Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.958
Filter
1.
Bioorg Med Chem Lett ; 106: 129774, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38688438

ABSTRACT

Herein, we constructed a fluorescence biosensor for the ultra-sensitive analysis of microRNAs (miRNAs) by combining DNA hairpins transition triggered strand displacement amplification (DHT-SDA) with primer exchange reaction (PER). Target miRNA initiated DHT-SDA to facilitate the generation of multiple single-stranded DNA (ssDNA) as PER primer, which was extended into a long ssDNA. The biosensor is successfully utilized in detecting miRNAs with high sensitivity (limit of detection for miRNA-21 was 58 fM) and a good linear relationship between 100 nM and 100 fM. By simply changing the DNA hairpin sequence, the constructed biosensor can be extended to analyze another miRNAs. Moreover, the biosensor has the feasibility of detecting miRNAs in real samples with satisfactory accuracy and reliability. Therefore, the fluorescent biosensor has great application potential in clinical diagnosis.


Subject(s)
Biosensing Techniques , MicroRNAs , Nucleic Acid Amplification Techniques , MicroRNAs/metabolism , MicroRNAs/analysis , Humans , DNA/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Fluorescence , Inverted Repeat Sequences , Spectrometry, Fluorescence , Limit of Detection , DNA Primers/chemistry
2.
Anal Methods ; 16(18): 2840-2849, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38567817

ABSTRACT

In previous reports, we described a PCR cycle control approach in which the hybridization state of optically labeled L-DNA enantiomers of the D-DNA primers and targets determined when the thermal cycle was switched from cooling to heating and heating to cooling. A consequence of this approach is that it also "adapts" the cycling conditions to compensate for factors that affect the hybridization kinetics of primers and targets. It assumes, however, that the hybridization state of the labeled L-DNA analogs accurately reflects the hybridization state of the D-DNA primers and targets. In this report, the Van't Hoff equation is applied to determine the L-DNA concentration and ratio of L-DNA strands required by this assumption. Simultaneous fluorescence and temperature measurements were taken during L-DNA controlled cycling, and the optical and thermal switch points compared as a function of both total L-DNA concentration and ratio of strands. Based on the Van't Hoff relationship and these experimental results, L-DNA best mirrors the hybridization of PCR primers and targets when total L-DNA concentration is set equal to the initial concentration of the D-DNA primer of interest. In terms of strand ratios, L-DNA hybridization behavior most closely matches the behavior of their D-DNA counterparts throughout the reaction when one of the L-DNA strands is far in excess of the other. The L-DNA control algorithm was then applied to the practical case of the SARS-CoV-2 N2 reaction, which has been shown to fail or have a delayed Cq when PCR was performed without nucleic acid extraction. PCR Cq values for simulated "unextracted" PCR samples in a nasopharyngeal background and in an NaCl concentration similar to that of viral transport media were determined using either the L-DNA control algorithm (N = 6) or preset cycling conditions (N = 3) and compared to water background controls run in parallel. For preset cycling conditions, the presence of nasopharyngeal background or a high salt background concentration significantly increased Cq, but the L-DNA control algorithm had no significant delay. This suggests that a carefully designed L-DNA-based control algorithm "adapts" the cycling conditions to compensate for hybridization errors of the PCR D-DNA reactants that produce false negatives.


Subject(s)
DNA , Nucleic Acid Hybridization , Polymerase Chain Reaction , Polymerase Chain Reaction/methods , DNA/chemistry , DNA/analysis , SARS-CoV-2/genetics , DNA Primers/chemistry , COVID-19 , Humans
3.
Curr Protoc ; 3(5): e781, 2023 May.
Article in English | MEDLINE | ID: mdl-37196139

ABSTRACT

Structural features of RNA play an important role in its capability to perform various functions in biological systems. To probe structural features, chemical probes are used to conjugate or cleave RNA at solvent-accessible sites, differentiating between flexible and constrained regions. These conjugates or cleaved products are then detected using reverse transcription (RT), where enzymatic RNA-dependent DNA primer extension is abruptly halted at the conjugation site or cleavage site. Here, we provide an overview of methods to probe RNA structure in vitro using radioactively labeled DNA primers, which provide a highly sensitive method to visualize RT stop sites with gel electrophoresis. © 2023 Wiley Periodicals LLC.


Subject(s)
DNA , RNA , RNA/genetics , RNA/chemistry , DNA/analysis , Reverse Transcription , DNA Primers/chemistry
4.
Nucleic Acids Res ; 51(10): 5087-5105, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37099378

ABSTRACT

The marine thermophilic archaeon Nanoarchaeum equitans possesses a monomeric primase encompassing the conserved domains of the small catalytic and the large regulatory subunits of archaeoeukaryotic heterodimeric primases in one protein chain. The recombinant protein primes on templates containing a triplet with a central thymidine, thus displaying a pronounced sequence specificity typically observed with bacterial type primases only. The N. equitans primase (NEQ395) is a highly active primase enzyme synthesizing short RNA primers. Termination occurs preferentially at about nine nucleotides, as determined by HPLC analysis and confirmed with mass spectrometry. Possibly, the compact monomeric primase NEQ395 represents the minimal archaeoeukaryotic primase and could serve as a functional and structural model of the heterodimeric archaeoeukaryotic primases, whose study is hindered by engagement in protein assemblies and rather low activity.


Subject(s)
DNA Primase , Nanoarchaeota , DNA Primase/metabolism , Archaea/genetics , Archaea/metabolism , Nanoarchaeota/genetics , DNA Primers/chemistry , Nucleotides
5.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35163227

ABSTRACT

Reverse transcription of RNA coupled to amplification of the resulting cDNA by the polymerase chain reaction (RT-PCR) is one of the principal molecular technologies in use today, with applications across all areas of science and medicine. In its real-time, fluorescence-based usage (RT-qPCR), it has long been a core technology driving the accurate, rapid and sensitive laboratory diagnosis of infectious diseases. However, RT-qPCR protocols have changed little over the past 30 years, with the RT step constituting a significant percentage of the time taken to complete a typical RT-qPCR assay. When applied to research investigations, reverse transcription has been evaluated by criteria such as maximum yield, length of transcription, fidelity, and faithful representation of an RNA pool. Crucially, however, these are of less relevance in a diagnostic RT-PCR test, where speed and sensitivity are the prime RT imperatives, with specificity contributed by the PCR component. We propose a paradigm shift that omits the requirement for a separate high-temperature RT step at the beginning of an RT-qPCR assay. This is achieved by means of an innovative protocol that incorporates suitable reagents with a revised primer and amplicon design and we demonstrate a proof of principle that incorporates the RT step as part of the PCR assay setup at room temperature. Use of this modification as part of a diagnostic assay will of course require additional characterisation, validation and optimisation of the PCR step. Combining this revision with our previous development of fast qPCR protocols allows completion of a 40 cycle RT-qPCR run on a suitable commercial instrument in approximately 15 min. Even faster times, in combination with extreme PCR procedures, can be achieved.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , Clinical Laboratory Techniques , DNA Primers/chemistry , DNA Primers/genetics , Humans , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , Reverse Transcription/physiology , Sensitivity and Specificity , Temperature
6.
Biochem Mol Biol Educ ; 50(2): 193-200, 2022 03.
Article in English | MEDLINE | ID: mdl-35084793

ABSTRACT

Nowadays, novel Biochemistry lab techniques are being introduced at a very fast pace in scientific research. This requires development of new labs for undergraduate Biochemistry courses to equip the students with up-to-date techniques. However, the time limit of Biochemistry labs for undergraduate students represents a major obstacle. This article presents a clear set of laboratory exercises designed to introduce students to the use of polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) as a means of detection of genetic variants. Three consecutive lab experiments have been designed for the undergraduate students to serve this purpose. The first session was performed in a computer lab (dry lab) where students were taught how to obtain a specific gene sequence, identify an exact single nucleotide polymorphism location, choose the target sequence for amplification, design specific primers for this particular sequence and choose the most suitable restriction enzyme from web tools. The second and third lab sessions were performed as wet labs where in the second lab session, students optimized PCR conditions and performed a successful PCR. The PCR products were kept for use in the third lab session where they utilized the selected restriction enzyme and carried out gel electrophoresis to determine the exact genotype.


Subject(s)
Biochemistry , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Biochemistry/education , Cholestanetriol 26-Monooxygenase , Cytochrome P450 Family 2 , DNA Primers/chemistry , Humans , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Students
7.
Anal Biochem ; 636: 114452, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34762873

ABSTRACT

Ribosomal RNA gene as a high-copy number nucleo-biomarker is extremely conserved among bacteria which limits its application to the discriminative detection approaches. We have developed a colorimetric isothermal amplification method called "single specific primer-LAMP (SSP-LAMP)" requiring only one specific primer for the amplification of the target and applied to the identification of the 16S rRNA gene in the Shigella genus. A region with high sequence homology in the genus and low homology with other bacteria was considered as the most appropriate. In that regard, a 23 bp sequence in the 16S rRNA gene of the genus was targeted based on the alignment of the gene with fifty-three closely related bacterial species, and a single specific primer along with five degenerate primers were designed. Using hydroxy-naphthol blue (HNB) as an indicator and gel electrophoresis, the proposed approach of SSP-LAMP was able to detect S. boydii, S. sonnei, S. flexneri and S. dysenteriae specifically while other species remained unidentified. The SSP-LAMP method could provide a rapid one-pot point-of-care method for molecular diagnostics of pathogens in many circumstances mainly samples with high genetic homogeneity.


Subject(s)
Bacterial Typing Techniques , DNA Primers , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Ribosomal, 16S/genetics , Shigella , DNA Primers/chemistry , DNA Primers/genetics , Shigella/classification , Shigella/genetics
8.
Mol Plant ; 15(4): 620-629, 2022 04 04.
Article in English | MEDLINE | ID: mdl-34968732

ABSTRACT

Despite continuous improvements, it is difficult to efficiently amplify large sequences from complex templates using current PCR methods. Here, we developed a suppression thermo-interlaced (STI) PCR method for the efficient and specific amplification of long DNA sequences from genomes and synthetic DNA pools. This method uses site-specific primers containing a common 5' tag to generate a stem-loop structure, thereby repressing the amplification of smaller non-specific products through PCR suppression (PS). However, large target products are less affected by PS and show enhanced amplification when the competitive amplification of non-specific products is suppressed. Furthermore, this method uses nested thermo-interlaced cycling with varied temperatures to optimize strand extension of long sequences with an uneven GC distribution. The combination of these two factors in STI PCR produces a multiplier effect, markedly increasing specificity and amplification capacity. We also developed a webtool, calGC, for analyzing the GC distribution of target DNA sequences and selecting suitable thermo-cycling programs for STI PCR. Using this method, we stably amplified very long genomic fragments (up to 38 kb) from plants and human and greatly increased the length of de novo DNA synthesis, which has many applications such as cloning, expression, and targeted genomic sequencing. Our method greatly extends PCR capacity and has great potential for use in biological fields.


Subject(s)
Sexually Transmitted Diseases , Base Sequence , DNA Primers/chemistry , DNA Primers/genetics , Humans , Polymerase Chain Reaction/methods , Sexually Transmitted Diseases/genetics
9.
Sci Rep ; 11(1): 19098, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580382

ABSTRACT

Genetic mutations such as single nucleotide polymorphisms (SNP) are known as one of the most common forms which related to various genetic disorders and cancers. Among of the methods developed for efficient detection of such SNP, polymerase chain reaction (PCR) methods are widely used worldwide for its cost and viable advantages. However, the technique to discriminate small amounts of SNP mixed in abundant normal DNA is incomplete due to intrinsic technical problems of PCR such as amplification occurring even in 3'mismatched cases because of high enzyme activity of DNA polymerases. To overcome the issue, specifically designed PCR platform, STexS (SNP typing with excellent specificity) using double stranded oligonucleotides was implemented as a means to emphasize the amplification of SNP templates by decreasing unwanted amplification of 3'mismatched DNA copies. In this study, the results indicate several EGFR mutations were easily detected specifically utilizing the STexS platform. Further trials show the novel method works effectively to discriminate mutations in not only general allele specific (AS)-PCRs, but also amplification refractory mutation system (ARMS)-PCR. The STexS platform will give aid in PCRs targeting potential SNPs or genetically mutated biomarkers in human clinical samples.


Subject(s)
DNA Primers/chemistry , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Humans , Nucleic Acid Conformation , Sensitivity and Specificity
10.
Sci Rep ; 11(1): 17087, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429488

ABSTRACT

Infections due to triazole-resistant Aspergillus fumigatus are increasingly reported worldwide and are associated with treatment failure and mortality. The principal class of azole-resistant isolates is characterized by tandem repeats of 34 bp or 46 bp within the promoter region of the cyp51A gene. Loop-mediated isothermal amplification (LAMP) is a widely used nucleic acid amplification system that is fast and specific. Here we describe a LAMP assay method to detect the 46 bp tandem repeat insertion in the cyp51A gene promoter region based on novel LAMP primer sets. It also differentiated strains with TR46 tandem repeats from those with TR34 tandem repeats. These results showed this TR46-LAMP method is specific, rapid, and provides crucial insights to develop novel antifungal therapeutic strategies against severe fungal infections due to A. fumigatus with TR46 tandem repeats.


Subject(s)
Aspergillus fumigatus/genetics , Cytochrome P-450 Enzyme System/genetics , Drug Resistance, Fungal , Fungal Proteins/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Antifungal Agents/toxicity , Aspergillus fumigatus/drug effects , Azoles/toxicity , DNA Primers/chemistry , DNA Primers/genetics , Promoter Regions, Genetic , Tandem Repeat Sequences
11.
Nucleic Acids Res ; 49(19): e111, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34450653

ABSTRACT

Interconversions between nucleic acid structures play an important role in transcriptional and translational regulation and also in repair and recombination. These interconversions are frequently promoted by nucleic acid chaperone proteins. To monitor their kinetics, Förster resonance energy transfer (FRET) is widely exploited using ensemble fluorescence intensity measurements in pre-steady-state stopped-flow experiments. Such experiments only provide a weighted average of the emission of all species in solution and consume large quantities of materials. Herein, we lift these limitations by combining time-resolved fluorescence (TRF) with droplet microfluidics (DmF). We validate the innovative TRF-DmF approach by investigating the well characterized annealing of the HIV-1 (+)/(-) Primer Binding Sequences (PBS) promoted by a HIV-1 nucleocapsid peptide. Upon rapid mixing of the FRET-labelled (-)PBS with its complementary (+)PBS sequence inside microdroplets, the TRF-DmF set-up enables resolving the time evolution of sub-populations of reacting species and reveals an early intermediate with a ∼50 ps donor fluorescence lifetime never identified so far. TRF-DmF also favorably compares with single molecule experiments, as it offers an accurate control of concentrations with no upper limit, no need to graft one partner on a surface and no photobleaching issues.


Subject(s)
DNA Primers/chemistry , HIV-1/chemistry , Molecular Chaperones/chemistry , Nucleocapsid Proteins/chemistry , Peptides/chemistry , Serum Albumin, Human/chemistry , Base Pairing , DNA Primers/metabolism , Fluoresceins/chemistry , Fluorescence , Fluorescence Resonance Energy Transfer , HIV-1/metabolism , Humans , Kinetics , Microfluidic Analytical Techniques , Molecular Chaperones/metabolism , Nucleic Acid Conformation , Nucleocapsid Proteins/metabolism , Peptides/metabolism , Serum Albumin, Human/metabolism , p-Dimethylaminoazobenzene/analogs & derivatives , p-Dimethylaminoazobenzene/chemistry
12.
Genomics ; 113(5): 3174-3184, 2021 09.
Article in English | MEDLINE | ID: mdl-34293476

ABSTRACT

As mutations in SARS-CoV-2 virus accumulate rapidly, novel primers that amplify this virus sensitively and specifically are in demand. We have developed a webserver named CoVrimer by which users can search for and align existing or newly designed conserved/degenerate primer pair sequences against the viral genome and assess the mutation load of both primers and amplicons. CoVrimer uses mutation data obtained from an online platform established by NGDC-CNCB (12 May 2021) to identify genomic regions, either conserved or with low levels of mutations, from which potential primer pairs are designed and provided to the user for filtering based on generalized and SARS-CoV-2 specific parameters. Alignments of primers and probes can be visualized with respect to the reference genome, indicating variant details and the level of conservation. Consequently, CoVrimer is likely to help researchers with the challenges posed by viral evolution and is freely available at http://konulabapps.bilkent.edu.tr:3838/CoVrimer/.


Subject(s)
DNA Primers/chemistry , SARS-CoV-2/genetics , Sequence Analysis, DNA/methods , Software , Conserved Sequence , DNA Primers/genetics , Genome, Viral , Mutation
13.
Nat Commun ; 12(1): 3518, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112775

ABSTRACT

DNA holds significant promise as a data storage medium due to its density, longevity, and resource and energy conservation. These advantages arise from the inherent biomolecular structure of DNA which differentiates it from conventional storage media. The unique molecular architecture of DNA storage also prompts important discussions on how data should be organized, accessed, and manipulated and what practical functionalities may be possible. Here we leverage thermodynamic tuning of biomolecular interactions to implement useful data access and organizational features. Specific sets of environmental conditions including distinct DNA concentrations and temperatures were screened for their ability to switchably access either all DNA strands encoding full image files from a GB-sized background database or subsets of those strands encoding low resolution, File Preview, versions. We demonstrate File Preview with four JPEG images and provide an argument for the substantial and practical economic benefit of this generalizable strategy to organize data.


Subject(s)
DNA/chemistry , Image Processing, Computer-Assisted/methods , Information Storage and Retrieval/methods , Computer Simulation , DNA Primers/chemistry , Databases, Nucleic Acid , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction/methods , Software , Temperature , Thermodynamics
14.
ACS Appl Mater Interfaces ; 13(26): 30295-30305, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34165969

ABSTRACT

As viruses have been threatening global public health, fast diagnosis has been critical to effective disease management and control. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) is now widely used as the gold standard for detecting viruses. Although a multiplex assay is essential for identifying virus types and subtypes, the poor multiplicity of RT-qPCR makes it laborious and time-consuming. In this paper, we describe the development of a multiplex RT-qPCR platform with hydrogel microparticles acting as independent reactors in a single reaction. To build target-specific particles, target-specific primers and probes are integrated into the particles in the form of noncovalent composites with boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs). The thermal release characteristics of DNA, primer, and probe from the composites of primer-BNNT and probe-CNT allow primer and probe to be stored in particles during particle production and to be delivered into the reaction. In addition, BNNT did not absorb but preserved the fluorescent signal, while CNT protected the fluorophore of the probe from the free radicals present during particle production. Bicompartmental primer-incorporated network (bcPIN) particles were designed to harness the distinctive properties of two nanomaterials. The bcPIN particles showed a high RT-qPCR efficiency of over 90% and effective suppression of non-specific reactions. 16-plex RT-qPCR has been achieved simply by recruiting differently coded bcPIN particles for each target. As a proof of concept, multiplex one-step RT-qPCR was successfully demonstrated with a simple reaction protocol.


Subject(s)
Hydrogels/chemistry , Multiplex Polymerase Chain Reaction/methods , Nanotubes, Carbon/chemistry , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Boron Compounds/chemistry , Coronavirus/chemistry , DNA Primers/chemistry , DNA, Single-Stranded/chemistry , Fluorescent Dyes/chemistry , Graphite/chemistry , Influenza A virus/chemistry , Newcastle disease virus/chemistry , Proof of Concept Study , RNA, Viral/chemistry , Virus Diseases/diagnosis
15.
J Clin Lab Anal ; 35(6): e23800, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33960443

ABSTRACT

BACKGROUND: Telomerase is a ribonucleoprotein enzyme responsible for maintenance of telomere length which expressed in more than 85% of cancer cells but undetectable in most normal tissue cells. Therefore, telomerase serves as a diagnostic marker of cancers. Two commonly used telomerase activity detection methods, the telomerase repeated amplification protocol (TRAP) and the direct telomerase assay (DTA), have disadvantages that mainly arise from reliance on PCR amplification or the use of an isotope. A safe, low-cost and reliable telomerase activity detection method is still lacking. METHOD: We modified DTA method using biotin-labeled primers (Biotin-DTA) and optimized the method by adjusting cell culture temperature and KCl concentration. The sensitivity of the method was confirmed to detect endogenous telomerase activity. The reliability was verified by detection of telomerase activity of published telomerase regulators. The stability was confirmed by comparing the method with TRAP method. RESULTS: Cells cultured in 32°C and KCl concentration at 200 mM or 250 mM resulted in robust Biotin-DTA signal. Endogenous telomerase activity can be detected, which suggested an similar sensitivity as DTA using radioactive isotope markers. Knockdown of telomerase assembly regulator PES1 and DKC1 efficiently reduced telomerase activity. Compared with TRAP method, Biotin-DTA assay offers greater signal stability over a range of analyte protein amounts. CONCLUSION: Biotin-labeled, PCR-free, and nonradioactive direct telomerase assay is a promising new method for the easy, low-cost, and quantitative detection of telomerase activity.


Subject(s)
Biotin/chemistry , DNA Primers/chemistry , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/methods , Telomerase/metabolism , Hep G2 Cells , Humans , Telomerase/genetics
16.
RNA Biol ; 18(12): 2218-2225, 2021 12.
Article in English | MEDLINE | ID: mdl-33966602

ABSTRACT

Early detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proven crucial during the efforts to mitigate the effects of the COVID-19 pandemic. Several diagnostic methods have emerged in the past few months, each with different shortcomings and limitations. The current gold standard, RT-qPCR using fluorescent probes, relies on demanding equipment requirements plus the high costs of the probes and specific reaction mixes. To broaden the possibilities of reagents and thermocyclers that could be allocated towards this task, we have optimized an alternative strategy for RT-qPCR diagnosis. This is based on a widely used DNA-intercalating dye and can be implemented with several different qPCR reagents and instruments. Remarkably, the proposed qPCR method performs similarly to the broadly used TaqMan-based detection, in terms of specificity and sensitivity, thus representing a reliable tool. We think that, through enabling the use of vast range of thermocycler models and laboratory facilities for SARS-CoV-2 diagnosis, the alternative proposed here can increase dramatically the testing capability, especially in countries with limited access to costly technology and reagents.


Subject(s)
Benzothiazoles/chemistry , COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Diamines/chemistry , Intercalating Agents/chemistry , Quinolines/chemistry , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , DNA/analysis , DNA/biosynthesis , DNA Primers/chemistry , DNA Primers/metabolism , Humans , Nasopharynx/virology , Real-Time Polymerase Chain Reaction/standards , Sensitivity and Specificity
17.
Anal Biochem ; 623: 114193, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33831350

ABSTRACT

Technological advancements have revolutionized ancient and degraded DNA analysis, moving the field to the Next Generation Sequencing era. One of the advancements, the ancient DNA-oriented high-throughput library preparation methods, enabled the sequencing of more endogenous molecules. Although fairly optimized, both single- and double-stranded library preparation methods hold the potential for further improvement. Here, we test a series of modifications made at different steps of both single- and double-stranded library preparation methods. Given all the modifications tested, we found that two of them provide further benefits, including the use of Endonuclease VIII as a pre-treatment step before preparing single-stranded libraries and the use of a modified second adapter of the single stranded-libraries as an alternative option to enable sequencing of single stranded-libraries with the standard Illumina sequencing primer instead of the custom designed as described in the single stranded library preparation method. Furthermore, we propose uracil-DNA-glycosylase (UDG) could also be considered for both single- and double-stranded library preparation methods, although additional parameters should be taken into account depending on the sequencing strategy and the sample characteristics. Further modifications were also tested and although they were not advantageous, they could be considered as equivalent to the published options.


Subject(s)
DNA, Ancient/analysis , DNA/analysis , Genomic Library , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , DNA/chemistry , DNA/metabolism , DNA Primers/chemistry , DNA, Ancient/chemistry , DNA, Single-Stranded/analysis , DNA, Single-Stranded/chemistry , Humans , Uracil-DNA Glycosidase/chemistry , Uracil-DNA Glycosidase/metabolism
19.
Food Chem ; 356: 129684, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33812194

ABSTRACT

In this study, we aim to develop a novel loop mediated isothermal amplification (LAMP) coupled with TaqMan (LAMP-TaqMan) method for quick qualitative detection of genetically modified organism (GMOs). We designed four LAMP primers and one TaqMan probe for the LAMP-TaqMan detection method to detect the nopaline synthase gene (NOS) terminator in GMOs. This assay enabled the amplification of DNA within ~20 min at a constant temperature of 65 °C. This assay detected as few as five copies of target sequences, which had a high specificity similar to the TaqMan qPCR method. Furthermore, the LAMP-TaqMan detection method was successfully used to amplify and detect DNA from food samples of the major crops (soybean, maize, rice, etc.). In summary, a novel LAMP-TaqMan assay has been developed, which has the similar sensitivity but takes less time than the TaqMan qPCR method. This method offers a novel approach for rapid detection of GMOs in foods.


Subject(s)
Amino Acid Oxidoreductases/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Plants, Genetically Modified/enzymology , Crops, Agricultural/enzymology , Crops, Agricultural/genetics , DNA Primers/chemistry , DNA Primers/metabolism , DNA, Plant/analysis , DNA, Plant/metabolism , Limit of Detection , Plants, Genetically Modified/genetics , Glycine max/enzymology , Glycine max/genetics , Zea mays/enzymology , Zea mays/genetics
20.
Methods Mol Biol ; 2300: 241-250, 2021.
Article in English | MEDLINE | ID: mdl-33792883

ABSTRACT

RNA folds into secondary structures that can serve in understanding various RNA functions (Weeks KM. Curr Opin Struct Biol 20(3):295-304, 2010). Chemical probing is a method that enables the characterization of RNA secondary structures using chemical reagents that specifically modify RNA nucleotides that are located in single-stranded areas. In our protocol, we used Dimethyl Sulfate (DMS) and Cyclohexyl-3-(2-Morpholinoethyl) Carbodiimide metho-p-Toluene sulfonate (CMCT) that are both base-specific modifying reagents (Behm-Ansmant I, et al. J Nucleic Acids 2011:408053, 2011). These modifications are mapped by primer extension arrests using 5' fluorescently labeled primers. In this protocol, we show a comprehensive method to identify RNA secondary structures in vitro using fluorescently labeled oligos. To demonstrate the efficiency of the method, we give an example of a structure we have designed which corresponds to a part of the 5'-UTR regulatory element called Translation Inhibitory Element (TIE) from Hox a3 mRNA (Xue S, et al. Nature 517(7532):33-38, 2015).


Subject(s)
CME-Carbodiimide/analogs & derivatives , RNA/chemistry , Sulfuric Acid Esters/chemistry , 5' Untranslated Regions , CME-Carbodiimide/chemistry , DNA Primers/chemistry , Fluorescent Dyes/chemistry , Models, Molecular , Nucleic Acid Conformation , RNA Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...