Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.316
Filter
1.
Pharmacoepidemiol Drug Saf ; 33(5): e5804, 2024 May.
Article in English | MEDLINE | ID: mdl-38741353

ABSTRACT

PURPOSE: To evaluate the real-world rates of non-adherence and non-persistence to antiretroviral therapy (ART) among treatment-naïve adult patients with HIV after a 12-month follow-up period in Belgium. METHODS: A retrospective analysis of longitudinal pharmacy claims was conducted using the Pharmanet database from January 1, 2018, to December 31, 2021. Non-adherence was assessed over 12 months and reported as the proportion of days covered below the 80% threshold. Non-persistence was defined as the first 90-day gap in treatment between the two types of ART dispensed. Poisson regression with robust standard error and Cox proportional hazard models were used to assess the factors associated with non-adherence and non-persistence, respectively. RESULTS: Overall, 2999 patients were initiated on ART between 2018 and 2021. After a 12-month follow-up, the proportions of non-adherence and non-persistence were 35.6% and 15.9%, respectively in 2018, and decreased to 18.7% and 6.8%, respectively in 2021. Non-adherence was higher among women, Brussels residents, and those receiving multiple-tablet regimens (MTRs). Similarly, the prevalence of non-persistence was higher among women and MTR recipients. CONCLUSION: Among treatment-naïve adults with HIV in Belgium, non-adherence, and non-persistence to ART showed improvement over the study period but remained at high levels. Disparities were observed by sex and between geographical regions. Prioritizing strategies targeting women in Brussels and facilitating the transition from MTRs to single-tablet regimens should be emphasized optimize adherence to ART in Belgium.


Subject(s)
Anti-HIV Agents , HIV Infections , Medication Adherence , Humans , Belgium/epidemiology , Female , Male , Medication Adherence/statistics & numerical data , HIV Infections/drug therapy , HIV Infections/epidemiology , Adult , Retrospective Studies , Middle Aged , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/administration & dosage , Databases, Factual , Young Adult , Databases, Pharmaceutical/statistics & numerical data , Follow-Up Studies , Adolescent , Longitudinal Studies
2.
Comput Biol Med ; 175: 108536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701592

ABSTRACT

In response to the shortcomings in data quality and coverage for neurological and psychiatric disorders (NPDs) in existing comprehensive databases, this paper introduces the DTNPD database, specifically designed for NPDs. DTNPD contains detailed information on 30 NPDs types, 1847 drugs, 514 drug targets, 64 drug combinations, and 61 potential target combinations, forming a network with 2389 drug-target associations. The database is user-friendly, offering open access and downloadable data, which is crucial for network pharmacology studies. The key strength of DTNPD lies in its robust networks of drug and target combinations, as well as drug-target networks, facilitating research and development in the field of NPDs. The development of the DTNPD database marks a significant milestone in understanding and treating NPDs. For accessing the DTNPD database, the primary URL is http://dtnpd.cnsdrug.com, complemented by a mirror site available at http://dtnpd.lyhbio.com.


Subject(s)
Mental Disorders , Nervous System Diseases , Humans , Mental Disorders/drug therapy , Mental Disorders/metabolism , Nervous System Diseases/drug therapy , Databases, Pharmaceutical , Databases, Factual
3.
Methods ; 225: 44-51, 2024 May.
Article in English | MEDLINE | ID: mdl-38518843

ABSTRACT

The process of virtual screening relies heavily on the databases, but it is disadvantageous to conduct virtual screening based on commercial databases with patent-protected compounds, high compound toxicity and side effects. Therefore, this paper utilizes generative recurrent neural networks (RNN) containing long short-term memory (LSTM) cells to learn the properties of drug compounds in the DrugBank, aiming to obtain a new and virtual screening compounds database with drug-like properties. Ultimately, a compounds database consisting of 26,316 compounds is obtained by this method. To evaluate the potential of this compounds database, a series of tests are performed, including chemical space, ADME properties, compound fragmentation, and synthesizability analysis. As a result, it is proved that the database is equipped with good drug-like properties and a relatively new backbone, its potential in virtual screening is further tested. Finally, a series of seedling compounds with completely new backbones are obtained through docking and binding free energy calculations.


Subject(s)
Deep Learning , Molecular Docking Simulation , Molecular Docking Simulation/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Drug Evaluation, Preclinical/methods , Humans , Databases, Pharmaceutical , Neural Networks, Computer , Databases, Chemical
4.
Nucleic Acids Res ; 52(D1): D1465-D1477, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37713619

ABSTRACT

Target discovery is one of the essential steps in modern drug development, and the identification of promising targets is fundamental for developing first-in-class drug. A variety of methods have emerged for target assessment based on druggability analysis, which refers to the likelihood of a target being effectively modulated by drug-like agents. In the therapeutic target database (TTD), nine categories of established druggability characteristics were thus collected for 426 successful, 1014 clinical trial, 212 preclinical/patented, and 1479 literature-reported targets via systematic review. These characteristic categories were classified into three distinct perspectives: molecular interaction/regulation, human system profile and cell-based expression variation. With the rapid progression of technology and concerted effort in drug discovery, TTD and other databases were highly expected to facilitate the explorations of druggability characteristics for the discovery and validation of innovative drug target. TTD is now freely accessible at: https://idrblab.org/ttd/.


Subject(s)
Databases, Pharmaceutical , Humans , Drug Delivery Systems , Drug Discovery , Molecular Targeted Therapy
5.
Nucleic Acids Res ; 52(D1): D1438-D1449, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897341

ABSTRACT

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb; https://www.guidetopharmacology.org) is an open-access, expert-curated, online database that provides succinct overviews and key references for pharmacological targets and their recommended experimental ligands. It includes over 3039 protein targets and 12 163 ligand molecules, including approved drugs, small molecules, peptides and antibodies. Here, we report recent developments to the resource and describe expansion in content over the six database releases made during the last two years. The database update section of this paper focuses on two areas relating to important global health challenges. The first, SARS-CoV-2 COVID-19, remains a major concern and we describe our efforts to expand the database to include a new family of coronavirus proteins. The second area is antimicrobial resistance, for which we have extended our coverage of antibacterials in partnership with AntibioticDB, a collaboration that has continued through support from GARDP. We discuss other areas of curation and also focus on our external links to resources such as PubChem that bring important synergies to the resources.


Subject(s)
Databases, Pharmaceutical , Drug Discovery , Proteins , Ligands
6.
Nucleic Acids Res ; 52(D1): D1110-D1120, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37904598

ABSTRACT

Traditional Chinese medicine (TCM) is increasingly recognized and utilized worldwide. However, the complex ingredients of TCM and their interactions with the human body make elucidating molecular mechanisms challenging, which greatly hinders the modernization of TCM. In 2016, we developed BATMAN-TCM 1.0, which is an integrated database of TCM ingredient-target protein interaction (TTI) for pharmacology research. Here, to address the growing need for a higher coverage TTI dataset, and using omics data to screen active TCM ingredients or herbs for complex disease treatment, we updated BATMAN-TCM to version 2.0 (http://bionet.ncpsb.org.cn/batman-tcm/). Using the same protocol as version 1.0, we collected 17 068 known TTIs by manual curation (with a 62.3-fold increase), and predicted ∼2.3 million high-confidence TTIs. In addition, we incorporated three new features into the updated version: (i) it enables simultaneous exploration of the target of TCM ingredient for pharmacology research and TCM ingredients binding to target proteins for drug discovery; (ii) it has significantly expanded TTI coverage; and (iii) the website was redesigned for better user experience and higher speed. We believe that BATMAN-TCM 2.0, as a discovery repository, will contribute to the study of TCM molecular mechanisms and the development of new drugs for complex diseases.


Subject(s)
Databases, Pharmaceutical , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Network Pharmacology , Humans , Drugs, Chinese Herbal/chemistry , Proteins
7.
Nucleic Acids Res ; 52(D1): D1503-D1507, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37971295

ABSTRACT

One challenge in the development of novel drugs is their interaction with potential off-targets, which can cause unintended side-effects, that can lead to the subsequent withdrawal of approved drugs. At the same time, these off-targets may also present a chance for the repositioning of withdrawn drugs for new indications, which are potentially rare or more severe than the original indication and where certain adverse reactions may be avoidable or tolerable. To enable further insights into this topic, we updated our database Withdrawn by adding pharmacovigilance data from the FDA Adverse Event Reporting System (FAERS), as well as mechanism of action and human disease pathway prediction features for drugs that are or were temporarily withdrawn or discontinued in at least one country. As withdrawal data are still spread over dozens of national websites, we are continuously updating our lists of discontinued or withdrawn drugs and related (off-)targets. Furthermore, new systematic entry points for browsing the data, such as an ATC tree, were added, increasing the accessibility of the database in a user-friendly way. Withdrawn 2.0 is publicly available without the need for registration or login at https://bioinformatics.charite.de/withdrawn_3/index.php.


Subject(s)
Databases, Pharmaceutical , Pharmacovigilance , Safety-Based Drug Withdrawals , Humans , Drug-Related Side Effects and Adverse Reactions , Databases, Pharmaceutical/standards
8.
Nucleic Acids Res ; 52(D1): D1227-D1235, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953380

ABSTRACT

The Drug-Gene Interaction Database (DGIdb, https://dgidb.org) is a publicly accessible resource that aggregates genes or gene products, drugs and drug-gene interaction records to drive hypothesis generation and discovery for clinicians and researchers. DGIdb 5.0 is the latest release and includes substantial architectural and functional updates to support integration into clinical and drug discovery pipelines. The DGIdb service architecture has been split into separate client and server applications, enabling consistent data access for users of both the application programming interface (API) and web interface. The new interface was developed in ReactJS, and includes dynamic visualizations and consistency in the display of user interface elements. A GraphQL API has been added to support customizable queries for all drugs, genes, annotations and associated data. Updated documentation provides users with example queries and detailed usage instructions for these new features. In addition, six sources have been added and many existing sources have been updated. Newly added sources include ChemIDplus, HemOnc, NCIt (National Cancer Institute Thesaurus), Drugs@FDA, HGNC (HUGO Gene Nomenclature Committee) and RxNorm. These new sources have been incorporated into DGIdb to provide additional records and enhance annotations of regulatory approval status for therapeutics. Methods for grouping drugs and genes have been expanded upon and developed as independent modular normalizers during import. The updates to these sources and grouping methods have resulted in an improvement in FAIR (findability, accessibility, interoperability and reusability) data representation in DGIdb.


Subject(s)
Precision Medicine , Humans , Databases, Pharmaceutical , Drug Discovery , Internet , User-Computer Interface , Vocabulary, Controlled
9.
Nucleic Acids Res ; 52(D1): D972-D979, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37831083

ABSTRACT

Leveraging genetics insights to promote drug repurposing has become a promising and active strategy in pharmacology. Indeed, among the 50 drugs approved by FDA in 2021, two-thirds have genetically supported evidence. In this regard, the increasing amount of widely available genome-wide association studies (GWAS) datasets have provided substantial opportunities for drug repurposing based on genetics discoveries. Here, we developed PharmGWAS, a comprehensive knowledgebase designed to identify candidate drugs through the integration of GWAS data. PharmGWAS focuses on novel connections between diseases and small-molecule compounds derived using a reverse relationship between the genetically-regulated expression signature and the drug-induced signature. Specifically, we collected and processed 1929 GWAS datasets across a diverse spectrum of diseases and 724 485 perturbation signatures pertaining to a substantial 33609 molecular compounds. To obtain reliable and robust predictions for the reverse connections, we implemented six distinct connectivity methods. In the current version, PharmGWAS deposits a total of 740 227 genetically-informed disease-drug pairs derived from drug-perturbation signatures, presenting a valuable and comprehensive catalog. Further equipped with its user-friendly web design, PharmGWAS is expected to greatly aid the discovery of novel drugs, the exploration of drug combination therapies and the identification of drug resistance or side effects. PharmGWAS is available at https://ngdc.cncb.ac.cn/pharmgwas.


Subject(s)
Databases, Pharmaceutical , Drug Repositioning , Genome-Wide Association Study , Drug Repositioning/methods , Genome-Wide Association Study/methods
10.
Nucleic Acids Res ; 52(D1): D1097-D1109, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37831118

ABSTRACT

Antibody-drug conjugates (ADCs) are a class of innovative biopharmaceutical drugs, which, via their antibody (mAb) component, deliver and release their potent warhead (a.k.a. payload) at the disease site, thereby simultaneously improving the efficacy of delivered therapy and reducing its off-target toxicity. To design ADCs of promising efficacy, it is crucial to have the critical data of pharma-information and biological activities for each ADC. However, no such database has been constructed yet. In this study, a database named ADCdb focusing on providing ADC information (especially its pharma-information and biological activities) from multiple perspectives was thus developed. Particularly, a total of 6572 ADCs (359 approved by FDA or in clinical trial pipeline, 501 in preclinical test, 819 with in-vivo testing data, 1868 with cell line/target testing data, 3025 without in-vivo/cell line/target testing data) together with their explicit pharma-information was collected and provided. Moreover, a total of 9171 literature-reported activities were discovered, which were identified from diverse clinical trial pipelines, model organisms, patient/cell-derived xenograft models, etc. Due to the significance of ADCs and their relevant data, this new database was expected to attract broad interests from diverse research fields of current biopharmaceutical drug discovery. The ADCdb is now publicly accessible at: https://idrblab.org/adcdb/.


Subject(s)
Databases, Pharmaceutical , Drug Discovery , Immunoconjugates , Animals , Humans , Antibodies/therapeutic use , Antineoplastic Agents/therapeutic use , Biological Products , Cell Line, Tumor , Disease Models, Animal , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use
11.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Article in English | MEDLINE | ID: mdl-38123150

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Pharmacology , Humans , Ion Channels/chemistry , Ligands , Receptors, G-Protein-Coupled , Databases, Factual
12.
Br J Pharmacol ; 180 Suppl 2: S223-S240, 2023 10.
Article in English | MEDLINE | ID: mdl-38123152

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Pharmacology , Humans , Ligands , Membrane Transport Proteins , Receptors, G-Protein-Coupled , Receptors, Cytoplasmic and Nuclear
13.
Br J Pharmacol ; 180 Suppl 2: S289-S373, 2023 10.
Article in English | MEDLINE | ID: mdl-38123154

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Ion Channels , Humans , Ligands , Receptors, Cytoplasmic and Nuclear , Receptors, G-Protein-Coupled
14.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Article in English | MEDLINE | ID: mdl-38123153

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Pharmacology , Humans , Databases, Factual , Ion Channels , Ligands , Receptors, Cytoplasmic and Nuclear
15.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Article in English | MEDLINE | ID: mdl-38123151

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Receptors, G-Protein-Coupled , Humans , Ligands , Ion Channels/chemistry , Receptors, Cytoplasmic and Nuclear
16.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Article in English | MEDLINE | ID: mdl-38123156

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Pharmacology , Humans , Ligands , Ion Channels/chemistry , Receptors, G-Protein-Coupled , Receptors, Cytoplasmic and Nuclear
17.
Br J Pharmacol ; 180 Suppl 2: S241-S288, 2023 10.
Article in English | MEDLINE | ID: mdl-38123155

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Pharmacology , Humans , Ligands , Receptors, G-Protein-Coupled , Ion Channels/chemistry , Receptors, Cytoplasmic and Nuclear
18.
STAR Protoc ; 4(4): 102572, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37917580

ABSTRACT

This overview guides both novices and experienced researchers facing challenging targets to select the most appropriate gene expression system for producing a particular protein. By answering four key questions, readers can determine the most suitable gene expression system following a decision scheme. This guide addresses the most commonly used and accessible systems and provides brief descriptions of the main gene expression systems' key characteristics to assist decision making. Additionally, information has been included for selected less frequently used "exotic" gene expression systems.


Subject(s)
Databases, Pharmaceutical , Ligands , Recombinant Proteins/genetics , Gene Expression/genetics
19.
Protein Sci ; 32(11): e4776, 2023 11.
Article in English | MEDLINE | ID: mdl-37682529

ABSTRACT

Here, we introduce the third release of Kalium database (http://kaliumdb.org/), a manually curated comprehensive depository that accumulates data on polypeptide ligands of potassium channels. The major goal of this amplitudinous update is to summarize findings for natural polypeptide ligands of K+ channels, as well as data for the artificial derivatives of these substances obtained over the decades of exploration. We manually analyzed more than 700 original manuscripts and systematized the information on mutagenesis, production of radio- and fluorescently labeled derivatives, and the molecular pharmacology of K+ channel ligands. As a result, data on more than 1200 substances were processed and added enriching the database content fivefold. We also included the electrophysiological data obtained on the understudied and neglected K+ channels including the heteromeric and concatenated channels. We associated target channels in Kalium with corresponding entries in the official database of the International Union of Basic and Clinical Pharmacology. Kalium was supplemented with an adaptive Statistics page, where users are able to obtain actual data output. Several other improvements were introduced, such as a color code to distinguish the range of ligand activity concentrations and advanced tools for filtration and sorting. Kalium is a fully open-access database, crosslinked to other databases of interest. It can be utilized as a convenient resource containing ample up-to-date information about polypeptide ligands of K+ channels.


Subject(s)
Databases, Pharmaceutical , Potassium Channels , Potassium Channels/genetics , Ligands , Databases, Factual , Peptides/chemistry
20.
Environ Sci Pollut Res Int ; 30(44): 99345-99361, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37610546

ABSTRACT

The presence of pharmaceuticals in hospital wastewaters (HWW) has been a focus of interest for researchers in the last decades. Certain therapeutic classes, such as X-ray contrast media, broad-spectrum antimicrobials and cytotoxics among others, are mainly used in hospitals-health care facilities. This study is focused on available studies monitoring the presence of pharmaceuticals in HWW around the world. To that end, the last available version (v3. 2021) of the "Pharmaceuticals in the Environment" database published by the Federal German Environment Agency (Umweltbundesamt) has been used. Almost half of all studies included (107) have been conducted in Europe. Pharmaceuticals have been monitored in HWW in 38 different countries across all five continents. The country with the greatest number of studies is Brazil (11), followed by Spain (8), China (7), and France (6). Our analysis revealed that 271 different pharmaceuticals have been detected at least once in HWW. The five drugs with more studies showing a positive detection are ciprofloxacin (38), sulfamethoxazole (36), diclofenac (34), ibuprofen (29), and trimethoprim (27). A total of 47 out of 271 drugs are considered in the NIOSH "Hazardous drug" list. However, monitoring data for some widely used drugs in hospital settings such as muscle relaxants, anesthetics, and antidotes is lacking. In conclusion, this study provides the first large-scale metadata analysis for the pharmaceuticals in HWW worldwide.


Subject(s)
Wastewater , Water Pollutants, Chemical , Environmental Monitoring , Databases, Pharmaceutical , Hospitals , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...