Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.354
Filter
1.
Sci Rep ; 14(1): 11398, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762534

ABSTRACT

Glioblastoma (GB) is a devastating tumor of the central nervous system characterized by a poor prognosis. One of the best-established predictive biomarker in IDH-wildtype GB is O6-methylguanine-DNA methyltransferase (MGMT) methylation (mMGMT), which is associated with improved treatment response and survival. However, current efforts to monitor GB patients through mMGMT detection have proven unsuccessful. Small extracellular vesicles (sEVs) hold potential as a key element that could revolutionize clinical practice by offering new possibilities for liquid biopsy. This study aimed to determine the utility of sEV-based liquid biopsy as a predictive biomarker and disease monitoring tool in patients with IDH-wildtype GB. Our findings show consistent results with tissue-based analysis, achieving a remarkable sensitivity of 85.7% for detecting mMGMT in liquid biopsy, the highest reported to date. Moreover, we suggested that liquid biopsy assessment of sEV-DNA could be a powerful tool for monitoring disease progression in IDH-wildtype GB patients. This study highlights the critical significance of overcoming molecular underdetection, which can lead to missed treatment opportunities and misdiagnoses, possibly resulting in ineffective therapies. The outcomes of our research significantly contribute to the field of sEV-DNA-based liquid biopsy, providing valuable insights into tumor tissue heterogeneity and establishing it as a promising tool for detecting GB biomarkers. These results have substantial implications for advancing predictive and therapeutic approaches in the context of GB and warrant further exploration and validation in clinical settings.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Extracellular Vesicles , Glioblastoma , Tumor Suppressor Proteins , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/diagnosis , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Liquid Biopsy/methods , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/diagnosis , Aged , Adult , Prognosis
2.
Environ Int ; 186: 108645, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38615541

ABSTRACT

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.


Subject(s)
Acetylcysteine/analogs & derivatives , Benzene , CpG Islands , DNA Methylation , Occupational Exposure , Humans , DNA Methylation/drug effects , Male , Occupational Exposure/adverse effects , Benzene/toxicity , Adult , China , DNA Damage , Middle Aged , Biomarkers/urine , Acetylcysteine/urine , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38686720

ABSTRACT

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Subject(s)
Acid Anhydride Hydrolases , Cell Cycle Proteins , DNA Repair Enzymes , DNA-Binding Proteins , MRE11 Homologue Protein , Nuclear Proteins , Humans , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , DNA Repair , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Nijmegen Breakage Syndrome/metabolism , Nijmegen Breakage Syndrome/genetics
4.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 219-224, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650130

ABSTRACT

Mitochondrial DNA damage in retinal ganglion cells (RGCs) may be closely related to lesions of glaucoma. RGCs were cultured with different concentrations of glucose and grouped into 3 groups, namely normal control (NC) group, Low-Glu group, and High-Glu group. Cell viability was measured with cell counting kit-8, and cell apoptosis was measured using flow cytometry. The DNA damage was measured with comet assay, and the morphological changes of damaged mitochondria in RGCs were observed using TEM. Western blot analyzed the expression of MRE11, RAD50, and NBS1 protein. Cell viability of RGCs in Low-Glu and High-Glu groups were lower than that of NC group in 48 and 96 h. The cell apoptosis in NC group was 4.9%, the Low-Glu group was 12.2% and High-Glu group was 24.4%. The comet imaging showed that NC cells did not have tailings, but the low-Glu and high-Glu group cells had tailings, indicating that the DNA of RGCs had been damaged. TEM, mitochondrial membrane potential, ROS, mitochondrial oxygen consumption, and ATP content detection results showed that RGCs cultured with high glucose occurred mitochondrial morphology changes and dysfunction. MRE11, RAD50, and NBS1 protein expression associated with DNA damage repair pathway in High-Glu group declined compared with Low-Glu group. Mitochondrial DNA damage caused by high glucose will result in apoptosis of retinal ganglion cells in glaucoma.


Subject(s)
Apoptosis , Cell Survival , DNA Damage , DNA, Mitochondrial , Glucose , Membrane Potential, Mitochondrial , Reactive Oxygen Species , Retinal Ganglion Cells , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Glucose/toxicity , Glucose/pharmacology , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Apoptosis/drug effects , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Adenosine Triphosphate/metabolism , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Acid Anhydride Hydrolases/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Humans , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Comet Assay , Animals
5.
CNS Neurosci Ther ; 30(4): e14711, 2024 04.
Article in English | MEDLINE | ID: mdl-38644551

ABSTRACT

OBJECTIVE: To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS: Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS: USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION: The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.


Subject(s)
Antineoplastic Agents, Alkylating , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Drug Resistance, Neoplasm , Temozolomide , Tumor Suppressor Proteins , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Modification Methylases/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , DNA Methylation/drug effects , Mice, Nude , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Mice , Male , Female , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , DNA Repair/drug effects , Endopeptidases/metabolism , Endopeptidases/genetics , Xenograft Model Antitumor Assays , Ubiquitination/drug effects
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657912

ABSTRACT

Cervical cancer cells possess high levels of reactive oxygen species (ROS); thus, increasing oxidative stress above the toxicity threshold to induce cell death is a promising chemotherapeutic strategy. However, the underlying mechanisms of cell death are elusive, and efficacy and toxicity issues remain. Within DNA, 8-oxo-7,8-dihydroguanine (8-oxoG) is the most frequent base lesion repaired by 8-oxoguanine glycosylase 1 (OGG1)-initiated base excision repair. Cancer cells also express high levels of MutT homolog 1 (MTH1), which prevents DNA replication-induced incorporation of 8-oxoG into the genome by hydrolyzing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). Here, we revealed that ROS-inducing agents triggered cervical cancer to undergo parthanatos, which was mainly induced by massive DNA strand breaks resulting from overwhelming 8-oxoG excision by OGG1. Furthermore, the MTH1 inhibitor synergized with a relatively low dose of ROS-inducing agents by enhancing 8-oxoG loading in the DNA. In vivo, this drug combination suppressed the growth of tumor xenografts, and this inhibitory effect was significantly decreased in the absence of OGG1. Hence, the present study highlights the roles of base repair enzymes in cell death induction and suggests that the combination of lower doses of ROS-inducing agents with MTH1 inhibitors may be a more selective and safer strategy for cervical cancer chemotherapy.


Subject(s)
DNA Glycosylases , DNA Repair Enzymes , Phosphoric Monoester Hydrolases , Reactive Oxygen Species , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Humans , Female , Reactive Oxygen Species/metabolism , Animals , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , DNA Glycosylases/metabolism , DNA Glycosylases/antagonists & inhibitors , DNA Glycosylases/genetics , Mice , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/antagonists & inhibitors , DNA Repair Enzymes/genetics , Guanine/analogs & derivatives , Guanine/pharmacology , Cell Line, Tumor , DNA Repair/drug effects , Mice, Nude , Xenograft Model Antitumor Assays , Drug Synergism , HeLa Cells , Oxidative Stress/drug effects
7.
Nat Cell Biol ; 26(5): 797-810, 2024 May.
Article in English | MEDLINE | ID: mdl-38600235

ABSTRACT

Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , Transcription, Genetic , Ubiquitination , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Humans , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Cockayne Syndrome/pathology , DNA Damage , Ultraviolet Rays , DNA/metabolism , DNA/genetics , DNA Adducts/metabolism , DNA Adducts/genetics , Excision Repair , Transcription Factors , Receptors, Interleukin-17
8.
Nat Cell Biol ; 26(5): 770-783, 2024 May.
Article in English | MEDLINE | ID: mdl-38600236

ABSTRACT

DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.


Subject(s)
DNA Helicases , DNA Repair Enzymes , DNA Repair , Poly-ADP-Ribose Binding Proteins , Proteolysis , RNA Polymerase II , Transcription, Genetic , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA/metabolism , DNA/genetics , HEK293 Cells , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Damage , Proteasome Endopeptidase Complex/metabolism , Carrier Proteins , Receptors, Interleukin-17
9.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612892

ABSTRACT

Glioblastoma (GBM) is a fatal brain tumor with limited treatment options. O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is the central molecular biomarker linked to both the response to temozolomide, the standard chemotherapy drug employed for GBM, and to patient survival. However, MGMT status is captured on tumor tissue which, given the difficulty in acquisition, limits the use of this molecular feature for treatment monitoring. MGMT protein expression levels may offer additional insights into the mechanistic understanding of MGMT but, currently, they correlate poorly to promoter methylation. The difficulty of acquiring tumor tissue for MGMT testing drives the need for non-invasive methods to predict MGMT status. Feature selection aims to identify the most informative features to build accurate and interpretable prediction models. This study explores the new application of a combined feature selection (i.e., LASSO and mRMR) and the rank-based weighting method (i.e., MGMT ProFWise) to non-invasively link MGMT promoter methylation status and serum protein expression in patients with GBM. Our method provides promising results, reducing dimensionality (by more than 95%) when employed on two large-scale proteomic datasets (7k SomaScan® panel and CPTAC) for all our analyses. The computational results indicate that the proposed approach provides 14 shared serum biomarkers that may be helpful for diagnostic, prognostic, and/or predictive operations for GBM-related processes, given further validation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Proteomics , Temozolomide/therapeutic use , Blood Proteins , Brain Neoplasms/genetics , O(6)-Methylguanine-DNA Methyltransferase , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
10.
Genes (Basel) ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674442

ABSTRACT

(1) Background: Cockayne syndrome (CS) is an ultra-rare multisystem disorder, classically subdivided into three forms and characterized by a clinical spectrum without a clear genotype-phenotype correlation for both the two causative genes ERCC6 (CS type B) and ERCC8 (CS type A). We assessed this, presenting a series of patients with genetically confirmed CSB. (2) Materials and Methods: We retrospectively collected demographic, clinical, genetic, neuroimaging, and serum neurofilament light-chain (sNFL) data about CSB patients; diagnostic and severity scores were also determined. (3) Results: Data of eight ERCC6/CSB patients are presented. Four patients had CS I, three patients CS II, and one patient CS III. Various degrees of ataxia and spasticity were cardinal neurologic features, with variably combined systemic characteristics. Mean age at diagnosis was lower in the type II form, in which classic CS signs were more evident. Interestingly, sNFL determination appeared to reflect clinical classification. Two novel premature stop codon and one novel missense variants were identified. All CS I subjects harbored the p.Arg735Ter variant; the milder CS III subject carried the p.Leu764Ser missense change. (4) Conclusion: Our work confirms clinical variability also in the ERCC6/CSB type, where manifestations may range from severe involvement with prenatal or neonatal onset to normal psychomotor development followed by progressive ataxia. We propose, for the first time in CS, sNFL as a useful peripheral biomarker, with increased levels compared to currently available reference values and with the potential ability to reflect disease severity.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , Poly-ADP-Ribose Binding Proteins , Transcription Factors , Humans , Cockayne Syndrome/genetics , Cockayne Syndrome/pathology , Cockayne Syndrome/diagnosis , Poly-ADP-Ribose Binding Proteins/genetics , DNA Repair Enzymes/genetics , Female , Male , DNA Helicases/genetics , Child , Child, Preschool , Adolescent , Retrospective Studies , Adult , Infant , Genetic Association Studies , Young Adult
11.
Mol Biol Rep ; 51(1): 433, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520591

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM), the most prevalent subgroup of neuroepithelial tumors, is characterized by dismal overall survival (OS). Several studies have linked O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation to OS in GBM patients. However, MGMT methylation frequencies vary geographically and across ethnicities, with limited data for South Asian populations, including Pakistan. This study aimed to analyze MGMT promoter methylation in Pakistani GBM patients. METHODS: Consecutive primary GBM patients diagnosed ≥ 18 years-of-age, with no prior chemotherapy or radiotherapy history, were retrospectively selected. DNA was isolated from formalin-fixed-paraffin-embedded tissues. MGMT promoter methylation was analyzed using methylation-specific PCR. Clinical, pathological, and treatment data were assessed using Fisher's exact/Chi-squared tests. OS was calculated using Kaplan-Meier analysis in SPSS 27.0.1. RESULTS: The study included 48 GBM patients, comprising 38 (79.2%) males and 10 (20.8%) females. The median diagnosis age was 49.5 years (range 18-70). MGMT methylation was observed in 87.5% (42/48) of all cases. Patients with MGMT methylation undergoing radiotherapy or radiotherapy plus chemotherapy exhibited significantly improved median OS of 7.2 months (95% CI, 3.7-10.7; P < 0.001) and 16.9 months (95% CI, 15.9-17.9; P < 0.001), respectively, compared to those undergoing surgical resection only (OS: 2.2 months, 95% CI, 0.8-3.6). CONCLUSION: This is the first comprehensive study highlighting a predominance of MGMT methylation in Pakistani GBM patients. Furthermore, our findings underscore the association of MGMT methylation with improved OS across diverse treatment modalities. Larger studies are imperative to validate our findings for better management of Pakistani GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Male , Female , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Glioblastoma/pathology , Pakistan , Retrospective Studies , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Modification Methylases/genetics , DNA Methylation/genetics , DNA Repair Enzymes/genetics , DNA , Antineoplastic Agents, Alkylating/therapeutic use , Tumor Suppressor Proteins/genetics
12.
BMC Neurol ; 24(1): 103, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521933

ABSTRACT

BACKGROUND: MGMT (O 6 -methylguanine-DNA methyltransferase) promoter methylation is a commonly assessed prognostic marker in glioblastoma (GBM). Epigenetic silencing of the MGMT gene by promoter methylation is associated with greater overall and progression free survival with alkylating agent regimens. To date, there is marked heterogeneity in how MGMT promoter methylation is tested and which CpG sites are interrogated. METHODS: To further elucidate which MGMT promoter CpG sites are of greatest interest, we performed comprehensive searches in PubMed, Web of Science, and Embase and reviewed 2,925 article abstracts. We followed the GRADE scoring system to assess risk of bias and the quality of the studies we included. RESULTS: We included articles on adult glioblastoma that examined significant sites or regions within MGMT promoter for the outcomes: overall survival, progression free survival, and/or MGMT expression. We excluded systemic reviews and articles on lower grade glioma. fifteen articles met inclusion criteria with variable overlap in laboratory and statistical methods employed, as well as CpG sites interrogated. Pyrosequencing or BeadChip arrays were the most popular methods utilized, and CpG sites between CpG's 70-90 were most frequently investigated. Overall, there was moderate concordance between the CpG sites that the studies reported to be highly predictive of prognosis. Combinations or means of sites between CpG's 73-89 were associated with improved OS and PFS. Six studies identified CpG sites associated with prognosis that were closer to the transcription start site: CpG's 8, 19, 22, 25, 27, 32,38, and CpG sites 21-37, as well as low methylation level of the enhancer regions. CONCLUSION: The following systematic review details a comprehensive investigation of the current literature and highlights several potential key CpG sites that demonstrate significant association with OS, PFS, and MGMT expression. However, the relationship between extent of MGMT promoter methylation and survival may be non-linear and could be influenced by potential CpG hotspots, the extent of methylation at each CpG site, and MGMT enhancer methylation status. There were several limitations within the studies such as smaller sample sizes, variance between methylation testing methods, and differences in the various statistical methods to test for association to outcome. Further studies of high impact CpG sites in MGMT methylation is warranted.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Brain Neoplasms/genetics , DNA Methylation/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/genetics , Glioma/genetics , Prognosis , Tumor Suppressor Proteins/genetics
13.
Cancer Lett ; 588: 216812, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38490327

ABSTRACT

The efficacy of temozolomide (TMZ) treatment in glioblastoma (GBM) is influenced by various mechanisms, mainly including the level of O6-methylguanine-DNA methyltransferase (MGMT) and the activity of DNA damage repair (DDR) pathways. In our previous study, we had proved that long non-coding RNA HOTAIR regulated the GBM progression and mediated DDR by interacting with EZH2, the catalytic subunit of PRC2. In this study, we developed a small-molecule inhibitor called EPIC-0628 that selectively disrupted the HOTAIR-EZH2 interaction and promoted ATF3 expression. The upregulation of ATF3 inhibited the recruitment of p300, p-p65, p-Stat3 and SP1 to the MGMT promoter. Hence, EPIC-0628 silenced MGMT expression. Besides, EPIC-0628 induced cell cycle arrest by increasing the expression of CDKN1A and impaired DNA double-strand break repair via suppressing the ATF3-p38-E2F1 pathway. Lastly, EPIC-0628 enhanced TMZ efficacy in GBM in vitro and vivo. Hence, this study provided evidence for the combination of epigenetic drugs EPIC-0628 with TMZ for GBM treatment through the above mechanisms.


Subject(s)
Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Dacarbazine/pharmacology , Cell Line, Tumor , DNA Repair Enzymes/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , DNA Breaks, Double-Stranded , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein/genetics , Activating Transcription Factor 3/genetics
14.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542081

ABSTRACT

Breast cancer (BC) and ovarian cancer (OC) are rapidly increasing in Saudi Arabia. BRCA1 and MGMT epimutations have been linked to a higher risk of these malignancies. The present research investigated the impact of these epimutations on the prevalence of BC and OC among Saudi women. DNA methylation was evaluated using methylation-specific PCR, whereas mRNA expression levels were assessed using qRT-PCR. We evaluated white blood cell (WBC)-BRCA1 methylation in 1958 Saudi women (908 BC patients, 223 OC patients, and 827 controls). MGMT methylation was determined in 1534 of the 1958 women (700 BC patients, 223 OC patients, and 611 controls). BRCA1 methylation was detected in 8.6% of the controls and 11% of the BC patients. This epimutation was linked to 13.8% of the early-onset BC patients (p = 0.003) and 20% of the triple-negative breast cancer (TNBC) patients (p = 0.0001). BRCA1 methylation was also detected in 14% of the OC patients (p = 0.011), 19.4% of patients aged <55 years (p = 0.0007), and 23.4% of high-grade serous ovarian cancer (HGSOC) patients. In contrast, the BRCA1 mutation was detected in 24% of the OC patients, 27.4% of patients aged ≥55 years, and 26.7% of the HGSOC patients. However, MGMT methylation was detected in 10% of the controls and 17.4% of the BC patients (p = 0.0003). This epimutation was linked to 26.4% of the late-onset BC patients (p = 0.0001) and 11% of the TNBC patients. MGMT methylation was also found in 15.2% of the OC patients (p = 0.034) and 19.1% of HGSOC patients (p = 0.054). Furthermore, 36% of the BRCA1-methylated patients and 34.5% of the MGMT-methylated patients had a family history of cancer, including breast and ovarian cancer. Notably, BRCA1 and MGMT mRNA levels were greater in the WBC RNA of the BC patients and cancer-free methylation carriers than in that of the OC patients. Our data indicate that BRCA1 and MGMT epimutations significantly contribute to the development of breast cancer and ovarian cancer in Saudi cancer patients. These blood-based biomarkers could help identify female patients at high risk of developing TNBC and HGSOC at an early age.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Triple Negative Breast Neoplasms , Female , Humans , Triple Negative Breast Neoplasms/epidemiology , Triple Negative Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Saudi Arabia/epidemiology , Promoter Regions, Genetic , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA Methylation , Risk Factors , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Genetic Predisposition to Disease , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism
15.
Dokl Biochem Biophys ; 515(1): 41-47, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472668

ABSTRACT

High-throughput ribosome profiling demonstrates the translation of thousands of small open reading frames located in the 5' untranslated regions of messenger RNAs (upstream ORFs). Upstream ORF can both perform a regulatory function by influencing the translation of the downstream main ORF and encode a small functional protein or microprotein. In this work, we showed that the 5' untranslated region of the PRPF19 mRNA encodes an upstream ORF that is translated in human cells. Inactivation of this upstream ORF reduces the viability of human cells.


Subject(s)
DNA Repair Enzymes , Nuclear Proteins , Open Reading Frames , RNA Splicing Factors , Humans , 5' Untranslated Regions , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Nuclear Proteins/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
J Neurooncol ; 168(1): 49-56, 2024 May.
Article in English | MEDLINE | ID: mdl-38520571

ABSTRACT

BACKGROUND: The optimal management strategy for recurrent glioblastoma (rGBM) remains uncertain, and the impact of re-irradiation (Re-RT) on overall survival (OS) is still a matter of debate. This study included patients who achieved gross total resection (GTR) after a second surgery after recurrence, following the GlioCave criteria. METHODS: Inclusion criteria include being 18 years or older, having histologically confirmed locally recurrent IDHwt or IDH unknown GBM, achieving MRI-proven GTR after the second surgery, having a Karnofsky performance status of at least 60% after the second surgery, having a minimum interval of 6 months between the first radiotherapy and the second surgery, and a maximum of 8 weeks from second surgery to the start of Re-RT. RESULTS: A total of 44 patients have met the inclusion criteria. The median OS after the second surgery was 14 months. All patients underwent standard treatment after initial diagnosis, including maximum safe resection, adjuvant radiochemotherapy and adjuvant chemotherapy. Re-RT did not significantly impact OS. However, MGMT promoter methylation status and a longer interval (> 12 months) between treatments were associated with better OS. Multivariate analysis revealed the MGMT status as the only significant predictor of OS. CONCLUSION: Factors such as MGMT promoter methylation status and treatment interval play crucial roles in determining patient outcomes after second surgery. Personalized treatment strategies should consider these factors to optimize the management of rGBM. Prospective research is needed to define the value of re-RT after second surgery and to inform decision making in this situation.


Subject(s)
Brain Neoplasms , Glioblastoma , Neoplasm Recurrence, Local , Re-Irradiation , Humans , Glioblastoma/radiotherapy , Glioblastoma/surgery , Glioblastoma/mortality , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/mortality , Male , Female , Middle Aged , Neoplasm Recurrence, Local/pathology , Aged , Adult , Re-Irradiation/methods , Cohort Studies , Radiotherapy, Adjuvant , Tertiary Care Centers , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
17.
Nucleic Acids Res ; 52(9): 5067-5087, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38416570

ABSTRACT

CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB's association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy.


Subject(s)
BRCA2 Protein , DNA Helicases , DNA Repair Enzymes , DNA Replication , Poly-ADP-Ribose Binding Proteins , Replication Protein A , DNA Helicases/metabolism , DNA Helicases/genetics , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Protein Binding , Cell Line, Tumor , DNA Repair
18.
Front Immunol ; 15: 1323307, 2024.
Article in English | MEDLINE | ID: mdl-38404571

ABSTRACT

Introduction: In 2021, the World Health Organization published a new classification system for central nervous system tumors. This study reclassified the adult diffuse glioma (ADG) into astrocytoma, oligodendroglioma, and glioblastoma (GBM) according to the new tumor classification. Methods: The association of TERT promoter (pTERT) mutation, MGMT methylation, and CD47/TIGIT expression with patient prognosis was investigated. Results: Immunohistochemical analysis showed that the expression levels of CD47 and TIGIT in tumor tissues were significantly higher than those in normal brain tissues. CD47 levels were higher in GBM and grade 4 astrocytoma tissues. TIGIT expression was also higher in patients with GBM. The high expressions of CD47, TIGIT, and CD47/TIGIT were positively correlated with MGMT unmethylation but not pTERT mutation. Moreover, MGMT unmethylation was associated with poor overall survival in astrocytoma. High CD47, TIGIT, and CD47/TIGIT levels were associated with significantly reduced survival in ADG and GBM. GBM, MGMT unmethylation, and high CD47 expression were independent prognostic factors for overall survival in ADG. Discussion: Collectively, these results showed that the MGMT unmethylation and high levels of CD47 and TIGIT are associated with a poor prognosis in ADG. Patients with high CD47 and TIGIT expression may benefit from anti-CD47 and TIGIT immunotherapy.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Adult , Humans , Brain Neoplasms/pathology , CD47 Antigen/genetics , Glioma/pathology , Glioblastoma/genetics , Prognosis , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics , Receptors, Immunologic/genetics
19.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360994

ABSTRACT

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , DNA Repair , DNA Damage , Neoplasms/drug therapy , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Flap Endonucleases/therapeutic use , Exodeoxyribonucleases/genetics , DNA Repair Enzymes/genetics
20.
Nucleic Acids Res ; 52(6): 3146-3163, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38349040

ABSTRACT

Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Breaks, Double-Stranded , DNA Repair Enzymes , Xenopus Proteins , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA/genetics , DNA/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Xenopus laevis/genetics , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Enzyme Activation/genetics , Phosphorylation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...