Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 691
Filter
1.
BMC Microbiol ; 24(1): 167, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755524

ABSTRACT

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections. RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa. CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Defensins , Diptera , Larva , Animals , Defensins/pharmacology , Defensins/genetics , Defensins/chemistry , Defensins/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diptera/genetics , Larva/drug effects , Larva/genetics , Microbial Sensitivity Tests , Amino Acid Sequence , Insect Proteins/genetics , Insect Proteins/pharmacology , Insect Proteins/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Gram-Negative Bacteria/drug effects
2.
Mol Plant Pathol ; 25(4): e13458, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619888

ABSTRACT

Due to rapidly emerging resistance to single-site fungicides in fungal pathogens of plants, there is a burgeoning need for safe and multisite fungicides. Plant antifungal peptides with multisite modes of action (MoA) have potential as bioinspired fungicides. Medicago truncatula defensin MtDef4 was previously reported to exhibit potent antifungal activity against fungal pathogens. Its MoA involves plasma membrane disruption and binding to intracellular targets. However, specific biochemical processes inhibited by this defensin and causing cell death have not been determined. Here, we show that MtDef4 exhibited potent antifungal activity against Botrytis cinerea. It induced severe plasma membrane and organelle irregularities in the germlings of this pathogen. It bound to fungal ribosomes and inhibited protein translation in vitro. A MtDef4 variant lacking antifungal activity exhibited greatly reduced protein translation inhibitory activity. A cation-tolerant MtDef4 variant was generated that bound to ß-glucan of the fungal cell wall with higher affinity than MtDef4. It also conferred a greater reduction in the grey mould disease symptoms than MtDef4 when applied exogenously on Nicotiana benthamiana plants, tomato fruits and rose petals. Our findings revealed inhibition of protein synthesis as a likely target of MtDef4 and the potential of its cation-tolerant variant as a peptide-based fungicide.


Subject(s)
Antifungal Agents , Fungicides, Industrial , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Fungicides, Industrial/pharmacology , Plants/metabolism , Peptides , Defensins/genetics , Defensins/pharmacology , Defensins/metabolism , Cations , Plant Diseases/microbiology , Botrytis/metabolism
3.
Ecotoxicol Environ Saf ; 277: 116371, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663196

ABSTRACT

Nicotine, a naturally occurring alkaloid found in tobacco, is a potent neurotoxin extensively used to control Nilaparvata lugens (Stål), a destructive insect pest of rice crops. The insect gut harbors a wide array of resident microorganisms that profoundly influence several biological processes, including host immunity. Maintaining an optimal gut microbiota and immune homeostasis requires a complex network of reciprocal regulatory interactions. However, the underlying molecular mechanisms driving these symbiotic exchanges, particularly between specific gut microbe and immunity, remain largely unknown in insects. Our previous investigations identified and isolated a nicotine-degrading Burkholderia cepacia strain (BsNLG8) with antifungal properties. Building on those findings, we found that nicotine intake significantly increased the abundance of a symbiotic bacteria BsNLG8, induced a stronger bacteriostatic effect in hemolymph, and enhanced the nicotine tolerance of N. lugens. Additionally, nicotine-induced antimicrobial peptides (AMPs) exhibited significant antibacterial effects against Staphylococcus aureus. We adopted RNA-seq to explore the underlying immunological mechanisms in nicotine-stressed N. lugens. Bioinformatic analyses identified numerous differentially expressed immune genes, including recognition/immune activation (GRPs and Toll) and AMPs (i.e., Defensin, Lugensin, lysozyme). Temporal expression profiling (12, 24, and 48 hours) of immune genes revealed pattern recognition proteins and immune effectors as primary responders to nicotine-induced stress. Defensin A, a broad-spectrum immunomodulatory cationic peptide, exhibited significantly high expression. RNA interference-mediated silencing of Defensin A reduced the survival, enhanced nicotine sensitivity of N. lugens to nicotine, and decreased the abundance of BsNLG8. The reintroduction of BsNLG8 improved the expression of immune genes, aiding nicotine resistance of N. lugens. Our findings indicate a potential reciprocal immunomodulatory interaction between Defensin A and BsNLG8 under nicotine stress. Moreover, this study offers novel and valuable insights for future research into enhancing nicotine-based pest management programs and developing alternative biocontrol methods involving the implication of insect symbionts.


Subject(s)
Burkholderia cepacia , Gastrointestinal Microbiome , Hemiptera , Nicotine , Animals , Nicotine/toxicity , Nicotine/pharmacology , Hemiptera/drug effects , Gastrointestinal Microbiome/drug effects , Burkholderia cepacia/drug effects , Defensins/genetics , Stress, Physiological/drug effects , Symbiosis
4.
Dev Comp Immunol ; 156: 105171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38537729

ABSTRACT

Trace amine-associated receptors (TAARs) are a class of G protein-coupled receptors, playing an immunomodulatory function in the neuroinflammatory responses. In the present study, a TAAR homologue with a 7tm_classA_rhodopsin-like domain (designated as CgTAAR1L) was identified in oyster Crassostrea gigas. The abundant CgTAAR1L transcripts were detected in visceral ganglia and haemocytes compared to other tissues, which were 55.35-fold and 32.95-fold (p < 0.01) of those in adductor muscle, respectively. The mRNA expression level of CgTAAR1L in haemocytes significantly increased and reached the peak level at 3 h after LPS or Poly (I:C) stimulation, which was 4.55-fold and 12.35-fold of that in control group, respectively (p < 0.01). After the expression of CgTAAR1L was inhibited by the injection of its targeted siRNA, the mRNA expression levels of interleukin17s (CgIL17-1, CgIL17-5 and CgIL17-6), and defensin (Cgdefh1) significantly decreased at 3 h after LPS stimulation, which was 0.51-fold (p < 0.001), 0.39-fold (p < 0.01), 0.48-fold (p < 0.05) and 0.41-fold (p < 0.05) of that in the control group, respectively. The nuclear translocation of Cgp65 protein was suppressed in the CgTAAR1L-RNAi oysters. Furthermore, the number of Vibrio splendidus in the haemolymph of CgTAAR1L-RNAi oysters significantly increased (4.11-fold, p < 0.001) compared with that in the control group. In contrast, there was no significant difference in phagocytic rate of haemocytes to V. splendidus in the CgTAAR1L-RNAi oysters. These results indicated that CgTAAR1L played an important role in the immune defense against bacterial infection by inducing the expressions of interleukin and defensin.


Subject(s)
Crassostrea , Defensins , Hemocytes , Lipopolysaccharides , Receptors, G-Protein-Coupled , Vibrio , Animals , Crassostrea/immunology , Hemocytes/immunology , Hemocytes/metabolism , Vibrio/immunology , Vibrio/physiology , Lipopolysaccharides/immunology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Defensins/genetics , Defensins/metabolism , Immunity, Innate , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Poly I-C/immunology , RNA, Small Interfering/genetics , Vibrio Infections/immunology , Trace Amine-Associated Receptors
5.
J Med Chem ; 67(4): 2512-2528, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38335999

ABSTRACT

Insect defensins are a large family of antimicrobial peptides primarily active against Gram-positive bacteria. Here, we explore their hidden anti-Gram-negative bacterial potential via a nature-guided strategy inspired by natural deletion variants of Drosophila defensins. Referring to these variants, we deleted the equivalent region of an insect defensin with the first cysteine-containing N-terminus, and the last three cysteine-containing C-terminal regions remained. This 15-mer peptide exhibits low solubility and specifically targets Gram-positive bacteria. Further deletion of alanine-9 remarkably improves its solubility, unmasks its hidden anti-Gram-negative bacterial activity, and alters its states in different environments. Intriguingly, compared with the oxidized form, the 14-mer reduced peptide shows increased activity on Gram-positive and Gram-negative bacteria through a membrane-disruptive mechanism. The broad-spectrum activity and tolerance to high-salt environments and human serum, together with no toxicity to mammalian or human cells, make it a promising candidate for the design of new peptide antibiotics against Gram-negative bacterial infections.


Subject(s)
Anti-Bacterial Agents , Cysteine , Animals , Humans , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Peptides/pharmacology , Defensins/genetics , Defensins/pharmacology , Insecta , Mammals
6.
J Fish Dis ; 47(4): e13922, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38204197

ABSTRACT

The purpose of this study was to investigate whether a defensin-like antimicrobial peptide (C-13326 peptide) identified in Hermetia illucens could possess protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The cDNA of C-13326 peptide comprised 243 nucleotides encoding 80 amino acids, with six conserved cysteine residues and the classical CSαß structure. The recombinant expression plasmid pPIC9K-C-13326 was constructed and transformed into GS115 Pichia pastoris, and the C-13326 peptide was expressed by induction with 1% methanol. The crude extract of C-13326 peptide was precipitated by ammonium sulfate, assayed by Braford method, detected by tricine-SDS-PAGE, evaluated by BandScan software and identified by liquid chromatography-mass spectrometry. The C-13326 peptide was shown to have inhibitory activity against the growth of multidrug-resistant A. schubertii DM210910 by using the minimum growth inhibitory concentration and Oxford cup method. In addition, scanning electron microscopy analysis suggested that C-13326 peptide inhibited the growth of A. schubertii DM210910 by damaging the bacterial cell membrane. To explore the role of peptide C-13326 in vivo, hybrid snakehead was fed with peptide C-13326 as feed additives for 7 days. The results revealed that C-13326 peptide could significantly down-regulate the expression levels of IL-1ß, IL-8, IL-12 and TNF-α (p < .05), and significantly improved the survival rate of hybrid snakehead after challenging with A. schubertii DM210910. Therefore, the C-13326 peptide is a promising antimicrobial agent for A. schubertii treatment in aquaculture.


Subject(s)
Aeromonas , Fish Diseases , Animals , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fishes/genetics , Aeromonas/genetics , Peptides , Defensins/genetics , Defensins/pharmacology
7.
J Reprod Immunol ; 160: 104167, 2023 12.
Article in English | MEDLINE | ID: mdl-37952294

ABSTRACT

Chronic endometritis has a high incidence in infertile women, which is caused by endometrial microbiome infection. In response to microbial infection, the role of defensins during chronic endometritis need explored. Besides, the expression of estrogen and its receptors vary in different menstrual cycles, but their roles in chronic endometritis are still unclear. In this study, we used the human endometrial tissues to examine the expression of antimicrobial peptides (AMPs) α-defensin hNP-1 and ß-defensins hBD-1, hBD-2, hBD-3, hBD-4 and LCN2. We found the expression of hBD-1 and LCN2 were downregulated in endometritis tissues, while the expressions of hBD-2, hBD-3, hBD-4, hNP-1, and estrogen and ERα were upregulated in chronic endometritis tissues compared to normal tissues. The expression and phosphorylation of STING, which is a crucial mediator of mammalian innate immunity in response to pathogens, was regulated with the treatment of ERα inhibitor raloxifene (Rx). Furthermore, using with the estrogen receptor inhibitor Rx and STING inhibitor H-151 significantly decreases the LCN2 expression. Taken together, these results suggested ERα was upregulated to modulate STING expression inducing LCN2 antimicrobial peptide expression to modulate the mucosal immunity during chronic endometritis.


Subject(s)
Endometritis , Infertility, Female , Animals , Female , Humans , Defensins/genetics , Defensins/metabolism , Down-Regulation , Estrogen Receptor alpha/metabolism , Estrogens , Lipocalin-2/metabolism , Mammals , Receptors, Estrogen/metabolism
8.
Signal Transduct Target Ther ; 8(1): 300, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37574471

ABSTRACT

As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.


Subject(s)
Inflammatory Bowel Diseases , Paneth Cells , Animals , Humans , Paneth Cells/metabolism , Inflammatory Bowel Diseases/metabolism , Defensins/genetics , Defensins/metabolism
9.
Parasit Vectors ; 16(1): 183, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280715

ABSTRACT

BACKGROUND: The body and head lice of humans are conspecific, but only the body louse functions as a vector to transmit bacterial pathogens such as Bartonella quintana. Both louse subspecies have only two antimicrobial peptides, defensin 1 and defensin 2. Consequently, any differences in the molecular and functional properties of these two louse subspecies may be responsible for the differential vector competence between them. METHODS: To elucidate the molecular basis of vector competence, we compared differences in the structural properties and transcription factor/microRNA binding sites of the two defensins in body and head lice. Antimicrobial activity spectra were also investigated using recombinant louse defensins expressed via baculovirus. RESULTS: The full-length amino acid sequences of defensin 1 were identical in both subspecies, whereas the two amino acid residues in defensin 2 were different between the two subspecies. Recombinant louse defensins showed antimicrobial activities only against the representative Gram-positive Staphylococcus aureus but not against either Gram-negative Escherichia coli or the yeast Candida albicans. However, they did show considerable activity against B. quintana, with body louse defensin 2 being significantly less potent than head louse defensin 2. Regulatory sequence analysis revealed that the gene units of both defensin 1 and defensin 2 in body lice possess decreased numbers of transcription factor-binding sites but increased numbers of microRNA binding sites, suggesting relatively lower transcription activities of body louse defensins. CONCLUSIONS: The significantly lower antibacterial activities of defensin 2 along with the reduced probability of defensin expression in body lice likely contribute to the relaxed immune response to B. quintana proliferation and viability, resulting in higher vector competence of body lice compared to head lice.


Subject(s)
Anti-Infective Agents , Bartonella quintana , Lice Infestations , MicroRNAs , Pediculus , Animals , Humans , Pediculus/genetics , Pediculus/microbiology , Bartonella quintana/genetics , Lice Infestations/microbiology , MicroRNAs/genetics , Transcription Factors/genetics , Defensins/genetics , Defensins/pharmacology
10.
J Exp Bot ; 74(17): 5374-5393, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37326591

ABSTRACT

Ectopic expression of defensins in plants correlates with their increased capacity to withstand abiotic and biotic stresses. This applies to Arabidopsis thaliana, where some of the seven members of the PLANT DEFENSIN 1 family (AtPDF1) are recognised to improve plant responses to necrotrophic pathogens and increase seedling tolerance to excess zinc (Zn). However, few studies have explored the effects of decreased endogenous defensin expression on these stress responses. Here, we carried out an extensive physiological and biochemical comparative characterization of (i) novel artificial microRNA (amiRNA) lines silenced for the five most similar AtPDF1s, and (ii) a double null mutant for the two most distant AtPDF1s. Silencing of five AtPDF1 genes was specifically associated with increased aboveground dry mass production in mature plants under excess Zn conditions, and with increased plant tolerance to different pathogens - a fungus, an oomycete and a bacterium, while the double mutant behaved similarly to the wild type. These unexpected results challenge the current paradigm describing the role of PDFs in plant stress responses. Additional roles of endogenous plant defensins are discussed, opening new perspectives for their functions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Stress, Physiological/genetics , Zinc/metabolism , Defensins/genetics , Defensins/metabolism , Defensins/pharmacology , Gene Expression Regulation, Plant , Plant Diseases/genetics
11.
Transgenic Res ; 32(3): 223-233, 2023 06.
Article in English | MEDLINE | ID: mdl-37131050

ABSTRACT

Plant defensins are a potential tool in crop improvement programs through biotechnology. Their antifungal action makes them attractive molecules for the production of transgenic plants. Information is currently lacking on what happens to the expression of defense genes in transgenic plants that overexpress a defensin. Here we show the relative expression of four defense-related genes: Mn-sod, PAL1, aos1 and HPL evaluated in two transgenic soybean events (Def1 and Def17) constitutively expressing the NmDef02 defensin gene from Nicotiana megalosiphon. The expression of these defense genes showed a differential profile in the transgenic events, with the increased expression of the aos1 gene and the repression of the Mn-sod gene in both events, when compared to the non-transgenic control. Furthermore, the expression of the PAL1 gene only increased in the Def17 event. The results indicate that although there were some changes in the expression of defense genes in transgenic plants overexpressing the defensin NmDef02; the morphoagronomic parameters evaluated were similar to the non-transgenic control. Understanding the molecular changes that occur in these transgenic plants could be of interest in the short, medium and long term.


Subject(s)
Glycine max , Superoxide Dismutase , Glycine max/genetics , Glycine max/metabolism , Superoxide Dismutase/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Defensins/genetics , Gene Expression Regulation, Plant
12.
J Agric Food Chem ; 71(22): 8367-8380, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37218180

ABSTRACT

Thionins are important antibacterial peptides in plants. However, the roles of plant thionins, especially the defensin-dissimilar thionins, in alleviating heavy-metal toxicity and accumulation remain unclear. Here, cadmium (Cd)-related functions and mechanisms of the defensin-dissimilar rice thionin OsThi9 were investigated. OsThi9 was significantly upregulated in response to Cd exposure. OsThi9 was localized to the cell wall and was shown to bind Cd; these characters help to increase Cd tolerance. In Cd-exposed rice plants, OsThi9 overexpression significantly increased cell wall Cd binding, decreasing upward Cd translocation and subsequent Cd accumulation in shoots and straw, while OsThi9 knockout had inverse effects. Importantly, in rice plants grown in Cd-contaminated soils, OsThi9 overexpression significantly reduced Cd accumulation in brown rice (decrease of ≥ 51.8%) without negatively impairing the crop yield and essential elements. Thus, OsThi9 plays an important role in the alleviation of Cd toxicity and accumulation and has significant potential for developing low-Cd rice.


Subject(s)
Oryza , Soil Pollutants , Thionins , Cadmium/metabolism , Thionins/metabolism , Oryza/genetics , Oryza/metabolism , Soil Pollutants/metabolism , Defensins/genetics , Defensins/metabolism , Soil
13.
Plant J ; 115(4): 1071-1083, 2023 08.
Article in English | MEDLINE | ID: mdl-37177878

ABSTRACT

The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phylogeny , Zinc/metabolism , Metals/metabolism , Plants/metabolism , Defensins/genetics , Defensins/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/metabolism
14.
Biochimie ; 213: 41-53, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37105301

ABSTRACT

Subtilisin-like enzymes are recognized as key players in many infectious agents. In this context, its inhibitors are very valuable molecular lead compounds for structure based drug discovery and design. Marine invertebrates offer a great source of bioactive molecules, including protease inhibitors. In this work, we describe a new subtilisin inhibitor, from the sea anemone Condylactis gigantea (CogiTx1). CogiTx1 was purified using a combination of cation exchange chromatography, size exclusion chromatography and RP-HPLC chromatography. CogiTx1 it is a protein with 46 amino acid residues, with 4970.44 Da and three disulfide bridges. Is also able to inhibit subtilisin-like enzymes and pancreatic elastase. According to the amino acid sequence, it belongs to the defensin 4 family of proteins. The sequencing showed that CogiTx1 has an amidated C-terminal end, which was confirmed by the presence of the typical -XGR signal for amidation in the protein sequence deduced from the cDNA. This modification was described at protein level for the first time in this family of proteins. CogiTx1 is the first subtilisin inhibitor from the defensin 4 family and accordingly it has a folding consisting primarily in beta-strands in agreement with the analysis by CD and 3D modelling. Therefore, future in-depth functional studies may allow a more detailed characterization and will shed light on structure-function properties.


Subject(s)
Sea Anemones , Animals , Sea Anemones/chemistry , Sea Anemones/metabolism , Subtilisins/metabolism , Amino Acid Sequence , Protease Inhibitors/metabolism , Defensins/genetics , Defensins/pharmacology
15.
Mol Immunol ; 157: 53-69, 2023 05.
Article in English | MEDLINE | ID: mdl-36996595

ABSTRACT

Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.


Subject(s)
Cathelicidins , Defensins , Animals , Cathelicidins/genetics , Defensins/genetics , Antimicrobial Cationic Peptides , Primates/genetics , Birds/genetics
16.
BMC Microbiol ; 23(1): 82, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966312

ABSTRACT

BACKGROUND: The emergence of multi-resistant pathogens have increased dramatically in recent years, becoming a major public-health concern. Among other promising antimicrobial molecules with potential to assist in this worldwide struggle, cysteine-stabilized αß (CS-αß) defensins are attracting attention due their efficacy, stability, and broad spectrum against viruses, bacteria, fungi, and protists, including many known human pathogens. RESULTS: Here, 23 genomes of ciliated protists were screened and two CS-αß defensins with a likely antifungal activity were identified and characterized, using bioinformatics, from a culturable freshwater species, Laurentiella sp. (LsAMP-1 and LsAMP-2). Although any potential cellular ligand could be predicted for LsAMP-2; evidences from structural, molecular dynamics, and docking analyses suggest that LsAMP-1 may form stably associations with phosphatidylinositol 4,5-bisphosphates (PIP2), a phospholipid found on many eukaryotic cells, which could, in turn, represent an anchorage mechanism within plasma membrane of targeted cells. CONCLUSION: These data stress that more biotechnology-oriented studies should be conducted on neglected protists, such ciliates, which could become valuable sources of novel bioactive molecules for therapeutic uses.


Subject(s)
Anti-Infective Agents , Ciliophora , Defensins , Antifungal Agents/metabolism , Cysteine , Defensins/genetics , Defensins/pharmacology , Molecular Dynamics Simulation
17.
Sci Rep ; 13(1): 3151, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823197

ABSTRACT

Lepidopteran insect pest Helicoverpa armigera is one of the most destructive pests of crop plants and several biotechnological approaches are being developed for its control. Plant defensins are small cationic and cysteine-rich peptides that play a role in plant defense. Ingestion of a defensin from Capsicum annuum (CanDef-20) induced a dose-dependent reduction in larval and pupal mass, delayed metamorphosis and also severely reduced fecundity and fertility in H. armigera. To understand the molecular mechanisms of CanDef-20 ingestion-mediated antibiosis in H. armigera larvae, a comparative transcriptomics analysis was carried out. Predominant downregulation of GOs represents serine-type endopeptidases, structural constituents of ribosomes and integral membrane components and differential upregulation of ATP binding, nucleus and translation, while up-regulation of nucleic acid binding represented by transposable elements, were detected. Different isoforms of lipase, serine endopeptidase, glutathione S-transferase, cadherin, alkaline phosphatase and aminopeptidases were found to be upregulated as a compensatory response to CanDef-20 ingestion. In vitro enzyme assays and qPCR analysis of some representative genes associated with vital cellular processes like metamorphosis, food digestion and gut membrane indicated adaptive differential regulations in CanDef-20 fed H. armigera larvae. We conclude that CanDef-20 ingestion affects insect metabolism in a number of ways through its interaction with cell membrane, enzymes, cytoplasmic proteins and triggering transposon mobilization which are linked to growth retardation and adaptive strategies in H. armigera.


Subject(s)
Moths , Animals , Moths/genetics , Larva , Plants/metabolism , Defensins/genetics , Eating , Insect Proteins/genetics , Insect Proteins/metabolism
18.
Mol Biol Rep ; 50(1): 11-18, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36282461

ABSTRACT

BACKGROUND: Chickpea (Cicer arietinum L.), a major nutritional source cultivated worldwide, is vulnerable to several abiotic and biotic stresses, including different types of soil-borne pathogens like Fusarium oxysporum f. sp. ciceri, which causes root rot disease and severely affects productivity. METHODS AND RESULTS: In this study, putative transgenic plants were obtained with the Radish defensin (Rs-AFP2) gene through Agrobacterium tumefaciens mediated transformation using the embryo axis explants. Transgenes were confirmed in 18 putative transgenic plants with PCR-specific primers for nptII and Rs-AFP2 genes. Twelve transgenic plants were established successfully under greenhouse conditions. The T0 plants were allowed for self-pollination to obtain T1 seeds. The T1 plants, selected for Fusarium wilt assay using Fusarium oxysporum f. sp. Cicero, showed different resistance levels, from moderate to high levels in comparison to control plants (wild-type) which exhibited severe wilt symptoms. CONCLUSION: Our results suggest the application of Radish defensins (RsAFP1/RsAFP2 genes) for improving pathogen resistance in chickpea.


Subject(s)
Cicer , Fusarium , Raphanus , Cicer/genetics , Cicer/metabolism , Fusarium/genetics , Raphanus/genetics , Plants, Genetically Modified/genetics , Defensins/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
19.
Plant Physiol ; 191(1): 515-527, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36087013

ABSTRACT

Grain cadmium (Cd) is translocated from source to sink tissues exclusively via phloem, though the phloem Cd unloading transporter has not been identified yet. Here, we isolated and functionally characterized a defensin-like gene DEFENSIN 8 (DEF8) highly expressed in rice (Oryza sativa) grains and induced by Cd exposure in seedling roots. Histochemical analysis and subcellular localization detected DEF8 expression preferentially in pericycle cells and phloem of seedling roots, as well as in phloem of grain vasculatures. Further analysis demonstrated that DEF8 is secreted into extracellular spaces possibly by vesicle trafficking. DEF8 bound to Cd in vitro, and Cd efflux from protoplasts as well as loading into xylem vessels decreased in the def8 mutant seedlings compared with the wild type. At maturity, significantly less Cd accumulation was observed in the mutant grains. These results suggest that DEF8 is a dual function protein that facilitates Cd loading into xylem and unloading from phloem, thus mediating Cd translocation from roots to shoots and further allocation to grains, representing a phloem Cd unloading regulator. Moreover, essential mineral nutrient accumulation as well as important agronomic traits were not affected in the def8 mutants, suggesting DEF8 is an ideal target for breeding low grain Cd rice.


Subject(s)
Cadmium , Oryza , Cadmium/metabolism , Oryza/genetics , Oryza/metabolism , Phloem/metabolism , Plant Breeding , Edible Grain/metabolism , Seedlings/metabolism , Plant Roots/metabolism , Defensins/genetics , Defensins/analysis , Defensins/metabolism
20.
Hum Reprod Update ; 29(1): 126-154, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36130055

ABSTRACT

BACKGROUND: Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, ß-defensins and θ-defensins. Humans only have α-defensins and ß-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE: This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS: A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES: Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of ß-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS: As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.


Subject(s)
Anti-Infective Agents , Infertility, Female , Infertility, Male , Premature Birth , alpha-Defensins , beta-Defensins , Infant, Newborn , Pregnancy , Animals , Humans , Male , Female , beta-Defensins/genetics , beta-Defensins/metabolism , beta-Defensins/pharmacology , Reproductive Health , Semen/metabolism , Defensins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...