Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
Nature ; 630(8018): 961-967, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740055

ABSTRACT

Although eukaryotic Argonautes have a pivotal role in post-transcriptional gene regulation through nucleic acid cleavage, some short prokaryotic Argonaute variants (pAgos) rely on auxiliary nuclease factors for efficient foreign DNA degradation1. Here we reveal the activation pathway of the DNA defence module DdmDE system, which rapidly eliminates small, multicopy plasmids from the Vibrio cholerae seventh pandemic strain (7PET)2. Through a combination of cryo-electron microscopy, biochemistry and in vivo plasmid clearance assays, we demonstrate that DdmE is a catalytically inactive, DNA-guided, DNA-targeting pAgo with a distinctive insertion domain. We observe that the helicase-nuclease DdmD transitions from an autoinhibited, dimeric complex to a monomeric state upon loading of single-stranded DNA targets. Furthermore, the complete structure of the DdmDE-guide-target handover complex provides a comprehensive view into how DNA recognition triggers processive plasmid destruction. Our work establishes a mechanistic foundation for how pAgos utilize ancillary factors to achieve plasmid clearance, and provides insights into anti-plasmid immunity in bacteria.


Subject(s)
Argonaute Proteins , Bacterial Proteins , Plasmids , Vibrio cholerae , Argonaute Proteins/chemistry , Argonaute Proteins/metabolism , Argonaute Proteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , Deoxyribonucleases/chemistry , Deoxyribonucleases/metabolism , Deoxyribonucleases/ultrastructure , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Models, Molecular , Plasmids/genetics , Plasmids/immunology , Plasmids/metabolism , Protein Domains , Protein Multimerization , Vibrio cholerae/genetics , Vibrio cholerae/immunology , Vibrio cholerae/pathogenicity
2.
Proc Natl Acad Sci U S A ; 119(32): e2207459119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914129

ABSTRACT

Twinkle is the mammalian helicase vital for replication and integrity of mitochondrial DNA. Over 90 Twinkle helicase disease variants have been linked to progressive external ophthalmoplegia and ataxia neuropathies among other mitochondrial diseases. Despite the biological and clinical importance, Twinkle represents the only remaining component of the human minimal mitochondrial replisome that has yet to be structurally characterized. Here, we present 3-dimensional structures of human Twinkle W315L. Employing cryo-electron microscopy (cryo-EM), we characterize the oligomeric assemblies of human full-length Twinkle W315L, define its multimeric interface, and map clinical variants associated with Twinkle in inherited mitochondrial disease. Cryo-EM, crosslinking-mass spectrometry, and molecular dynamics simulations provide insight into the dynamic movement and molecular consequences of the W315L clinical variant. Collectively, this ensemble of structures outlines a framework for studying Twinkle function in mitochondrial DNA replication and associated disease states.


Subject(s)
Cryoelectron Microscopy , DNA Helicases , Mitochondrial Diseases , Mitochondrial Proteins , Protein Multimerization , DNA Helicases/chemistry , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA Replication , DNA, Mitochondrial/biosynthesis , Humans , Mass Spectrometry , Mitochondrial Diseases/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/ultrastructure , Molecular Dynamics Simulation , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutant Proteins/ultrastructure
3.
Nature ; 609(7927): 630-639, 2022 09.
Article in English | MEDLINE | ID: mdl-36002576

ABSTRACT

The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Bacterial Proteins , DNA Helicases , DNA, Cruciform , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/ultrastructure , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Cryoelectron Microscopy , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA, Cruciform/chemistry , DNA, Cruciform/metabolism , DNA, Cruciform/ultrastructure , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/ultrastructure , Homologous Recombination , Hydrolysis , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Multienzyme Complexes/ultrastructure , Nucleotides , Protein Conformation , Rotation
4.
Elife ; 102021 09 06.
Article in English | MEDLINE | ID: mdl-34486521

ABSTRACT

The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.


Subject(s)
Carrier Proteins/metabolism , Chromatin Assembly and Disassembly , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Nucleosomes/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerases/metabolism , Carrier Proteins/genetics , Cryoelectron Microscopy , DNA Helicases/genetics , DNA Helicases/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Humans , Kinetics , Models, Molecular , Nuclear Proteins/genetics , Nucleosomes/genetics , Nucleosomes/ultrastructure , Poly (ADP-Ribose) Polymerase-1/genetics , Poly(ADP-ribose) Polymerases/genetics , Protein Binding , Protein Conformation , Recombinant Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity
5.
Nature ; 598(7880): 368-372, 2021 10.
Article in English | MEDLINE | ID: mdl-34526721

ABSTRACT

Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription-repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.


Subject(s)
Cryoelectron Microscopy , DNA Repair , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , RNA Polymerase II/chemistry , RNA Polymerase II/ultrastructure , Transcription, Genetic , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Carrier Proteins/ultrastructure , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/ultrastructure , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Humans , Models, Molecular , Multiprotein Complexes/metabolism , Poly-ADP-Ribose Binding Proteins/chemistry , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/ultrastructure , RNA Polymerase II/metabolism , Transcription Elongation, Genetic , Transcription Factor TFIIH/chemistry , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/ultrastructure , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription Factors/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Ubiquitination
6.
J Biol Chem ; 297(1): 100862, 2021 07.
Article in English | MEDLINE | ID: mdl-34116057

ABSTRACT

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Subject(s)
DNA Helicases/genetics , DNA Repair Enzymes/genetics , Elongin/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Polymerase II/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Cockayne Syndrome/enzymology , Cockayne Syndrome/genetics , DNA Helicases/chemistry , DNA Helicases/ultrastructure , DNA Repair/genetics , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/ultrastructure , Elongin/chemistry , Elongin/ultrastructure , Humans , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Poly-ADP-Ribose Binding Proteins/chemistry , Poly-ADP-Ribose Binding Proteins/ultrastructure , RNA Polymerase II/chemistry , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/genetics , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/ultrastructure , Ubiquitination/genetics
7.
Curr Genet ; 67(2): 225-230, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33237336

ABSTRACT

The coordinated action of DNA polymerases and DNA helicases is essential at genomic sites that are hard to replicate. Among these are sites that harbour G-quadruplex DNA structures (G4). G4s are stable alternative DNA structures, which have been implicated to be involved in important cellular processes like the regulation of gene expression or telomere maintenance. G4 structures were shown to hinder replication fork progression and cause genomic deletions, mutations and recombination events. Many helicases unwind G4 structures and preserve genome stability, but a detailed understanding of G4 replication and the re-start of stalled replication forks around formed G4 structures is not clear, yet. In our recent study, we identified that Mgs1 preferentially binds to G4 DNA structures in vitro and is associated with putative G4-forming chromosomal regions in vivo. Mgs1 binding to G4 motifs in vivo is partially dependent on the helicase Pif1. Pif1 is the major G4-unwinding helicase in S. cerevisiae. In the absence of Mgs1, we determined elevated gross chromosomal rearrangement (GCR) rates in yeast, similar to Pif1 deletion. Here, we highlight the recent findings and set these into context with a new mechanistic model. We propose that Mgs1's functions support DNA replication at G4-forming regions.


Subject(s)
DNA Helicases/genetics , DNA-Binding Proteins/genetics , G-Quadruplexes , Nucleic Acid Conformation , Saccharomyces cerevisiae Proteins/genetics , DNA Helicases/ultrastructure , DNA-Binding Proteins/ultrastructure , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure
8.
Nucleic Acids Res ; 48(22): 12983-12999, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33270897

ABSTRACT

The adeno-associated virus (AAV) non-structural Rep proteins catalyze all the DNA transactions required for virus viability including, DNA replication, transcription regulation, genome packaging, and during the latent phase, site-specific integration. Rep proteins contain two multifunctional domains: an Origin Binding Domain (OBD) and a SF3 helicase domain (HD). Studies have shown that Rep proteins have a dynamic oligomeric behavior where the nature of the DNA substrate molecule modulates its oligomeric state. In the presence of ssDNA, Rep68 forms a large double-octameric ring complex. To understand the mechanisms underlying AAV Rep function, we investigated the cryo-EM and X-ray structures of Rep68-ssDNA complexes. Surprisingly, Rep68 generates hybrid ring structures where the OBD forms octameric rings while the HD forms heptamers. Moreover, the binding to ATPγS promotes a large conformational change in the entire AAA+ domain that leads the HD to form both heptamer and hexamers. The HD oligomerization is driven by an interdomain linker region that acts as a latch to 'catch' the neighboring HD subunit and is flexible enough to permit the formation of different stoichiometric ring structures. Overall, our studies show the structural basis of AAV Rep's structural flexibility required to fulfill its multifunctional role during the AAV life cycle.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , DNA, Single-Stranded/genetics , DNA-Binding Proteins/genetics , Dependovirus/genetics , Viral Proteins/genetics , Adenosine Triphosphate/genetics , Cryoelectron Microscopy , DNA Helicases/genetics , DNA Helicases/ultrastructure , DNA, Single-Stranded/ultrastructure , DNA-Binding Proteins/ultrastructure , Dependovirus/ultrastructure , Humans , Viral Proteins/ultrastructure
9.
Nucleic Acids Res ; 48(22): 12689-12696, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33166411

ABSTRACT

Nucleotide excision repair (NER) in eukaryotes is orchestrated by the core form of the general transcription factor TFIIH, containing the helicases XPB, XPD and five 'structural' subunits, p62, p44, p34, p52 and p8. Recent cryo-EM structures show that p62 makes extensive contacts with p44 and in part occupies XPD's DNA binding site. While p44 is known to regulate the helicase activity of XPD during NER, p62 is thought to be purely structural. Here, using helicase and adenosine triphosphatase assays we show that a complex containing p44 and p62 enhances XPD's affinity for dsDNA 3-fold over p44 alone. Remarkably, the relative affinity is further increased to 60-fold by dsDNA damage. Direct binding studies show this preference derives from p44/p62's high affinity (20 nM) for damaged ssDNA. Single molecule imaging of p44/p62 complexes without XPD reveals they bind to and randomly diffuse on DNA, however, in the presence of UV-induced DNA lesions these complexes stall. Combined with the analysis of a recent cryo-EM structure, we suggest that p44/p62 acts as a novel DNA-binding entity that enhances damage recognition in TFIIH. This revises our understanding of TFIIH and prompts investigation into the core subunits for an active role during DNA repair and/or transcription.


Subject(s)
DNA Repair/genetics , RNA-Binding Proteins/ultrastructure , Transcription Factor TFIIH/ultrastructure , Binding Sites/radiation effects , Cryoelectron Microscopy , DNA Damage/radiation effects , DNA Helicases/genetics , DNA Helicases/ultrastructure , DNA, Single-Stranded/genetics , DNA, Single-Stranded/radiation effects , DNA, Single-Stranded/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , RNA-Binding Proteins/genetics , Single Molecule Imaging , Transcription Factor TFIIH/genetics , Transcription, Genetic/radiation effects , Ultraviolet Rays/adverse effects , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/ultrastructure
10.
Nucleic Acids Res ; 48(12): 6980-6995, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32453425

ABSTRACT

DNA unwinding in eukaryotic replication is performed by the Cdc45-MCM-GINS (CMG) helicase. Although the CMG architecture has been elucidated, its mechanism of DNA unwinding and replisome interactions remain poorly understood. Here we report the cryoEM structure at 3.3 Å of human CMG bound to fork DNA and the ATP-analogue ATPγS. Eleven nucleotides of single-stranded (ss) DNA are bound within the C-tier of MCM2-7 AAA+ ATPase domains. All MCM subunits contact DNA, from MCM2 at the 5'-end to MCM5 at the 3'-end of the DNA spiral, but only MCM6, 4, 7 and 3 make a full set of interactions. DNA binding correlates with nucleotide occupancy: five MCM subunits are bound to either ATPγS or ADP, whereas the apo MCM2-5 interface remains open. We further report the cryoEM structure of human CMG bound to the replisome hub AND-1 (CMGA). The AND-1 trimer uses one ß-propeller domain of its trimerisation region to dock onto the side of the helicase assembly formed by Cdc45 and GINS. In the resulting CMGA architecture, the AND-1 trimer is closely positioned to the fork DNA while its CIP (Ctf4-interacting peptide)-binding helical domains remain available to recruit partner proteins.


Subject(s)
Cell Cycle Proteins/ultrastructure , DNA/ultrastructure , Minichromosome Maintenance Proteins/ultrastructure , Multiprotein Complexes/ultrastructure , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/ultrastructure , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , DNA Helicases/chemistry , DNA Helicases/genetics , DNA Helicases/ultrastructure , DNA Replication/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Humans , Minichromosome Maintenance Proteins/chemistry , Minichromosome Maintenance Proteins/genetics , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Nucleic Acid Conformation , Protein Conformation
11.
Nat Commun ; 10(1): 5083, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31704937

ABSTRACT

Nanoscale transport through nanopores and live-cell membranes plays a vital role in both key biological processes as well as biosensing and DNA sequencing. Active translocation of DNA through these nanopores usually needs enzyme assistance. Here we present a nanopore derived from truncated helicase E1 of bovine papillomavirus (BPV) with a lumen diameter of c.a. 1.3 nm. Cryogenic electron microscopy (cryo-EM) imaging and single channel recording confirm its insertion into planar lipid bilayer (BLM). The helicase nanopore in BLM allows the passive single-stranded DNA (ssDNA) transport and retains the helicase activity in vitro. Furthermore, we incorporate this helicase nanopore into the live cell membrane of HEK293T cells, and monitor the ssDNA delivery into the cell real-time at single molecule level. This type of nanopore is expected to provide an interesting tool to study the biophysics of biomotors in vitro, with potential applications in biosensing, drug delivery and real-time single cell analysis.


Subject(s)
DNA Helicases/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Lipid Bilayers/metabolism , Nanopores/ultrastructure , Viral Proteins/metabolism , Cryoelectron Microscopy , DNA Helicases/ultrastructure , DNA-Binding Proteins/ultrastructure , HEK293 Cells , Humans , Microscopy, Confocal , Patch-Clamp Techniques , Transfection , Viral Proteins/ultrastructure
12.
Cell Rep ; 28(10): 2673-2688.e8, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31484077

ABSTRACT

In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement. Morphing between different helicase states leads us to suggest a non-symmetric hand-over-hand rotary mechanism, explaining the asymmetric requirements of ATPase function around the MCM ring of the CMG. By imaging of a higher-order replisome assembly, we find that the Mrc1-Csm3-Tof1 fork-stabilization complex strengthens the interaction between parental duplex DNA and the CMG at the fork, which might support the coupling between DNA translocation and fork unwinding.


Subject(s)
Adenosine Triphosphate/metabolism , DNA Helicases/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA/metabolism , Eukaryota/enzymology , Multienzyme Complexes/metabolism , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Animals , Cryoelectron Microscopy , DNA/ultrastructure , DNA Helicases/chemistry , DNA Helicases/ultrastructure , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Hydrolysis , Models, Molecular , Protein Domains , Saccharomyces cerevisiae/metabolism
13.
Annu Rev Biochem ; 88: 163-190, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31220976

ABSTRACT

Many DNA-processing enzymes have been shown to contain a [4Fe4S] cluster, a common redox cofactor in biology. Using DNA electrochemistry, we find that binding of the DNA polyanion promotes a negative shift in [4Fe4S] cluster potential, which corresponds thermodynamically to a ∼500-fold increase in DNA-binding affinity for the oxidized [4Fe4S]3+ cluster versus the reduced [4Fe4S]2+ cluster. This redox switch can be activated from a distance using DNA charge transport (DNA CT) chemistry. DNA-processing proteins containing the [4Fe4S] cluster are enumerated, with possible roles for the redox switch highlighted. A model is described where repair proteins may signal one another using DNA-mediated charge transport as a first step in their search for lesions. The redox switch in eukaryotic DNA primases appears to regulate polymerase handoff, and in DNA polymerase δ, the redox switch provides a means to modulate replication in response to oxidative stress. We thus describe redox signaling interactions of DNA-processing [4Fe4S] enzymes, as well as the most interesting potential players to consider in delineating new DNA-mediated redox signaling networks.


Subject(s)
DNA Glycosylases/chemistry , DNA Helicases/chemistry , DNA-Directed DNA Polymerase/chemistry , DNA/chemistry , Endonucleases/chemistry , Genome , Iron-Sulfur Proteins/chemistry , Animals , Bacteria/genetics , Bacteria/metabolism , DNA/metabolism , DNA/ultrastructure , DNA Damage , DNA Glycosylases/metabolism , DNA Glycosylases/ultrastructure , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/ultrastructure , Electron Spin Resonance Spectroscopy , Endonucleases/metabolism , Endonucleases/ultrastructure , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/ultrastructure , Oxidation-Reduction , Protein Binding , Signal Transduction , Thermodynamics
14.
Sci Rep ; 9(1): 3188, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816277

ABSTRACT

Adaptation in CRISPR-Cas systems enables the generation of an immunological memory to defend against invading viruses. This process is driven by foreign DNA spacer (termed protospacer) selection and integration mediated by Cas1-Cas2 protein. Recently, different states of Cas1-Cas2, in its free form and in complex with protospacer DNAs, were solved by X-ray crystallography. In this paper, molecular dynamics (MD) simulations are employed to study crystal structures of one free and two protospacer-bound Cas1-Cas2 complexes. The simulated results indicate that the protospacer binding markedly increases the system stability, in particular when the protospacer containing the PAM-complementary sequence. The hydrogen bond and binding free energy calculations explain that PAM recognition introduces more specific interactions to increase the cleavage activity of Cas1. By using principal component analysis (PCA) and intramolecular angle calculation, this study observes two dominant slow motions associated with the binding of Ca1-Cas2 to the protospacer and potential target DNAs respectively. The comparison of DNA structural deformation further implies a cooperative conformational change of Cas1-Cas2 and protospacer for the target DNA capture. We propose that this cooperativity is the intrinsic requirement of the CRISPR integration complex formation. This study provides some new insights into the understanding of CRISPR-Cas adaptation.


Subject(s)
CRISPR-Associated Proteins/ultrastructure , CRISPR-Cas Systems/genetics , DNA Helicases/ultrastructure , Endodeoxyribonucleases/ultrastructure , Escherichia coli Proteins/ultrastructure , CRISPR-Associated Proteins/genetics , Crystallography, X-Ray , DNA Helicases/genetics , DNA, Intergenic/genetics , DNA, Intergenic/ultrastructure , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Molecular Dynamics Simulation , Nucleic Acid Conformation
15.
Hum Mol Genet ; 28(7): 1090-1099, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30496414

ABSTRACT

TWINKLE is the helicase involved in replication and maintenance of mitochondrial DNA (mtDNA) in mammalian cells. Structurally, TWINKLE is closely related to the bacteriophage T7 gp4 protein and comprises a helicase and primase domain joined by a flexible linker region. Mutations in and around this linker region are responsible for autosomal dominant progressive external ophthalmoplegia (adPEO), a neuromuscular disorder associated with deletions in mtDNA. The underlying molecular basis of adPEO-causing mutations remains unclear, but defects in TWINKLE oligomerization are thought to play a major role. In this study, we have characterized these disease variants by single-particle electron microscopy and can link the diminished activities of the TWINKLE variants to altered oligomeric properties. Our results suggest that the mutations can be divided into those that (i) destroy the flexibility of the linker region, (ii) inhibit ring closure and (iii) change the number of subunits within a helicase ring. Furthermore, we demonstrate that wild-type TWINKLE undergoes large-scale conformational changes upon nucleoside triphosphate binding and that this ability is lost in the disease-causing variants. This represents a substantial advancement in the understanding of the molecular basis of adPEO and related pathologies and may aid in the development of future therapeutic strategies.


Subject(s)
DNA Helicases/genetics , DNA Helicases/ultrastructure , Mitochondrial Proteins/genetics , Mitochondrial Proteins/ultrastructure , Ophthalmoplegia, Chronic Progressive External/genetics , Amino Acid Sequence , DNA Primase , DNA, Mitochondrial/genetics , DNA, Mitochondrial/physiology , Humans , Microscopy, Electron/methods , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mutation/genetics , Protein Domains/genetics
16.
Sci Rep ; 8(1): 13726, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213962

ABSTRACT

RuvB-Like transcription factors function in cell cycle regulation, development and human disease, such as cancer and heart hyperplasia. The mechanisms that regulate adenosine triphosphate (ATP)-dependent activity, oligomerization and post-translational modifications in this family of enzymes are yet unknown. We present the first crystallographic structure of full-length human RuvBL2 which provides novel insights into its mechanistic action and biology. The ring-shaped hexameric RuvBL2 structure presented here resolves for the first time the mobile domain II of the human protein, which is responsible for protein-protein interactions and ATPase activity regulation. Structural analysis suggests how ATP binding may lead to domain II motion through interactions with conserved N-terminal loop histidine residues. Furthermore, a comparison between hsRuvBL1 and 2 shows differences in surface charge distribution that may account for previously described differences in regulation. Analytical ultracentrifugation and cryo electron microscopy analyses performed on hsRuvBL2 highlight an oligomer plasticity that possibly reflects different physiological conformations of the protein in the cell, as well as that single-stranded DNA (ssDNA) can promote the oligomerization of monomeric hsRuvBL2. Based on these findings, we propose a mechanism for ATP binding and domain II conformational change coupling.


Subject(s)
ATPases Associated with Diverse Cellular Activities/chemistry , Adenosine Triphosphate/chemistry , Carrier Proteins/chemistry , DNA Helicases/chemistry , Macromolecular Substances/chemistry , Protein Structure, Tertiary , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/ultrastructure , Adenosine Triphosphate/genetics , Amino Acid Sequence/genetics , Binding Sites/genetics , Carrier Proteins/genetics , Carrier Proteins/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , DNA Helicases/genetics , DNA Helicases/ultrastructure , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Humans , Macromolecular Substances/ultrastructure , Protein Binding
17.
Nature ; 556(7701): 386-390, 2018 04.
Article in English | MEDLINE | ID: mdl-29643509

ABSTRACT

In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers1-3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and -1 nucleosomes at promoter DNA5-8. The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA+ ATPase heterohexamer is an assembly scaffold for the complex and acts as a 'stator' for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location -6, unwraps approximately 15 base pairs, disrupts the H2A-DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations -2 and -3 to act as a counter grip for the motor, on the other side of the H2A-H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A-H2B near the 'acidic patch'. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A-H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A-H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange.


Subject(s)
Adenosine Triphosphate/metabolism , Chaetomium/enzymology , Chromatin Assembly and Disassembly , Cryoelectron Microscopy , DNA Helicases/ultrastructure , Multiprotein Complexes/ultrastructure , Nucleosomes/metabolism , Amino Acid Sequence , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , DNA/chemistry , DNA/metabolism , DNA/ultrastructure , DNA Helicases/chemistry , DNA Helicases/metabolism , Fungal Proteins , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nucleosomes/chemistry , Nucleosomes/ultrastructure , Protein Binding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship
18.
Cell ; 169(4): 708-721.e12, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28457609

ABSTRACT

Relaxases play essential roles in conjugation, the main process by which bacteria exchange genetic material, notably antibiotic resistance genes. They are bifunctional enzymes containing a trans-esterase activity, which is responsible for nicking the DNA strand to be transferred and for covalent attachment to the resulting 5'-phosphate end, and a helicase activity, which is responsible for unwinding the DNA while it is being transported to a recipient cell. Here we show that these two activities are carried out by two conformers that can both load simultaneously on the origin of transfer DNA. We solve the structure of one of these conformers by cryo electron microscopy to near-atomic resolution, elucidating the molecular basis of helicase function by relaxases and revealing insights into the mechanistic events taking place in the cell prior to substrate transport during conjugation.


Subject(s)
Conjugation, Genetic , DNA Helicases/metabolism , DNA Helicases/ultrastructure , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Escherichia coli/genetics , Cryoelectron Microscopy , DNA Helicases/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/ultrastructure , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Models, Molecular
19.
Science ; 354(6318): 1431-1433, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27980209

ABSTRACT

Ski2-Ski3-Ski8 (Ski) is a helicase complex functioning with the RNA-degrading exosome to mediate the 3'-5' messenger RNA (mRNA) decay in turnover and quality-control pathways. We report that the Ski complex directly associates with 80S ribosomes presenting a short mRNA 3' overhang. We determined the structure of an endogenous ribosome-Ski complex using cryo-electron microscopy (EM) with a local resolution of the Ski complex ranging from 4 angstroms (Å) in the core to about 10 Å for intrinsically flexible regions. Ribosome binding displaces the autoinhibitory domain of the Ski2 helicase, positioning it in an open conformation near the ribosomal mRNA entry tunnel. We observe that the mRNA 3' overhang is threaded directly from the small ribosomal subunit to the helicase channel of Ski2, primed for ongoing exosome-mediated 3'-5' degradation.


Subject(s)
DNA Helicases/ultrastructure , Exosome Multienzyme Ribonuclease Complex/ultrastructure , Nuclear Proteins/ultrastructure , RNA Stability , Ribosome Subunits, Large, Eukaryotic/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Saccharomyces cerevisiae/enzymology , Cryoelectron Microscopy , Protein Conformation , RNA, Fungal/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal/metabolism , Ribosome Subunits, Large, Eukaryotic/enzymology
20.
Nature ; 533(7603): 359-65, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27193682

ABSTRACT

In eukaryotic transcription initiation, a large multi-subunit pre-initiation complex (PIC) that assembles at the core promoter is required for the opening of the duplex DNA and identification of the start site for transcription by RNA polymerase II. Here we use cryo-electron microscropy (cryo-EM) to determine near-atomic resolution structures of the human PIC in a closed state (engaged with duplex DNA), an open state (engaged with a transcription bubble), and an initially transcribing complex (containing six base pairs of DNA-RNA hybrid). Our studies provide structures for previously uncharacterized components of the PIC, such as TFIIE and TFIIH, and segments of TFIIA, TFIIB and TFIIF. Comparison of the different structures reveals the sequential conformational changes that accompany the transition from each state to the next throughout the transcription initiation process. This analysis illustrates the key role of TFIIB in transcription bubble stabilization and provides strong structural support for a translocase activity of XPB.


Subject(s)
DNA/metabolism , DNA/ultrastructure , Movement , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Promoter Regions, Genetic , Transcription Initiation, Genetic , Cryoelectron Microscopy , DNA/chemistry , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , HeLa Cells , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Protein Conformation , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , RNA Polymerase II/ultrastructure , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Transcription Elongation, Genetic , Transcription Factors, TFII/chemistry , Transcription Factors, TFII/metabolism , Transcription Factors, TFII/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...