Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Sci Adv ; 10(21): eadl3214, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787958

ABSTRACT

The replication accuracy of DNA polymerase gamma (Pol γ) is essential for mitochondrial genome integrity. Mutation of human Pol γ arginine-853 has been linked to neurological diseases. Although not a catalytic residue, Pol γ arginine-853 mutants are void of polymerase activity. To identify the structural basis for the disease, we determined a crystal structure of the Pol γ mutant ternary complex with correct incoming nucleotide 2'-deoxycytidine 5'-triphosphate (dCTP). Opposite to the wild type that undergoes open-to-closed conformational changes when bound to a correct nucleotide that is essential for forming a catalytically competent active site, the mutant complex failed to undergo the conformational change, and the dCTP did not base pair with its Watson-Crick complementary templating residue. Our studies revealed that arginine-853 coordinates an interaction network that aligns the 3'-end of primer and dCTP with the catalytic residues. Disruption of the network precludes the formation of Watson-Crick base pairing and closing of the active site, resulting in an inactive polymerase.


Subject(s)
Base Pairing , Catalytic Domain , DNA Polymerase gamma , Humans , DNA Polymerase gamma/metabolism , DNA Polymerase gamma/genetics , DNA Polymerase gamma/chemistry , Models, Molecular , Mutation , Deoxycytosine Nucleotides/metabolism , Deoxycytosine Nucleotides/chemistry , Crystallography, X-Ray , Protein Binding
3.
Nature ; 628(8009): 844-853, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570685

ABSTRACT

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Subject(s)
Alleles , DNA Polymerase gamma , Encephalitis Viruses, Tick-Borne , Herpesvirus 1, Human , Immune Tolerance , SARS-CoV-2 , Animals , Female , Humans , Male , Mice , Age of Onset , COVID-19/immunology , COVID-19/virology , COVID-19/genetics , DNA Polymerase gamma/genetics , DNA Polymerase gamma/immunology , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/immunology , DNA, Mitochondrial/metabolism , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/genetics , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/virology , Founder Effect , Gene Knock-In Techniques , Herpes Simplex/genetics , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Immune Tolerance/genetics , Immune Tolerance/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon Type I/immunology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/immunology , Mutation , RNA, Mitochondrial/immunology , RNA, Mitochondrial/metabolism , SARS-CoV-2/immunology
4.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643274

ABSTRACT

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Subject(s)
DNA-Directed DNA Polymerase , Mitochondrial Diseases , Animals , Humans , DNA-Directed DNA Polymerase/genetics , Zebrafish/genetics , DNA Polymerase gamma/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondria/pathology , Mutation/genetics , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics
5.
BMJ Case Rep ; 17(4)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684350

ABSTRACT

The POLG mutation, a leading cause of mitochondrial diseases, exhibits a wide-ranging age of onset and a complex clinical presentation. We encountered an atypical clinical profile in an elderly man with a POLG mutation, characterised by a stroke-like episode, chronic insomnia and transient oculomasticatory rhythmic movement. History revealed chronic constipation since his 50s and progressive bilateral ophthalmoplegia since his early 60s. Subsequently, he had experienced acute encephalopathy and later developed chronic insomnia. The present neurological examination showed bilateral complete ophthalmoplegia, ptosis, and rhythmic ocular and jaw movements. Imaging indicated findings suggestive of a stroke-like episode and eventual genetic analysis revealed a homozygous missense mutation in the POLG gene. This case expands the clinical spectrum of POLG mutations in individuals over 60 years, showcasing the rare combination of a stroke-like episode, chronic insomnia and oculomasticatory rhythmic movement.


Subject(s)
DNA Polymerase gamma , Sleep Initiation and Maintenance Disorders , Humans , Male , DNA Polymerase gamma/genetics , Sleep Initiation and Maintenance Disorders/genetics , Stroke/genetics , Stroke/complications , Mutation, Missense , Mitochondrial Diseases/genetics , Mitochondrial Diseases/complications , Mitochondrial Diseases/diagnosis , Aged , Middle Aged , Ophthalmoplegia/genetics , Ophthalmoplegia/diagnosis , Blepharoptosis/genetics , Mutation
6.
Nucleic Acids Res ; 52(7): 4067-4078, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38471810

ABSTRACT

Mitochondrial genome maintenance exonuclease 1 (MGME1) helps to ensure mitochondrial DNA (mtDNA) integrity by serving as an ancillary 5'-exonuclease for DNA polymerase γ. Curiously, MGME1 exhibits unique bidirectionality in vitro, being capable of degrading DNA from either the 5' or 3' end. The structural basis of this bidirectionally and, particularly, how it processes DNA from the 5' end to assist in mtDNA maintenance remain unclear. Here, we present a crystal structure of human MGME1 in complex with a 5'-overhang DNA, revealing that MGME1 functions as a rigid DNA clamp equipped with a single-strand (ss)-selective arch, allowing it to slide on single-stranded DNA in either the 5'-to-3' or 3'-to-5' direction. Using a nuclease activity assay, we have dissected the structural basis of MGME1-derived DNA cleavage patterns in which the arch serves as a ruler to determine the cleavage site. We also reveal that MGME1 displays partial DNA-unwinding ability that helps it to better resolve 5'-DNA flaps, providing insights into MGME1-mediated 5'-end processing of nascent mtDNA. Our study builds on previously solved MGME1-DNA complex structures, finally providing the comprehensive functional mechanism of this bidirectional, ss-specific exonuclease.


Subject(s)
DNA, Mitochondrial , Exodeoxyribonucleases , Genome, Mitochondrial , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/chemistry , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/genetics , Crystallography, X-Ray , Models, Molecular , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/chemistry , Nucleic Acid Conformation , DNA Polymerase gamma/metabolism , DNA Polymerase gamma/genetics , DNA Polymerase gamma/chemistry
7.
Adv Sci (Weinh) ; 11(20): e2307480, 2024 May.
Article in English | MEDLINE | ID: mdl-38499990

ABSTRACT

Due to the exclusive maternal transmission, oocyte mitochondrial dysfunction reduces fertility rates, affects embryonic development, and programs offspring to metabolic diseases. However, mitochondrial DNA (mtDNA) are vulnerable to mutations during oocyte maturation, leading to mitochondrial nucleotide variations (mtSNVs) within a single oocyte, referring to mtDNA heteroplasmy. Obesity (OB) accounts for more than 40% of women at the reproductive age in the USA, but little is known about impacts of OB on mtSNVs in mature oocytes. It is found that OB reduces mtDNA content and increases mtSNVs in mature oocytes, which impairs mitochondrial energetic functions and oocyte quality. In mature oocytes, OB suppresses AMPK activity, aligned with an increased binding affinity of the ATF5-POLG protein complex to mutated mtDNA D-loop and protein-coding regions. Similarly, AMPK knockout increases the binding affinity of ATF5-POLG proteins to mutated mtDNA, leading to the replication of heteroplasmic mtDNA and impairing oocyte quality. Consistently, AMPK activation blocks the detrimental impacts of OB by preventing ATF5-POLG protein recruitment, improving oocyte maturation and mitochondrial energetics. Overall, the data uncover key features of AMPK activation in suppressing mtSNVs, and improving mitochondrial biogenesis and oocyte maturation in obese females.


Subject(s)
AMP-Activated Protein Kinases , DNA, Mitochondrial , Obesity , Oocytes , Oocytes/metabolism , Obesity/metabolism , Obesity/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Female , Mice , Animals , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Heteroplasmy/genetics , Activating Transcription Factors/metabolism , Activating Transcription Factors/genetics , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , Humans , Mitochondria/metabolism , Mitochondria/genetics
8.
J Biol Chem ; 300(4): 107128, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432635

ABSTRACT

Both POLG and MGME1 are needed for mitochondrial DNA (mtDNA) maintenance in animal cells. POLG, the primary replicative polymerase of the mitochondria, has an exonuclease activity (3'→5') that corrects for the misincorporation of bases. MGME1 serves as an exonuclease (5'→3'), producing ligatable DNA ends. Although both have a critical role in mtDNA replication and elimination of linear fragments, these mechanisms are still not fully understood. Using digital PCR to evaluate and compare mtDNA integrity, we show that Mgme1 knock out (Mgme1 KK) tissue mtDNA is more fragmented than POLG exonuclease-deficient "Mutator" (Polg MM) or WT tissue. In addition, next generation sequencing of mutant hearts showed abundant duplications in/nearby the D-loop region and unique 100 bp duplications evenly spaced throughout the genome only in Mgme1 KK hearts. However, despite these unique mtDNA features at steady-state, we observed a similar delay in the degradation of mtDNA after an induced double strand DNA break in both Mgme1 KK and Polg MM models. Lastly, we characterized double mutant (Polg MM/Mgme1 KK) cells and show that mtDNA cannot be maintained without at least one of these enzymatic activities. We propose a model for the generation of these genomic abnormalities which suggests a role for MGME1 outside of nascent mtDNA end ligation. Our results highlight the role of MGME1 in and outside of the D-loop region during replication, support the involvement of MGME1 in dsDNA degradation, and demonstrate that POLG EXO and MGME1 can partially compensate for each other in maintaining mtDNA.


Subject(s)
DNA Polymerase gamma , DNA, Mitochondrial , Animals , Mice , DNA Polymerase gamma/metabolism , DNA Polymerase gamma/genetics , DNA Replication , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Mice, Knockout
9.
Adv Sci (Weinh) ; 11(18): e2307136, 2024 May.
Article in English | MEDLINE | ID: mdl-38445970

ABSTRACT

In this research, a 3D brain organoid model is developed to study POLG-related encephalopathy, a mitochondrial disease stemming from POLG mutations. Induced pluripotent stem cells (iPSCs) derived from patients with these mutations is utilized to generate cortical organoids, which exhibited typical features of the diseases with POLG mutations, such as altered morphology, neuronal loss, and mitochondiral DNA (mtDNA) depletion. Significant dysregulation is also identified in pathways crucial for neuronal development and function, alongside upregulated NOTCH and JAK-STAT signaling pathways. Metformin treatment ameliorated many of these abnormalities, except for the persistent affliction of inhibitory dopamine-glutamate (DA GLU) neurons. This novel model effectively mirrors both the molecular and pathological attributes of diseases with POLG mutations, providing a valuable tool for mechanistic understanding and therapeutic screening for POLG-related disorders and other conditions characterized by compromised neuronal mtDNA maintenance and complex I deficiency.


Subject(s)
DNA Polymerase gamma , Induced Pluripotent Stem Cells , Mitochondrial Diseases , Organoids , Organoids/metabolism , Organoids/pathology , Humans , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Brain/pathology , Brain/metabolism
10.
Mitochondrion ; 76: 101870, 2024 May.
Article in English | MEDLINE | ID: mdl-38471579

ABSTRACT

Mitochondrial disorders are a heterogeneous group of disorders caused by mutations in the mitochondrial DNA or in nuclear genes encoding the mitochondrial proteins and subunits. Polymerase Gamma (POLG) is a nuclear gene and mutation in the POLG gene are one of the major causes of inherited mitochondrial disorders. In this study, 15 pediatric patients, with a wide spectrum of clinical phenotypes were screened using blood samples (n = 15) and muscle samples (n = 4). Respiratory chain enzyme analysis in the muscle samples revealed multi-complex deficiencies with Complex I deficiency present in (1/4) patients, Complex II (2/4), Complex III (3/4) and Complex IV (2/4) patients. Multiple large deletions were observed in 4/15 patients using LR-PCR. Whole exome sequencing (WES) revealed a compound heterozygous mutation consisting of a POLG1 novel variant (NP_002684.1:p.Trp261X) and a missense variant (NP_002684.1:p. Leu304Arg) in one patient and another patient harboring a novel homozygous POLG1 variant (NP_002684.1:p. Phe750Val). These variants (NP_002684.1:p. Leu304Arg) and (NP_002684.1:p. Phe750Val) and their interactions with DNA were modelled using molecular docking and molecular dynamics (MD) simulation studies. The protein conformation was analyzed as root mean square deviation (RMSD), root mean square fluctuation (RMSF) which showed local fluctuations in the mutants compared to the wildtype. However, Solvent Accessible Surface Area (SASA) significantly increased for NP_002684.1:p.Leu304Arg and decreased in NP_002684.1:p.Phe750Val mutants. Further, Contact Order analysis indicated that the Aromatic-sulfur interactions were destabilizing in the mutants. Overall, these in-silico analysis has revealed a destabilizing mutations suggesting pathogenic variants in POLG1 gene.


Subject(s)
DNA Polymerase gamma , Mitochondrial Diseases , Molecular Dynamics Simulation , Humans , DNA Polymerase gamma/genetics , Mitochondrial Diseases/genetics , Child , Male , Child, Preschool , Female , India , Infant , Genetic Heterogeneity , Electron Transport/genetics , Adolescent , Mutation , Exome Sequencing
12.
Nat Commun ; 15(1): 546, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228611

ABSTRACT

Aging in mammals is accompanied by an imbalance of intestinal homeostasis and accumulation of mitochondrial DNA (mtDNA) mutations. However, little is known about how accumulated mtDNA mutations modulate intestinal homeostasis. We observe the accumulation of mtDNA mutations in the small intestine of aged male mice, suggesting an association with physiological intestinal aging. Using polymerase gamma (POLG) mutator mice and wild-type mice, we generate male mice with progressive mtDNA mutation burdens. Investigation utilizing organoid technology and in vivo intestinal stem cell labeling reveals decreased colony formation efficiency of intestinal crypts and LGR5-expressing intestinal stem cells in response to a threshold mtDNA mutation burden. Mechanistically, increased mtDNA mutation burden exacerbates the aging phenotype of the small intestine through ATF5 dependent mitochondrial unfolded protein response (UPRmt) activation. This aging phenotype is reversed by supplementation with the NAD+ precursor, NMN. Thus, we uncover a NAD+ dependent UPRmt triggered by mtDNA mutations that regulates the intestinal aging.


Subject(s)
Aging , NAD , Mice , Male , Animals , NAD/metabolism , Aging/genetics , Aging/metabolism , Mutation , Mitochondria/genetics , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , Mammals/genetics
15.
Pediatr Transplant ; 28(1): e14659, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012111

ABSTRACT

BACKGROUND: POLG is one of several nuclear genes associated with mitochondrial DNA maintenance defects and is a group of diseases caused by mitochondrial DNA deficiency that results in impaired adenosine triphosphate production and organ dysfunction. Myocerebrohepatopathy spectrum (MCHS) is the most severe and earliest presentation of POLG mutations, and liver transplantation (LT) for MCHS has never been reported. CASE PRESENTATION: The patient was a 3-month-old boy with acute liver failure and no neurological manifestations (e.g., seizures). We performed a living donor LT using a left lateral segment graft from his father. The postoperative course was uneventful. Subsequently, a homozygous POLG mutation (c.2890C>T, p. R964C) was identified by multigene analysis of neonatal/infantile intrahepatic cholestasis. Moreover, respiratory chain complex I, II, and III enzyme activities and the ratio of mtDNA to nuclear DNA in the liver were reduced. Therefore, we considered that these clinical manifestations and examination findings met the definition for MCHS. During meticulous follow-up, the patient had shown satisfactory physical growth and mental development until the time of writing this report. CONCLUSION: We presumed that the absence of remarkable neurologic manifestations prior to LT in patients with MCHS is a good indication for LT and contributes to a better prognosis in the present case.


Subject(s)
Liver Failure, Acute , Liver Transplantation , Male , Humans , Infant, Newborn , Infant , DNA-Directed DNA Polymerase/genetics , DNA Polymerase gamma/genetics , Living Donors , Mutation , DNA, Mitochondrial/genetics
16.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138978

ABSTRACT

Upstream open reading frames (uORFs) are a frequent feature of eukaryotic mRNAs. Upstream ORFs govern main ORF translation in a variety of ways, but, in a nutshell, they either filter out scanning ribosomes or allow downstream translation initiation via leaky scanning or reinitiation. Previous reports concurred that eIF4G2, a long-known but insufficiently studied eIF4G1 homologue, can rescue the downstream translation, but disagreed on whether it is leaky scanning or reinitiation that eIF4G2 promotes. Here, we investigated a unique human mRNA that encodes two highly conserved proteins (POLGARF with unknown function and POLG, the catalytic subunit of the mitochondrial DNA polymerase) in overlapping reading frames downstream of a regulatory uORF. We show that the uORF renders the translation of both POLGARF and POLG mRNAs reliant on eIF4G2. Mechanistically, eIF4G2 enhances both leaky scanning and reinitiation, and it appears that ribosomes can acquire eIF4G2 during the early steps of reinitiation. This emphasizes the role of eIF4G2 as a multifunctional scanning guardian that replaces eIF4G1 to facilitate ribosome movement but not ribosome attachment to an mRNA.


Subject(s)
Peptide Chain Initiation, Translational , Ribosomes , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , 5' Untranslated Regions , Ribosomes/metabolism , Reading Frames , Open Reading Frames , Protein Biosynthesis , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism
17.
Zh Nevrol Psikhiatr Im S S Korsakova ; 123(10): 129-135, 2023.
Article in Russian | MEDLINE | ID: mdl-37966452

ABSTRACT

POLG-associated diseases are rare causes of pharmacoresistant epilepsy and status epilepticus, especially in adult patients. Phenotypic and genotypic variability in these conditions causes the complexity of their diagnosis. In the study, we report a case of a 33-year-old female patient who developed recurrent convulsive status epilepticus with focal clonic onset at the week 22/23 of pregnancy. Intensive anti-seizure therapy was administered, including the use of valproic acid, as well as the treatment of somatic complications. Given the acute onset, the semiology of seizures, the presence of psychopathological symptoms, autoimmune etiology of the disease was initially suspected. A month after the withdrawal of valproic acid, the patient began to show signs of toxic hepatitis, which eventually led to death. According to the results of whole-exome sequencing obtained later, the patient was a carrier of a pathogenic homozygous variant c.2243G>C (p.W748S) in the POLG gene. The presented case highlights the importance of molecular genetic testing and the risk associated with valproic acid hepatotoxicity in patients with cryptogenic epileptic status.


Subject(s)
Status Epilepticus , Valproic Acid , Adult , Female , Pregnancy , Humans , Valproic Acid/therapeutic use , Status Epilepticus/diagnosis , Status Epilepticus/drug therapy , Status Epilepticus/etiology , Genotype , Antisocial Personality Disorder , Homozygote , DNA Polymerase gamma/genetics
18.
Nucleic Acids Res ; 51(18): 9716-9732, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37592734

ABSTRACT

The homodimeric PolG2 accessory subunit of the mitochondrial DNA polymerase gamma (Pol γ) enhances DNA binding and processive DNA synthesis by the PolG catalytic subunit. PolG2 also directly binds DNA, although the underlying molecular basis and functional significance are unknown. Here, data from Atomic Force Microscopy (AFM) and X-ray structures of PolG2-DNA complexes define dimeric and hexameric PolG2 DNA binding modes. Targeted disruption of PolG2 DNA-binding interfaces impairs processive DNA synthesis without diminishing Pol γ subunit affinities. In addition, a structure-specific DNA-binding role for PolG2 oligomers is supported by X-ray structures and AFM showing that oligomeric PolG2 localizes to DNA crossings and targets forked DNA structures resembling the mitochondrial D-loop. Overall, data indicate that PolG2 DNA binding has both PolG-dependent and -independent functions in mitochondrial DNA replication and maintenance, which provide new insight into molecular defects associated with PolG2 disruption in mitochondrial disease.


Subject(s)
DNA Polymerase gamma , DNA, Mitochondrial , Humans , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , DNA Replication/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism
19.
FASEB J ; 37(9): e23139, 2023 09.
Article in English | MEDLINE | ID: mdl-37584631

ABSTRACT

Mutations in POLG, the gene encoding the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (Pol-γ), lead to diseases driven by defective mtDNA maintenance. Despite being the most prevalent cause of mitochondrial disease, treatments for POLG-related disorders remain elusive. In this study, we used POLG patient-induced pluripotent stem cell (iPSC)-derived neural stem cells (iNSCs), one homozygous for the POLG mutation c.2243G>C and one compound heterozygous with c.2243G>C and c.1399G>A, and treated these iNSCs with ethidium bromide (EtBr) to study the rate of depletion and repopulation of mtDNA. In addition, we investigated the effect of deoxyribonucleoside (dNs) supplementation on mtDNA maintenance during EtBr treatment and post-treatment repopulation in the same cells. EtBr-induced mtDNA depletion occurred at a similar rate in both patient and control iNSCs, however, restoration of mtDNA levels was significantly delayed in iNSCs carrying the compound heterozygous POLG mutations. In contrast, iNSC with the homozygous POLG mutation recovered their mtDNA at a rate similar to controls. When we treated cells with dNs, we found that this reduced EtBr-induced mtDNA depletion and significantly increased repopulation rates in both patient iNSCs. These observations are consistent with the hypothesis that mutations in POLG impair mtDNA repopulation also within intact neural lineage cells and suggest that those with compound heterozygous mutation have a more severe defect of mtDNA synthesis. Our findings further highlight the potential for dNs to improve mtDNA replication in the presence of POLG mutations, suggesting that this may offer a new therapeutic modality for mitochondrial diseases caused by disturbed mtDNA homeostasis.


Subject(s)
Induced Pluripotent Stem Cells , Mitochondrial Diseases , Neural Stem Cells , Humans , DNA-Directed DNA Polymerase/genetics , DNA Polymerase gamma/genetics , Ethidium/pharmacology , Mutation , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Deoxyribonucleosides
20.
IUBMB Life ; 75(12): 983-1002, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37470284

ABSTRACT

Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Humans , DNA Polymerase gamma/genetics , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA, Mitochondrial/genetics , Mutation , DNA Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...