic diversity of the parasite as one of the factors influencing the clinical manifestations in CL in south-eastern Iran, which could be the basis for planning future control strategies.


Subject(s)
Leishmania tropica/isolation & purification , Leishmaniasis, Cutaneous/parasitology , Adolescent , Adult , Aged , Child , Child, Preschool , DNA, Kinetoplast/analysis , DNA, Ribosomal Spacer/analysis , Female , Humans , Infant , Iran , Leishmania tropica/classification , Leishmania tropica/genetics , Male , Middle Aged , Phylogeny , Young Adult
13.
Ticks Tick Borne Dis ; 12(1): 101602, 2021 01.
Article in English | MEDLINE | ID: mdl-33142143

ABSTRACT

Amblyomma cajennense Fabricius, 1787 (Acari: Ixodidae) is a widely distributed tick taxon. Recent studies have reassessed this taxon as a complex of six species. Amblyomma mixtum Koch, 1844 has been suggested by some authors as the only species of this complex that is present in Cuba. Other authors have pointed a niche overlapping for A. mixtum and A. cajennense s.s. in the country. Detailed taxonomic studies on the Cuban species belonging to this complex are needed in order to evaluate their current distribution according to the recent classification. This study aimed to characterize Cuban populations from the A. cajennense complex by using tick samples obtained from 3 occidental provinces and 1 central province of the country. Morphological identification and measurements of the main relevant taxonomic structures were conducted by using Scanning Electron Microscopy. Phylogenetic analyzes were carried out with 16S ribosomal RNA, internal transcribed spacer 2 and the subunit I of mitochondrial cytochrome c oxidase gene sequences. The results of these studies demonstrated that all samples belonged to the species A. mixtum (Koch, 1844). This study constitutes the first molecular characterization of this Amblyomma species in Cuba. Further studies will be necessary in order to corroborate if A. cajennense s.s. is also present in the island.


Subject(s)
Amblyomma/anatomy & histology , Amblyomma/genetics , Animal Distribution , Amblyomma/growth & development , Animals , Cuba , DNA, Ribosomal Spacer/analysis , Dogs/parasitology , Electron Transport Complex IV/analysis , Female , Horses/parasitology , Larva/anatomy & histology , Larva/genetics , Larva/growth & development , Male , Nymph/anatomy & histology , Nymph/genetics , Nymph/growth & development , Phylogeny , RNA, Ribosomal, 16S/analysis , Sheep, Domestic/parasitology
14.
Vet Parasitol Reg Stud Reports ; 22: 100457, 2020 12.
Article in English | MEDLINE | ID: mdl-33308720

ABSTRACT

Echidnophaga gallinacea is the sticktight flea of chickens. It causes dermatitis and ulcers in the skin and carries some disease-causing agents such as Rickettsia and Bartonella. This study was conducted to detect the infection rate and elucidate the molecular characterization of E. gallinacea in chickens from El-Dabaa City, Matrouh Governorate, Egypt. The fleas were collected from infected chickens and identified morphologically. The internal transcribed spacer-1 (ITS-1) gene PCR method was used for molecular characterization. Based on the morphology, the collected fleas were confirmed as E. gallinacea. The overall infection rate was 5%, with 4.5% in female and 10% in male chickens. ITS-1 PCR revealed a specific band of 488 bp. The ITS-1 gene sequence from Egypt occurred in the same phylogenetic clade as that from Cameroon, with a percentage identity of 98.47%.


Subject(s)
Chickens , Flea Infestations/veterinary , Poultry Diseases/epidemiology , Siphonaptera/physiology , Animals , Base Sequence , DNA, Ribosomal Spacer/analysis , Egypt/epidemiology , Female , Flea Infestations/epidemiology , Flea Infestations/parasitology , Male , Phylogeny , Poultry Diseases/parasitology , Prevalence , Siphonaptera/classification , Siphonaptera/genetics
15.
Malar J ; 19(1): 417, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33213479

ABSTRACT

BACKGROUND: Anopheles subpictus and Anopheles sundaicus are closely related species, each comprising several sibling species. Ambiguities exist in the classification of these two nominal species and the specific status of members of these species complexes. Identifying fixed molecular forms and mapping their spatial distribution will help in resolving the taxonomic ambiguities and understanding their relative epidemiological significance. METHODS: DNA sequencing of Internal Transcribed Spacer-2 (ITS2), 28S-rDNA (D1-to-D3 domains) and cytochrome oxidase-II (COII) of morphologically identified specimens of two nominal species, An. subpictus sensu lato (s.l.) and An. sundaicus s.l., collected from the Indian subcontinent, was performed and subjected to genetic distance and molecular phylogenetic analyses. RESULTS: Molecular characterization of mosquitoes for rDNA revealed the presence of two molecular forms of An. sundaicus s.l. and three molecular forms of An. subpictus s.l. (provisionally designated as Form A, B and C) in the Indian subcontinent. Phylogenetic analyses revealed two distinct clades: (i) subpictus clade, with a single molecular form of An. subpictus (Form A) prevalent in mainland India and Sri Lanka, and (ii) sundaicus clade, comprising of members of Sundaicus Complex, two molecular forms of An. subpictus s.l. (Form B and C), prevalent in coastal areas or islands in Indian subcontinent, and molecular forms of An. subpictus s.l. reported from Thailand and Indonesia. Based on the number of float-ridges on eggs, all An. subpictus molecular Form B were classified as Species B whereas majority (80%) of the molecular Form A were classified as sibling species C. Fixed intragenomic sequence variation in ITS2 with the presence of two haplotypes was found in molecular Form A throughout its distribution. CONCLUSION: A total of three molecular forms of An. subpictus s.l. and two molecular forms of An. sundaicus s.l. were recorded in the Indian subcontinent. Phylogenetically, two forms of An. subpictus s.l. (Form B and C) prevalent in coastal areas or islands in the Indian subcontinent and molecular forms reported from Southeast Asia are members of Sundaicus Complex. Molecular Form A of An. subpictus is distantly related to all other forms and deserve a distinct specific status.


Subject(s)
Anopheles/genetics , Mosquito Vectors/genetics , Animals , DNA, Ribosomal Spacer/analysis , Electron Transport Complex IV/analysis , Female , India , Malaria , Phylogeny , RNA, Ribosomal, 28S/analysis , Species Specificity , Sri Lanka
16.
PLoS One ; 15(11): e0236774, 2020.
Article in English | MEDLINE | ID: mdl-33180770

ABSTRACT

The dietary supplement industry is rapidly growing yet, a recent study revealed that up to 60% of supplements may have substituted ingredients, some of which can be harmful contaminants or additives. When ingredients cannot be verified morphologically or biochemically, DNA barcoding complemented with a molecular phylogenetic analysis can be a powerful method for species authentication. We employed a molecular phylogenetic analysis for species authentication of the commonly used fungal supplement, reishi (Ganoderma lingzhi), by amplifying and sequencing the nuclear ribosomal internal transcribed spacer regions (ITS) with genus-specific primers. PCR of six powdered samples and one dried sample all sold as G. lucidum representing independent suppliers produced single, strong amplification products in the expected size-range for Ganoderma. Both best-hit BLAST and molecular phylogenetic analyses clearly identified the presence of G. lingzhi DNA in all seven herbal supplements. We detected variation in the ITS sequences among our samples, but all herbal supplement samples fall within a large clade of G. lingzhi ITS sequences. ITS-based phylogenetic analysis is a successful and cost-effective method for DNA-based species authentication that could be used in the herbal supplement industry for this and other fungal and plant species that are otherwise difficult to identify.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Ribosomal Spacer/analysis , Dietary Supplements/analysis , Ganoderma/chemistry , Sequence Analysis, DNA/methods , DNA, Ribosomal Spacer/genetics , Phylogeny
17.
J Invertebr Pathol ; 176: 107460, 2020 10.
Article in English | MEDLINE | ID: mdl-32891682

ABSTRACT

During a histopathological survey of Mytilus galloprovincialis in Galicia (NW Spain), microcells were observed infecting several organs of the symbiont copepod Mytilicola intestinalis. Positive results of PCR assay with specific primers for genus Mikrocytos and a clear signal of in situ hybridization with MACKINI-1 digoxigenin- labelled DNA probe (DIG-ISH) indicated a protozoan parasite of Mikrocytos genus. The ultrastructural study revealed intra and extracellular locations, polymorphic nuclei, intracellular round vesicles in the cytoplasm and absence of mitochondria. The present paper reports the characterization of the Mikrocytos sp. infecting M. intestinalis and proposes a novel species in the genus: Mikrocytos mytilicoli n. sp. A sequence of 18S-28S rDNA was obtained with 95.6% maximum identity (query cover 100%) with Mikrocytos mackini. Phylogenetic analysis showed that M. mytilicoli n. sp. and M. mackini share a common ancestor. However, comparison of the ITS1 rDNA region showed low similarity (75.8%) with M. mackini, which, combined with differences in ultrastructural details, host and geographic location, support the designation of a new species. This is the first description of a microcytid parasite of the genus Mikrocytos from a non-bivalve host.


Subject(s)
Cercozoa/classification , Copepoda/parasitology , Host-Parasite Interactions , Animals , Cercozoa/cytology , Cercozoa/genetics , Cercozoa/ultrastructure , Copepoda/physiology , DNA, Protozoan/analysis , DNA, Ribosomal Spacer/analysis , Microscopy , Microscopy, Electron, Transmission , Mytilus/physiology , Phylogeny , RNA, Ribosomal, 18S/analysis , RNA, Ribosomal, 28S/analysis , Spain , Symbiosis
18.
PLoS One ; 15(8): e0237507, 2020.
Article in English | MEDLINE | ID: mdl-32813726

ABSTRACT

DNA barcoding can identify biological species and provides an important tool in diverse applications, such as conserving species and identifying pathogens, among many others. If combined with statistical tests, DNA barcoding can focus taxonomic scrutiny onto anomalous species identifications based on morphological features. Accordingly, we put nonparametric tests into a taxonomic context to answer questions about our sequence dataset of the formal fungal barcode, the nuclear ribosomal internal transcribed spacer (ITS). For example, does DNA barcoding concur with annotated species identifications significantly better if expert taxonomists produced the annotations? Does species assignment improve significantly if sequences are restricted to lengths greater than 500 bp? Both questions require a figure of merit to measure of the accuracy of species identification, typically provided by the probability of correct identification (PCI). Many articles on DNA barcoding use variants of PCI to measure the accuracy of species identification, but do not provide the variants with names, and the absence of explicit names hinders the recognition that the different variants are not comparable from study to study. We provide four variant PCIs with a name and show that for fixed data they follow systematic inequalities. Despite custom, therefore, their comparison is at a minimum problematic. Some popular PCI variants are particularly vulnerable to errors in species annotation, insensitive to improvements in a barcoding pipeline, and unable to predict identification accuracy as a database grows, making them unsuitable for many purposes. Generally, the Fractional PCI has the best properties as a figure of merit for species identification. The fungal genus Ramaria provides unusual taxonomic difficulties. As a case study, it shows that a good taxonomic background can be combined with the pertinent summary statistics of molecular results to improve the identification of doubtful samples, linking both disciplines synergistically.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Fungal/analysis , DNA, Ribosomal Spacer/analysis , Fungi/classification , Fungi/genetics , Sequence Analysis, DNA/methods , Bayes Theorem , Models, Statistical , Phylogeny , Species Specificity
19.
Trop Anim Health Prod ; 52(6): 3259-3264, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32699961

ABSTRACT

African animal trypanosomiasis (AAT), a disease complex caused by tsetse fly-transmitted Trypanosoma brucei brucei, T. congolense savannah ITS, and T. vivax, continues to inflict heavy losses to the animal industry in terms of decreased livestock production and productivity. Live bait technology and chemotherapy have been used as a control strategy in northern Uganda since 2006 with minimal success. Here, we report the results of a cross-sectional study carried out in Lango subregion, Uganda, to assess the species prevalence of bovine trypanosome in cattle using the internal transcribed spacer (ITS) of trypanosome ribosomal DNA (rDNA). Blood samples were collected from 1090 cattle by ear vein puncture and screened using a single pair of primers designed to amplify ITS ribosomal DNA (rDNA). Our results indicate an overall prevalence of 40.18% (438/1090, 95% CI 30.82-54.51). T. vivax constituted 32.66% (356/1090), T. congolense 2.39% (26/1090), T. brucei 1.28% (14/1090), T. godfreyi 0.09%(1/1090), T. brucei and T. congolense 0.36% (4/1090), T. brucei and T. vivax 1.47% (16/1090), T. vivax and T. congolense 1.65% (18/1090), T. vivax and T. simiae 0.18% (2/1090), and T. vivax and T. godfreyi 0.09% (1/1090) of infections. Over 91.7% of infections involved single species, while 9.5% were mixed infections. Over 90.2% (37/41) of the mixed infections involved T. vivax as one of the species, while 53.7% (22/41) involved T. congolense. The high prevalence of AAT and the continued presence of T. brucei raise public health concerns because of the zoonotic implications. An integrated approach that involves mass treatment of cattle, vector, and animal movement control should be adopted to reduce the risk of both AAT and HAT.


Subject(s)
Trypanosomiasis, Bovine/epidemiology , Trypanosomiasis, Bovine/prevention & control , Animals , Cattle , Cross-Sectional Studies , DNA, Protozoan/analysis , DNA, Ribosomal Spacer/analysis , Prevalence , Trypanosoma/physiology , Uganda/epidemiology
20.
Zoolog Sci ; 37(3): 240-254, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549538

ABSTRACT

Ostracod genus Heterodesmus Brady, 1866 is known thus far to contain only three species: H. adamsii Brady, 1866; H. apriculus Hiruta, 1992; and H. naviformis (Poulsen, 1962). This genus has been recorded from the Sea of Japan, and the coastal areas of Thailand and Vietnam. The main generic character is the presence of antero-dorsal and postero-dorsal tube-like processes on the rostrum on both valves. The three species mostly differ in the shell lateral projections. Their relationship and the position of Heterodesmus within family Cypridinidae are poorly understood, partly due to the lack of publication of DNA data so far. We study Heterodesmus collected from several localities in the Northwest Pacific, namely Tsushima and Iki Islands in Japan and Maemul Island in Korea. Besides morphological characters, we also use two mitochondrial markers (16S rRNA and mtCOI) and three nuclear regions (18S rRNA, 28S rRNA, and internal transcribed spacer - ITS) in the samples to detect the biodiversity of this genus. Our phylogenetic tree based on molecular data coupled with morphology reveals the presence of two species, H. adamsii and H. apriculus. We report on their morphological variability, molecular diversity, and phylogenetic position within Cypridinidae based on 16S, 28S and 18S rRNAs, and provide a taxonomic key for all living genera of this family. For the first time, we give an overview of the intrageneric and intrafamily DNA distances of the above markers for the entire subclass Myodocopa.


Subject(s)
Crustacea/anatomy & histology , Crustacea/genetics , Phylogeny , Animals , Arthropod Proteins/analysis , Biodiversity , Crustacea/classification , Crustacea/enzymology , DNA, Ribosomal Spacer/analysis , Democratic People's Republic of Korea , Electron Transport Complex IV/analysis , Female , Japan , Male , Mitochondrial Proteins/analysis , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 18S/analysis , RNA, Ribosomal, 28S/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...