Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 418
Filter
1.
Yakugaku Zasshi ; 144(6): 651-657, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825474

ABSTRACT

Microbial exudates including siderophore, which changes chemical species of actinides and lanthanides. We have investigated effects of desferrioxamine B (DFOB; one of the siderophores) and siderophore-like organic molecules (SLOM) on the adsorption of lanthanides by microbial cells, aluminium oxide (Al2O3), and manganese (Mn) oxides. When DFOB was present, the distribution coefficients of cerium (Ce) were measured to be lower than those of neighboring elements of lanthanum (La) and praseodymium (Pr) (Negative anomaly of Ce adsorption). Even though initial oxidation state of Ce in the solution was III, that was changed to IV after the addition of DFOB, indicating that Ce(III) was oxidized by forming complex with DFOB. When lanthanides were adsorbed by biogenic Mn(IV) oxides, negative anomaly of Ce adsorption was observed in the sorption in alkaline solution. Ce(III) was oxidized to forme the complexes of Ce(IV) with SLOM in the solution. These results show that siderophore possesses high performance of oxidation of Ce(III) to Ce(IV) during association, affectiong the adsorption behavior of Ce. After Fukushima accident, radioactive Cs accumulation by Eleutherococcus sciadophylloides (Koshiabura) caused by the dissolution of Fe from soil around the roots, that was dominated by siderophore releasing microorganisms (SB). These SBs may enhance dissolution of iron (Fe) and uranium (U) phases in the nuclear fuel debris formed in the nuclear reactors in Fukushima Daiichi nuclear power plant. Thus, in the interaction between microorganisms and radionuclides, SLOMs discharged by microorganisms are deeply involved in the chemical state change of radionuclides.


Subject(s)
Oxidation-Reduction , Siderophores , Adsorption , Deferoxamine/metabolism , Aluminum Oxide/chemistry , Lanthanoid Series Elements/chemistry , Manganese Compounds/chemistry , Oxides , Cerium , Radioisotopes
2.
Appl Environ Microbiol ; 90(3): e0211523, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38323847

ABSTRACT

Iron is essential to many biological processes but its poor solubility in aerobic environments restricts its bioavailability. To overcome this limitation, bacteria have evolved a variety of strategies, including the production and secretion of iron-chelating siderophores. Here, we describe the discovery of four series of siderophores from Streptomyces ambofaciens ATCC23877, three of which are unprecedented. MS/MS-based molecular networking revealed that one of these series corresponds to acylated desferrioxamines (acyl-DFOs) recently identified from S. coelicolor. The remaining sets include tetra- and penta-hydroxamate acyl-DFO derivatives, all of which incorporate a previously undescribed building block. Stable isotope labeling and gene deletion experiments provide evidence that biosynthesis of the acyl-DFO congeners requires unprecedented crosstalk between two separate non-ribosomal peptide synthetase (NRPS)-independent siderophore (NIS) pathways in the producing organism. Although the biological role(s) of these new derivatives remain to be elucidated, they may confer advantages in terms of metal chelation in the competitive soil environment due to the additional bidentate hydroxamic functional groups. The metabolites may also find application in various fields including biotechnology, bioremediation, and immuno-PET imaging.IMPORTANCEIron-chelating siderophores play important roles for their bacterial producers in the environment, but they have also found application in human medicine both in iron chelation therapy to prevent iron overload and in diagnostic imaging, as well as in biotechnology, including as agents for biocontrol of pathogens and bioremediation. In this study, we report the discovery of three novel series of related siderophores, whose biosynthesis depends on the interplay between two NRPS-independent (NIS) pathways in the producing organism S. ambofaciens-the first example to our knowledge of such functional cross-talk. We further reveal that two of these series correspond to acyl-desferrioxamines which incorporate four or five hydroxamate units. Although the biological importance of these novel derivatives is unknown, the increased chelating capacity of these metabolites may find utility in diagnostic imaging (for instance, 89Zr-based immuno-PET imaging) and other applications of metal chelators.


Subject(s)
Deferoxamine , Peptide Synthases , Siderophores , Humans , Siderophores/metabolism , Deferoxamine/metabolism , Tandem Mass Spectrometry , Iron/metabolism , Hydroxamic Acids
3.
Environ Sci Technol ; 58(8): 3974-3984, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38306233

ABSTRACT

In contaminated water and soil, little is known about the role and mechanism of the biometabolic molecule siderophore desferrioxamine-B (DFO) in the biogeochemical cycle of uranium due to complicated coordination and reaction networks. Here, a joint experimental and quantum chemical investigation is carried out to probe the biomineralization of uranyl (UO22+, referred to as U(VI) hereafter) induced by Shewanella putrefaciens (abbreviated as S. putrefaciens) in the presence of DFO and Fe3+ ion. The results show that the production of mineralized solids {hydrogen-uranium mica [H2(UO2)2(PO4)2·8H2O]} via S. putrefaciens binding with UO22+ is inhibited by DFO, which can both chelate preferentially UO22+ to form a U(VI)-DFO complex in solution and seize it from U(VI)-biominerals upon solvation. However, with Fe3+ ion introduced, the strong specificity of DFO binding with Fe3+ causes re-emergence of biomineralization of UO22+ {bassetite [Fe(UO2)2(PO4)2·8(H2O)]} by S. putrefaciens, owing to competitive complexation between Fe3+ and UO22+ for DFO. As DFO possesses three hydroxamic functional groups, it forms hexadentate coordination with Fe3+ and UO22+ ions via these functional groups. The stability of the Fe3+-DFO complex is much higher than that of U(VI)-DFO, resulting in some DFO-released UO22+ to be remobilized by S. putrefaciens. Our finding not only adds to the understanding of the fate of toxic U(VI)-containing substances in the environment and biogeochemical cycles in the future but also suggests the promising potential of utilizing functionalized DFO ligands for uranium processing.


Subject(s)
Shewanella putrefaciens , Uranium , Biomineralization , Deferoxamine/metabolism , Deferoxamine/pharmacology , Shewanella putrefaciens/metabolism , Siderophores/metabolism , Siderophores/pharmacology , Uranium/chemistry , Iron Compounds/chemistry
4.
Shanghai Kou Qiang Yi Xue ; 32(4): 356-362, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-38044727

ABSTRACT

PURPOSE: To explore the effect of sodium alginate-g-deferoxamine/chitosan (SA-g-DFO/CS) microspheres on proliferation and osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs). METHODS: A kind of SA-g-DFO/CS microsphere was developed through electrostatic interaction between porous chitosan microspheres and sodium alginate chemically grafted on the surface of DFO. Its morphology, porosity rate, pore size and sustained release of DFO in vitro were examined. Rat BMSCs were isolated and co-cultured with microspheres in osteogenic differentiation medium. MTT assay was used to study the influence of cell proliferation, and Calcein-AM/PI staining was used to observe the cell viability. Alkaline phosphatase (ALP) activity assay was conducted. PCR was used to detect the expression of genes related to angiogenesis and osteogenesis. Statistical analysis was performed using SPSS 22.0 software package. RESULTS: The SA-g-DFO/CS porous microspheres were successfully prepared with a sustained re6lease of DFO. Compared with SA/CS microspheres, the SA-g-DFO/CS microspheres were conducive to cell proliferation and differentiation, with the increases in expression level of ALP, related angiogenesis genes HIF-1α, VEGF and osteogenesis genes COLI, OCN. CONCLUSIONS: The SA-g-DFO/CS porous microspheres can provide a new choice for the development of alveolar bone regeneration.


Subject(s)
Chitosan , Mesenchymal Stem Cells , Rats , Animals , Osteogenesis/genetics , Deferoxamine/pharmacology , Deferoxamine/metabolism , Microspheres , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Alginates/pharmacology , Cells, Cultured
5.
PLoS One ; 18(12): e0295257, 2023.
Article in English | MEDLINE | ID: mdl-38100448

ABSTRACT

Research into marine iron cycles and biogeochemistry has commonly relied on the use of chelators (including siderophores) to manipulate iron bioavailability. To test whether a commonly used chelator, desferrioxamine B (DFB) caused effects beyond changing the iron-status of cells, cultures of the environmentally relevant marine heterotrophic bacterium, Ruegeria pomeroyii, were grown in media with different concentrations of iron and/or DFB, resulting in a gradient of iron availability. To determine how cells responded, transcriptomes were generated for cells from the different treatments and analyzed to determine how cells reacted to these to perturbations. Analyses were also performed to look for cellular responses specific to the presence of DFB in the culture medium. As expected, cells experiencing different levels of iron availability had different transcriptomic profiles. While many genes related to iron acquisition were differentially expressed between treatments, there were many other genes that were also differentially expressed between different sample types, including those related to the uptake and metabolism of other metals as well as genes related to metabolism of other types of molecules like amino acids and carbohydrates. We conclude that while DFB certainly altered iron availability to cells, it also appears to have had a general effect on the homeostasis of other metals as well as influenced metabolic processes outside of metal acquisition.


Subject(s)
Deferoxamine , Iron , Iron/metabolism , Deferoxamine/pharmacology , Deferoxamine/metabolism , Siderophores/genetics , Metals , Chelating Agents
6.
Toxicol Appl Pharmacol ; 479: 116727, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37863361

ABSTRACT

Iron overload cardiomyopathy (IOC) is the leading cause of death in cases of iron overload in patients. Previous studies demonstrated that iron overload led to cardiomyocyte dysfunction and death through multiple pathways including apoptosis, necroptosis and ferroptosis. However, the dominant cell death pathway in the iron-overloaded heart needs clarification. We tested the hypothesis that ferroptosis, an iron-dependent cell death, plays a dominant role in IOC, and ferroptosis inhibitor exerts greater efficacy than inhibitors of apoptosis and necroptosis on improving cardiac function in iron-overloaded rats. Iron dextran was injected intraperitoneally into male Wistar rats for four weeks to induce iron overload. Then, the rats were divided into 5 groups: treated with vehicle, apoptosis inhibitor (z-VAD-FMK), necroptosis inhibitor (Necrostatin-1), ferroptosis inhibitor (Ferrostatin-1) or iron chelator (deferoxamine) for 2 weeks. Cardiac function, mitochondrial function, apoptosis, necroptosis and ferroptosis were determined. The increased expression of apoptosis-, necroptosis- and ferroptosis-related proteins, were associated with impaired cardiac and mitochondrial function in iron-overloaded rats. All cell death inhibitors attenuated cardiac apoptosis, necroptosis and ferroptosis in iron-overloaded rats. Ferrostatin-1 was more effective than the other drugs in diminishing mitochondrial dysfunction and Bax/Bcl-2 ratio. Moreover, both Ferrostatin-1 and deferoxamine reversed iron overload-induced cardiac dysfunction as indicated by restored left ventricular ejection fraction and E/A ratio, whereas z-VAD-FMK and Necrostatin-1 only partially improved this parameter. These results indicated that ferroptosis could be the predominant form of cardiomyocyte death in IOC, and that inhibiting ferroptosis might be a potential novel treatment for IOC.


Subject(s)
Cardiomyopathies , Ferroptosis , Iron Overload , Rats , Humans , Male , Animals , Deferoxamine/metabolism , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Necroptosis , Stroke Volume , Rats, Wistar , Ventricular Function, Left , Apoptosis , Iron Overload/drug therapy , Iron Overload/metabolism , Iron/metabolism , Cardiomyopathies/drug therapy , Cardiomyopathies/prevention & control , Cardiomyopathies/chemically induced , Mitochondria , Myocytes, Cardiac/metabolism
7.
Neuroscience ; 524: 149-157, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37286159

ABSTRACT

Deferoxamine (DFO) is a potent iron chelator for clinical treatment of various diseases. Recent studies have also shown its potential to promote vascular regeneration during peripheral nerve regeneration. However, the effect of DFO on the Schwann cell function and axon regeneration remains unclear. In this study, we investigated the effects of different concentrations of DFO on Schwann cell viability, proliferation, migration, expression of key functional genes, and axon regeneration of dorsal root ganglia (DRG) through a series of in vitro experiments. We found that DFO improves Schwann cell viability, proliferation, and migration in the early stages, with an optimal concentration of 25 µM. DFO also upregulates the expression of myelin-related genes and nerve growth-promoting factors in Schwann cells, while inhibiting the expression of Schwann cell dedifferentiation genes. Moreover, the appropriate concentration of DFO promotes axon regeneration in DRG. Our findings demonstrate that DFO, with suitable concentration and duration of action, can positively affect multiple stages of peripheral nerve regeneration, thereby improving the effectiveness of nerve injury repair. This study also enriches the theory of DFO promoting peripheral nerve regeneration and provides a basis for the design of sustained-release DFO nerve grafts.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries , Humans , Nerve Regeneration/physiology , Ganglia, Spinal , Axons , Deferoxamine/metabolism , Deferoxamine/pharmacology , Cells, Cultured , Schwann Cells/metabolism , Nerve Growth Factors/metabolism , Peripheral Nerve Injuries/metabolism
8.
Curr Drug Targets ; 24(8): 688-696, 2023.
Article in English | MEDLINE | ID: mdl-37278033

ABSTRACT

INTRODUCTION: Several studies demonstrated that deferoxamine, an iron chelator, can improve inflammatory alterations in adipose tissue induced by obesity. Obesity alterations in adipose tissue are also associated with tissue remodeling, and deferoxamine has anti-fibrosis action previously described in sites like the skin and liver. METHODS: In this work, we analyzed deferoxamine effects on adipose tissue fibro-inflammation during obesity induced by diet in mice. in vitro approaches with fibroblasts and macrophages were also carried out to elucidate deferoxamine activity. RESULTS: Our results demonstrated that in addition to exerting anti-inflammatory effects, reducing the cytokine production in adipose tissue of obese mice and by human monocyte differentiated in macrophage in vitro, deferoxamine can alter metalloproteinases expression and extracellular matrix production in vivo and in vitro. CONCLUSION: Deferoxamine could be an alternative to control fibro-inflammation in obese adipose tissue, contributing to the metabolic improvements previously described.


Subject(s)
Deferoxamine , Insulin Resistance , Humans , Animals , Mice , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Deferoxamine/metabolism , Adipose Tissue , Obesity/metabolism , Inflammation/metabolism , Liver/metabolism , Mice, Inbred C57BL
9.
ACS Chem Biol ; 18(6): 1266-1270, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37207292

ABSTRACT

Desferrioxamine siderophores are assembled by the nonribosomal-peptide-synthetase-independent siderophore (NIS) synthetase enzyme DesD via ATP-dependent iterative condensation of three N1-hydroxy-N1-succinyl-cadaverine (HSC) units. Current knowledge of NIS enzymology and the desferrioxamine biosynthetic pathway does not account for the existence of most known members of this natural product family, which differ in substitution patterns of the N- and C-termini. The directionality of desferrioxamine biosynthetic assembly, N-to-C versus C-to-N, is a longstanding knowledge gap that is limiting further progress in understanding the origins of natural products in this structural family. Here, we establish the directionality of desferrioxamine biosynthesis using a chemoenzymatic approach with stable isotope incorporation and dimeric substrates. We propose a mechanism where DesD catalyzes the N-to-C condensation of HSC units to establish a unifying biosynthetic paradigm for desferrioxamine natural products in Streptomyces.


Subject(s)
Siderophores , Streptomyces , Siderophores/metabolism , Deferoxamine/metabolism , Peptide Synthases/metabolism , Streptomyces/metabolism
10.
Int J Biochem Cell Biol ; 159: 106419, 2023 06.
Article in English | MEDLINE | ID: mdl-37086817

ABSTRACT

Iron chelators, such as deferoxamine, exert an anticancer effect by altering the activity of biomolecules critical for regulation of the cell cycle, cell metabolism, and apoptotic processes. Thus, iron chelators are sometimes used in combination with radio- and/or chemotherapy in the treatment of cancer. The possibility that deferoxamine could induce a program of senescence similar to radio- and/or chemotherapy, fostering adaptation in the treatment of cancer cells, is not fully understood. Using established biochemical techniques, biomarkers linked to lipid composition, and coherent anti-Stokes Raman scattering microscopy, we demonstrated that hepatocellular carcinoma-derived HepG2 cells survive after deferoxamine treatment, acquiring phenotypic traits and representative hallmarks of senescent cells. The results support the view that deferoxamine acts in HepG2 cells to produce oxidative stress-induced senescence by triggering sequential mitochondrial and lysosomal dysfunction accompanied by autophagy blockade. We also focused on the lipidome of senescent cells after deferoxamine treatment. Using mass spectrometry, we found that the deferoxamine-induced senescent cells presented marked remodeling of the phosphoinositol, sulfatide, and cardiolipin profiles, which all play a central role in cell signaling cascades, intracellular membrane trafficking, and mitochondria functions. Detection of alterations in glycosphingolipid sulfate species suggested modifications in ceramide generation, and turnover is frequently described in cancer cell survival and resistance to chemotherapy. Blockade of ceramide generation may explain autophagic default, resistance to apoptosis, and the onset of senescence.


Subject(s)
Deferoxamine , Sulfoglycosphingolipids , Humans , Deferoxamine/pharmacology , Deferoxamine/metabolism , Sulfoglycosphingolipids/metabolism , Sulfoglycosphingolipids/pharmacology , Hep G2 Cells , Iron Chelating Agents/pharmacology , Iron Chelating Agents/metabolism , Mitochondria/metabolism , Cellular Senescence
11.
Chemosphere ; 327: 138506, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36966924

ABSTRACT

Deferoxamine (DFB) is a trihydroxamic acid siderophore that chelates with iron (Fe) to form iron-siderophore complexes. The existence of siderophores in nature changes the form of iron and affects the absorption and utilization of iron by organisms. However, the relationship between siderophores and the growth of Cyanobacteria is largely unknown. In this study, the cellular and transcriptomic responses to the addition of DFB were investigated. A high concentration of DFB (12 mg/L) significantly inhibited the growth of Cyanobacteria cells, reduced photosynthetic activity, and induced the production of peroxidase, with the highest inhibition rate of algal growth of 74.82%. These indexes were also affected for the low (3 mg/L) and medium concentration (6 mg/L) groups, but this difference is closely related to the growth stage of Cyanobacteria cells. This may be due to competition between the cell-associated iron-binding part/system and the extracellular Fe (Ⅲ)-DFB ligand. Transcriptome results showed that most of the genes involved in iron uptake and transport were down-regulated, and only the fur gene encoding the iron uptake regulator protein was significantly up-regulated. Most genes related to photosynthesis, glycolysis, and fatty acid metabolism were also down-regulated, while the obvious up-regulation of a few genes may be a complex regulation in response to the down-regulation of most genes. These findings will provide important insights into the effects of siderophores on iron bioavailability in algae.


Subject(s)
Cyanobacteria , Microcystis , Iron/metabolism , Siderophores/pharmacology , Siderophores/metabolism , Microcystis/metabolism , Deferoxamine/pharmacology , Deferoxamine/metabolism , Transcriptome , Photosynthesis , Cyanobacteria/metabolism
12.
Cells ; 12(4)2023 02 10.
Article in English | MEDLINE | ID: mdl-36831233

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) are a significant cause of childhood diarrhea in low-resource settings. ETEC are defined by the production of heat-stable enterotoxin (ST) and/or heat-labile enterotoxin (LT), which alter intracellular cyclic nucleotide signaling and cause the secretion of water and electrolytes into the intestinal lumen. ETEC take cues from chemicals (e.g., glycans, bile salts, and solutes) that may be liberated following enterotoxin activity to recognize entrance into the host. ETEC then alter the expression of surface adhesins called colonization factors (CFs) to attach to the intestinal epithelium, proliferate, and cause disease. Here, we used an in vivo model of oral ST intoxication to determine its impact on luminal ion concentrations via ICP-MS. We also used functional assays, including Western blots, qPCR, and toxin activity assays, to assess the impact of luminal ion flux on CF and toxin expression. Finally, we assessed ETEC strains with CFs CFA/I or CS6 in a streptomycin mouse model of ETEC colonization. ST causes rapid and significant increases in luminal chloride but significant decreases in luminal magnesium and iron. We confirmed that increased sodium chloride suppresses CFA/I production in ETEC H10407 but does not affect CS6 production in ETEC 214-4. CFA/I production in ETEC H10407 is increased when magnesium becomes limiting, although it does not affect CS6 production in ETEC 214-4. Iron restriction via deferoxamine induces CFA/I expression in ETEC H10407 but not CS6 expression in ETEC 214-4. We demonstrate that ST production is suppressed via iron restriction in H10407, 214-4, and over 50 other ETEC clinical isolates. Lastly, we demonstrate that the iron restriction of mice using oral deferoxamine pre-treatment extends the duration of ETEC H10407 (CFA/I+) fecal shedding while accelerating ETEC 214-4 (CS6+) fecal shedding. Combined, these data suggest that enterotoxins modulate luminal ion flux to influence ETEC virulence including toxin and CF production.


Subject(s)
Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Animals , Mice , Enterotoxins , Enterotoxigenic Escherichia coli/metabolism , Bacterial Toxins/metabolism , Virulence , Iron/metabolism , Deferoxamine/metabolism , Hot Temperature , Magnesium/metabolism , Escherichia coli Proteins/metabolism , Fimbriae Proteins/metabolism
13.
Pharm Biol ; 61(1): 37-49, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36573499

ABSTRACT

CONTEXT: Gallic acid (GA) and lecithin showed important roles in antioxidant and drug delivery, respectively. A complex synthesized from GA and soybean lecithin (SL-GAC), significantly improved bioavailability of GA and pharmacological activities. However, the antioxidant activity of SL-GAC and its effect on iron-overload-induced liver injury remains unexplored. OBJECTIVE: This study investigates the antioxidant properties of SL-GAC in vitro and in mice, and its remediating effects against liver injury by iron-overloaded. MATERIALS AND METHODS: In vitro, free radical scavenging activity, lipid peroxidation inhibition, and ferric reducing power of SL-GAC were measured by absorbance photometry. In vivo, C57BL/6J mice were randomized into 4 groups: control, iron-overloaded, iron-overloaded + deferoxamine, and iron-overloaded + SL-GAC. Treatments with deferoxamine (150 mg/kg/intraperitioneally) and SL-GAC (200 mg/kg/orally) were given to the desired groups for 12 weeks, daily. Iron levels, oxidative stress, and biochemical parameters were determined by histopathological examination and molecular biological techniques. RESULTS: In vitro, SL-GAC showed DPPH and ABTS free radicals scavenging activity with IC50 values equal to 24.92 and 128.36 µg/mL, respectively. In C57BL/6J mice, SL-GAC significantly reduced the levels of serum iron (22.82%), liver iron (50.29%), aspartate transaminase (25.97%), alanine transaminase (38.07%), gamma glutamyl transferase (42.11%), malondialdehyde (19.82%), total cholesterol (45.96%), triglyceride (34.90%), ferritin light chain (18.51%) and transferrin receptor (27.39%), while up-regulated the levels of superoxide dismutase (24.69%), and glutathione (11.91%). CONCLUSIONS: These findings encourage the use of SL-GAC to treat liver injury induced by iron-overloaded. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.


Subject(s)
Iron Overload , Liver Diseases , Mice , Animals , Lecithins/metabolism , Lecithins/pharmacology , Lecithins/therapeutic use , Antioxidants/therapeutic use , Glycine max , Gallic Acid/pharmacology , Deferoxamine/pharmacology , Deferoxamine/metabolism , Deferoxamine/therapeutic use , Mice, Inbred C57BL , Liver Diseases/drug therapy , Oxidative Stress , Iron Overload/drug therapy , Iron Overload/metabolism , Iron Overload/pathology , Liver , Iron/metabolism , Lipid Peroxidation
14.
Proc Natl Acad Sci U S A ; 119(40): e2211052119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161918

ABSTRACT

Streptomyces bacteria have a complex life cycle that is intricately linked with their remarkable metabolic capabilities. Exploration is a recently discovered developmental innovation of these bacteria, that involves the rapid expansion of a structured colony on solid surfaces. Nutrient availability impacts exploration dynamics, and we have found that glycerol can dramatically increase exploration rates and alter the metabolic output of exploring colonies. We show here that glycerol-mediated growth acceleration is accompanied by distinct transcriptional signatures and by the activation of otherwise cryptic metabolites including the orange-pigmented coproporphyrin, the antibiotic chloramphenicol, and the uncommon, alternative siderophore foroxymithine. Exploring cultures are also known to produce the well-characterized desferrioxamine siderophore. Mutational studies of single and double siderophore mutants revealed functional redundancy when strains were cultured on their own; however, loss of the alternative foroxymithine siderophore imposed a more profound fitness penalty than loss of desferrioxamine during coculture with the yeast Saccharomyces cerevisiae. Notably, the two siderophores displayed distinct localization patterns, with desferrioxamine being confined within the colony area, and foroxymithine diffusing well beyond the colony boundary. The relative fitness advantage conferred by the alternative foroxymithine siderophore was abolished when the siderophore piracy capabilities of S. cerevisiae were eliminated (S. cerevisiae encodes a ferrioxamine-specific transporter). Our work suggests that exploring Streptomyces colonies can engage in nutrient-targeted metabolic arms races, deploying alternative siderophores that allow them to successfully outcompete other microbes for the limited bioavailable iron during coculture.


Subject(s)
Deferoxamine , Microbial Interactions , Saccharomyces cerevisiae , Siderophores , Streptomyces , Chloramphenicol/metabolism , Coproporphyrins/metabolism , Deferoxamine/metabolism , Glycerol/metabolism , Iron/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Siderophores/genetics , Siderophores/metabolism , Streptomyces/growth & development , Streptomyces/metabolism
15.
mBio ; 13(5): e0108622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36121152

ABSTRACT

Diabetes mellitus (DM) increases the risk of developing tuberculosis (TB), but the mechanisms behind diabetes-TB comorbidity are still undefined. Here, we studied the role of hypoxia-inducible factor-1 (HIF-1), a main regulator of metabolic and inflammatory responses, in the outcome of Mycobacterium tuberculosis infection of bone marrow-derived macrophages (BMM). We observed that M. tuberculosis infection of BMM increased the expression of HIF-1α and HIF-1-regulated genes. Treatment with the hypoxia mimetic deferoxamine (DFO) further increased levels of HIF-1-regulated immune and metabolic molecules and diminished the intracellular bacterial load in BMM and in the lungs of infected mice. The expression of HIF-1-regulated immunometabolic genes was reduced, and the intracellular M. tuberculosis levels were increased in BMM incubated with high-glucose levels or with methylglyoxal (MGO), a reactive carbonyl compound elevated in DM. In line with the in vitro findings, high M. tuberculosis levels and low HIF-1-regulated transcript levels were found in the lungs from hyperglycemic Leprdb/db compared with wild-type mice. The increased intracellular M. tuberculosis growth and the reduced expression of HIF-1-regulated metabolic and inflammatory genes in BMM incubated with MGO or high glucose were reverted by additional treatment with DFO. Hif1a-deficient BMM showed ablated responses of immunometabolic transcripts after mycobacterial infection at normal or high-glucose levels. We propose that HIF-1 may be targeted for the control of M. tuberculosis during DM. IMPORTANCE People living with diabetes who are also infected with M. tuberculosis are more likely to develop tuberculosis disease (TB). Why diabetic patients have an increased risk for developing TB is not well understood. Macrophages, the cell niche for M. tuberculosis, can express microbicidal mechanisms or be permissive to mycobacterial persistence and growth. Here, we showed that high glucose and carbonyl stress, which mediate diabetes pathogenesis, impair the control of intracellular M. tuberculosis in macrophages. Infection with M. tuberculosis stimulated the expression of genes regulated by the transcription factor HIF-1, a major controller of the responses to hypoxia, resulting in macrophage activation. High glucose and carbonyl compounds inhibited HIF-1 responses by macrophages. Mycobacterial control in the presence of glucose or carbonyl stress was restored by DFO, a compound that stabilizes HIF-1. We propose that HIF-1 can be targeted to reduce the risk of developing TB in people with diabetes.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Mice , Animals , Mycobacterium tuberculosis/physiology , Hypoxia-Inducible Factor 1/metabolism , Pyruvaldehyde/metabolism , Deferoxamine/pharmacology , Deferoxamine/metabolism , Magnesium Oxide/metabolism , Tuberculosis/microbiology , Macrophages/microbiology , Hypoxia/metabolism , Glucose/metabolism
16.
Mol Microbiol ; 118(4): 369-386, 2022 10.
Article in English | MEDLINE | ID: mdl-35970762

ABSTRACT

Salmonella enterica spp. produce siderophores to bind iron with high affinity and can also use three xenosiderophores secreted by other microorganisms, ferrichrome, coprogen, and ferrioxamine. Here we focused on FoxA, a TonB-dependent transporter of ferrioxamines. Adjacent to foxA is a gene annotated as a helix-turn-helix (HTH) domain-containing protein, SL0358 (foxR), in the Salmonella enterica serovar Typhimurium SL1344 genome. FoxR shares homology with transcriptional regulators belonging to the AraC/XylS family. foxR is syntenic with foxA in the Enterobacteriaceae family, suggesting their functional relatedness. Both foxA and foxR are repressed by the ferric uptake regulator (Fur) under iron-rich growth conditions. When iron is scarce, FoxR acts as a transcriptional activator of foxA by directly binding to its upstream regulatory region. A point mutation in the HTH domain of FoxR abolished this binding, as did mutation of a direct repeat motif in the foxA upstream regulatory region. Desferrioxamine (DFOE) enhanced FoxR protein stability and foxA transcription but did not affect the affinity of FoxR binding to the foxA regulatory region. In summary, we have identified FoxR as a new member of the AraC/XylS family that regulates xenosiderophore-mediated iron uptake by S. Typhimurium and likely other Enterobacteriaceae members.


Subject(s)
Deferoxamine , Salmonella enterica , Deferoxamine/chemistry , Deferoxamine/metabolism , Siderophores/genetics , Siderophores/metabolism , Ferrichrome/metabolism , Salmonella enterica/genetics , Salmonella enterica/metabolism , Cytarabine , Bacterial Outer Membrane Proteins/metabolism , Iron/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics
17.
IUBMB Life ; 74(11): 1052-1069, 2022 11.
Article in English | MEDLINE | ID: mdl-35638167

ABSTRACT

Growing evidence indicates that iron overload is an independent risk factor for osteoporosis. However, the mechanisms are not fully understood. The purpose of our study was to determine whether iron overload could lead to ferroptosis in osteoblasts and to explore whether ferroptosis of osteoblasts is involved in iron overload-induced osteoporosis in vitro and in vivo. Ferric ammonium citrate was used to mimic iron overload conditions, while deferoxamine and ferrostatin-1 were used to inhibit ferroptosis of MC3T3-E1 cells in vitro. The ferroptosis, osteogenic differentiation and mineralization of MC3T3-E1 cells were assessed in vitro. A mouse iron overload model was established using iron dextran. Immunohistochemical analysis was performed to determine ferroptosis of osteoblasts in vivo. Enzyme-linked immunosorbent assays and calcein-alizarin red S labelling were used to assess new bone formation. Dual x-ray absorptiometry, micro-computed tomography and histopathological analysis were conducted to evaluate osteoporosis. The results showed that iron overload reduced cell viability, superoxide dismutase and glutathione levels, increased reactive oxygen species generation, lipid peroxidation, malondialdehyde levels and ferroptosis-related protein expression, and induced ultrastructural changes in mitochondria. Iron overload could also inhibit osteogenic differentiation and mineralization in vitro. Inhibiting ferroptosis reversed the changes described above. Iron overload inhibited osteogenesis, promoted the ferroptosis of osteoblasts and induced osteoporosis in vivo, which could also be improved by deferoxamine and ferrostatin-1. These results demonstrate that ferroptosis of osteoblasts plays a crucial role in iron overload-induced osteoporosis. Maintaining iron homeostasis and targeting ferroptosis of osteoblasts might be potential measures of treating or preventing iron overload-induced osteoporosis.


Subject(s)
Ferroptosis , Iron Overload , Osteoporosis , Mice , Animals , Osteogenesis , Deferoxamine/pharmacology , Deferoxamine/metabolism , Reactive Oxygen Species/metabolism , Dextrans/metabolism , X-Ray Microtomography , Osteoblasts , Iron Overload/complications , Osteoporosis/drug therapy , Osteoporosis/genetics , Osteoporosis/metabolism , Iron/metabolism , Glutathione/metabolism , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism
18.
Anaerobe ; 75: 102582, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35533828

ABSTRACT

Desulfovibrio spp. is a commensal sulfate reducing bacterium that is present in small numbers in the gastrointestinal tract. Increased concentrations of Desulfovibrio spp. (blooms) have been reported in patients with inflammatory bowel disease and irritable bowel syndrome. Since stress has been reported to exacerbate symptoms of these chronic diseases, this study examined whether the stress catecholamine norepinephrine (NE) promotes Desulfovibrio growth. Norepinephrine-stimulated growth has been reported in other bacterial taxa, and this effect may depend on the availability of the micronutrient iron. OBJECTIVES: This study tested whether norepinephrine exposure affects the in vitro growth of Desulfovibrio vulgaris in an iron dependent manner. METHODS: DSV was incubated in a growth medium with and without 1 µm of norepinephrine. An additional growth assay added the iron chelator deferoxamine in NE exposed DSV. Iron regulatory genes were assessed with and without the treatment of NE and Deferoxamine. RESULTS: We found that norepinephrine significantly increased growth of D. vulgaris. Norepinephrine also increased bacterial production of hydrogen sulfide. Additionally, norepinephrine significantly increased bacterial expression in three of the four tested iron regulatory genes. The iron chelator deferoxamine inhibited growth of D. vulgaris in a dose-dependent manner and reversed the effect of norepinephrine on proliferation of D. vulgaris and on bacterial expression of iron regulatory genes. CONCLUSION: The data presented in this work suggests that promotion of D. vulgaris growth by norepinephrine is iron dependent.


Subject(s)
Desulfovibrio vulgaris , Desulfovibrio , Deferoxamine/metabolism , Deferoxamine/pharmacology , Desulfovibrio/metabolism , Desulfovibrio vulgaris/genetics , Humans , Iron/metabolism , Iron Chelating Agents/metabolism , Iron Chelating Agents/pharmacology , Norepinephrine/metabolism , Norepinephrine/pharmacology
19.
J Tissue Viability ; 31(3): 474-484, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35595596

ABSTRACT

AIM OF THE STUDY: The study was performed to understand the detailed mechanism of diabetic wound healing by bilirubin-deferoxamine (DFO) combination on topical application. MATERIALS AND METHODS: There were two study groups, control, and treatment. The granulation tissues collected on different days (3, 7, 14, and 19) were studied in detail for inflammatory mediators, angiogenesis markers, epithelialization, and oxidative stress parameters. RESULTS: A significant increase in wound contraction percentage was observed from day 7 in the bilirubin-DFO treatment group. The combinatorial treatment significantly reduced tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß), and enhanced IL-10 levels. Upregulated mRNAs of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 alpha (HIF-1 α) along with CD31 immunohistochemistry showed the pro-angiogenesis potential of the combination. Hematoxylin and Eosin (H and E) staining and Masson's trichrome staining showed reduced inflammatory cell infiltration, enhanced fibroblast proliferation, well-organized collagen fibers, and the development of new blood vessels. Collagen deposition is further supported by immunohistochemistry studies and Masson's trichrome staining. Bilirubin-DFO combination also reduced lipid peroxidation and elevated antioxidative enzymes. CONCLUSION: Topical application of bilirubin-DFO showed immense potential in augmenting skin wound regeneration in diabetes by upregulating the antioxidant status as well as increasing angiogenesis, collagen deposition, and modulating cytokines.


Subject(s)
Deferoxamine , Diabetes Mellitus, Experimental , Animals , Antioxidants , Bilirubin/metabolism , Collagen/pharmacology , Collagen/therapeutic use , Deferoxamine/metabolism , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Oxidative Stress , Rats , Skin , Vascular Endothelial Growth Factor A , Wound Healing
20.
Toxicol Mech Methods ; 32(7): 530-541, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35313783

ABSTRACT

Aluminum (Al), a neurotoxic element, can induce Alzheimer's disease-like (AD-like) changes by triggering neuronal death. Iron homeostasis disturbance has also been implicated in Alzheimer's disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of neuronal death induced by aluminum maltolate (Al(mal)3) in the pathogenesis of AD remains elusive. In this study, the results of three different behavioral experiments suggested that the learning and memory ability deteriorated and autonomous activity declined of these rats that exposed Al(mal)3 were alleviated by deferoxamine (DFO). Transmission electron microscope observations showed that the membrane was ruptured, and the membrane density increased and ridge disappearance (the most prominent characteristic of ferroptosis) in the perinuclear and cytoplasmic compartments of the hippocampal neurons were perceived in the exposure group, while the DFO group and 18 µM/kg Al(mal)3+DFO group were alleviated compared with 18 µM/kg Al(mal)3. In addition, DFO prevented oxidative stress, such as increased glutathione (GSH) and decreased malondialdehyde (MDA) and reactive oxygen species (ROS), while the latter two indexes had the same changing tendency as the total iron of brain tissue. These data indicated that Al(mal)3 could cause ferroptosis in Sprague-Dawley (SD) rat neurons, which was inhibited by DFO via reducing the content of iron and increasing the ability of cells to resist oxidative damage.


Subject(s)
Alzheimer Disease , Ferroptosis , Aluminum/toxicity , Animals , Brain/metabolism , Deferoxamine/metabolism , Deferoxamine/pharmacology , Iron/metabolism , Iron/toxicity , Iron Chelating Agents/metabolism , Iron Chelating Agents/pharmacology , Neurons/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...