Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Curr Biol ; 34(15): 3537-3549.e5, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39047734

ABSTRACT

Decoding human speech requires the brain to segment the incoming acoustic signal into meaningful linguistic units, ranging from syllables and words to phrases. Integrating these linguistic constituents into a coherent percept sets the root of compositional meaning and hence understanding. One important cue for segmentation in natural speech is prosodic cues, such as pauses, but their interplay with higher-level linguistic processing is still unknown. Here, we dissociate the neural tracking of prosodic pauses from the segmentation of multi-word chunks using magnetoencephalography (MEG). We find that manipulating the regularity of pauses disrupts slow speech-brain tracking bilaterally in auditory areas (below 2 Hz) and in turn increases left-lateralized coherence of higher-frequency auditory activity at speech onsets (around 25-45 Hz). Critically, we also find that multi-word chunks-defined as short, coherent bundles of inter-word dependencies-are processed through the rhythmic fluctuations of low-frequency activity (below 2 Hz) bilaterally and independently of prosodic cues. Importantly, low-frequency alignment at chunk onsets increases the accuracy of an encoding model in bilateral auditory and frontal areas while controlling for the effect of acoustics. Our findings provide novel insights into the neural basis of speech perception, demonstrating that both acoustic features (prosodic cues) and abstract linguistic processing at the multi-word timescale are underpinned independently by low-frequency electrophysiological brain activity in the delta frequency range.


Subject(s)
Comprehension , Magnetoencephalography , Speech Perception , Humans , Speech Perception/physiology , Comprehension/physiology , Male , Female , Adult , Young Adult , Speech/physiology , Delta Rhythm/physiology , Brain/physiology , Linguistics
2.
Sci Rep ; 14(1): 16454, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39014053

ABSTRACT

This study focused on detecting the reflections of healing and change in cortex activation in full-face transplantation and lesions patients on EEG activity. Face transplant patients have facial lesions before transplantation and, to identify pre-face transplant patients' brain activity in the absence of pre-transplant recordings, we used data obtained from pre-transplant facial lesion patients. Ten healthy, four facial lesion and three full-face transplant patients participated in this study. EEG data recorded for four different sensory stimuli (brush from the right face, right hand, left face, and left-hand regions) were analyzed using wavelet packet transform method. EEG waves were analyzed for standard bands. Our findings indicate significant change in the 2-4 Hz frequency range which may be a result of ongoing or previous cortical reorganization for face lesion and transplant patients. Alterations of the delta wave seen in patients with facial lesion and face transplant can also be explained by the intense central plasticity. Our findings show that the delta band differences might be used as a marker in the evaluation of post-transplant cortical plasticity in the future.


Subject(s)
Electroencephalography , Facial Transplantation , Neuronal Plasticity , Humans , Female , Male , Adult , Electroencephalography/methods , Middle Aged , Delta Rhythm , Cerebral Cortex/physiopathology , Young Adult , Face
3.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38879757

ABSTRACT

The reactions to novelty manifesting in mismatch negativity in the rat brain were studied. During dissociative anesthesia, mismatch negativity-like waves were recorded from the somatosensory cortex using an epidural 32-electrode array. Experimental animals: 7 wild-type Wistar rats and 3 transgenic rats. During high-dose anesthesia, deviant 1,500 Hz tones were presented randomly among many standard 1,000 Hz tones in the oddball paradigm. "Deviant minus standard_before_deviant" difference waves were calculated using both the classical method of Naatanen and method of cross-correlation of sub-averages. Both methods gave consistent results: an early phasic component of the N40 and later N100 to 200 (mismatch negativity itself) tonic component. The gamma and delta rhythms power and the frequency of down-states (suppressed activity periods) were assessed. In all rats, the amplitude of tonic component grew with increasing sedation depth. At the same time, a decrease in gamma power with a simultaneous increase in delta power and the frequency of down-states. The earlier phasic frontocentral component is associated with deviance detection, while the later tonic one over the auditory cortex reflects the orienting reaction. Under anesthesia, this slow mismatch negativity-like wave most likely reflects the tendency of the system to respond to any influences with delta waves, K-complexes and down-states, or produce them spontaneously.


Subject(s)
Rats, Wistar , Animals , Male , Acoustic Stimulation/methods , Electroencephalography/methods , Rats , Rats, Transgenic , Anesthetics, Dissociative/administration & dosage , Anesthetics, Dissociative/pharmacology , Evoked Potentials, Auditory/physiology , Somatosensory Cortex/physiology , Gamma Rhythm/physiology , Delta Rhythm/physiology , Delta Rhythm/drug effects
4.
Exp Neurol ; 379: 114860, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876195

ABSTRACT

Interictal epileptiform discharges refer to aberrant brain electrographic signals between seizures and feature intermittent interictal spikes (ISs), sharp waves, and/or abnormal rhythms. Recognition of these epileptiform activities by electroencephalographic (EEG) examinations greatly aids epilepsy diagnosis and localization of the seizure onset zone. ISs are a major form of interictal epileptiform discharges recognized in animal models of epilepsy. Progressive changes in IS waveforms, IS rates, and/or associated fast ripple oscillations have been shown to precede the development of spontaneous recurrent seizures (SRS) in various animal models. IS expressions in the kindling model of epilepsy have been demonstrated but IS changes during the course of SRS development in extended kindled animals remain to be detailed. We hence addressed this issue using a mouse model of kindling-induced SRS. Adult C57 black mice received twice daily hippocampal stimulations until SRS occurrence, with 24-h EEG monitoring performed following 50, 80, and ≥ 100 stimulations and after observation of SRS. In the stimulated hippocampus, increases in spontaneous ISs rates, but not in IS waveforms nor IS-associated fast ripples, along with decreased frequencies of hippocampal delta and theta rhythms, were observed before SRS onset. Comparable increases in IS rates were further observed in the unstimulated hippocampus, piriform cortex, and entorhinal cortex, but not in the unstimulated parietal cortex and dorsomedial thalamus. These data provide original evidence suggesting that increases in hippocampal IS rates, together with reductions in hippocampal delta and theta rhythms are closely associated with development of SRS in a rodent kindling model.


Subject(s)
Delta Rhythm , Electroencephalography , Hippocampus , Kindling, Neurologic , Mice, Inbred C57BL , Seizures , Theta Rhythm , Animals , Kindling, Neurologic/physiology , Mice , Hippocampus/physiopathology , Seizures/physiopathology , Theta Rhythm/physiology , Delta Rhythm/physiology , Male , Recurrence
5.
Neurorehabil Neural Repair ; 38(7): 506-517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842027

ABSTRACT

BACKGROUND: The application of neuroimaging-based biomarkers in stroke has enriched our understanding of post-stroke recovery mechanisms, including alterations in functional connectivity based on synchronous oscillatory activity across various cortical regions. Phase-amplitude coupling, a type of cross-frequency coupling, may provide additional mechanistic insight. OBJECTIVE: To determine how the phase of prefrontal cortex delta (1-3 Hz) oscillatory activity mediates the amplitude of motor cortex beta (13-20 Hz) oscillations in individual's early post-stroke. METHODS: Participants admitted to an inpatient rehabilitation facility completed resting and task-based EEG recordings and motor assessments around the time of admission and discharge along with structural neuroimaging. Unimpaired controls completed EEG procedures during a single visit. Mixed-effects linear models were performed to assess within- and between-group differences in delta-beta prefrontomotor coupling. Associations between coupling and motor status and injury were also determined. RESULTS: Thirty individuals with stroke and 17 unimpaired controls participated. Coupling was greater during task versus rest conditions for all participants. Though coupling during affected extremity task performance decreased during hospitalization, coupling remained elevated at discharge compared to controls. Greater baseline coupling was associated with better motor status at admission and discharge and positively related to motor recovery. Coupling demonstrated both positive and negative associations with injury involving measures of lesion volume and overlap injury to anterior thalamic radiation, respectively. CONCLUSIONS: This work highlights the utility of prefrontomotor cross-frequency coupling as a potential motor status and recovery biomarker in stroke. The frequency- and region-specific neurocircuitry featured in this work may also facilitate novel treatment strategies in stroke.


Subject(s)
Motor Cortex , Recovery of Function , Stroke , Humans , Male , Female , Middle Aged , Aged , Stroke/physiopathology , Stroke/diagnostic imaging , Recovery of Function/physiology , Motor Cortex/diagnostic imaging , Motor Cortex/physiopathology , Beta Rhythm/physiology , Delta Rhythm/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Stroke Rehabilitation , Biomarkers/metabolism , Electroencephalography , Adult , Magnetic Resonance Imaging
6.
Clin Neurophysiol ; 164: 149-160, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896932

ABSTRACT

OBJECTIVE: We aimed to determine whether quantitative electroencephalography (QEEG) measures have predictive value for cerebral edema (CED) and clinical outcomes in acute ischemic stroke (AIS) patients with anterior circulation large vessel occlusion who underwent mechanical thrombectomy (MT). METHODS: A total of 105 patients with AIS in the anterior circulation were enrolled in this prospective study. The occurrence and severity of CED were assessed through computed tomography conducted 24 h after MT. Clinical outcomes were evaluated based on early neurological deterioration (END) and 3-month functional status, as measured by the modified Rankin scale (mRS). Electroencephalography (EEG) recordings were performed 24 h after MT, and QEEG indices were calculated from the standard 16 electrodes and 2 frontal channels (F3-C3, F4-C4). The delta/alpha ratio (DAR), the (delta + theta) / (alpha + beta) ratio (DTABR), and relative delta power were averaged over all electrodes (global) and the F3-C3 and F4-C4 channels (frontal). The predictive effect and value of QEEG indices for CED and clinical outcomes were assessed using ordinal and logistic regression models, as well as receiver operating characteristic (ROC) curves. RESULTS: Significantly, both global and frontal DAR were found to be associated with the severity of CED, END, and poor functional outcomes at 90 days, while global and frontal DTABR and relative delta power were not associated with outcomes. In ROC analysis, the best predictive effect was observed in frontal DAR, with an area under the curve of approximately 0.80. It exhibited approximately 75% sensitivity and 71% specificity for radiological and clinical outcomes when a threshold of 3.3 was used. CONCLUSIONS: QEEG techniques may be considered an efficient bedside monitoring method for assessing treatment efficacy, identifying patients at higher risk of severe CED and END, and predicting long-term functional outcomes. SIGNIFICANCE: QEEG can help identify patients at risk of severe neurological complications that can impact long-term functional recovery in AIS patients who underwent MT.


Subject(s)
Brain Edema , Electroencephalography , Thrombectomy , Humans , Male , Female , Aged , Brain Edema/physiopathology , Brain Edema/diagnostic imaging , Brain Edema/etiology , Middle Aged , Thrombectomy/methods , Electroencephalography/methods , Prospective Studies , Delta Rhythm/physiology , Treatment Outcome , Alpha Rhythm/physiology , Ischemic Stroke/physiopathology , Ischemic Stroke/surgery , Aged, 80 and over , Stroke/physiopathology , Stroke/surgery , Predictive Value of Tests
7.
Article in English | MEDLINE | ID: mdl-38717876

ABSTRACT

Neurovascular coupling (NVC) provides important insights into the intricate activity of brain functioning and may aid in the early diagnosis of brain diseases. Emerging evidences have shown that NVC could be assessed by the coupling between electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, this endeavor presents significant challenges due to the absence of standardized methodologies and reliable techniques for coupling analysis of these two modalities. In this study, we introduced a novel method, i.e., the collaborative multi-output variational Gaussian process convergent cross-mapping (CMVGP-CCM) approach to advance coupling analysis of EEG and fNIRS. To validate the robustness and reliability of the CMVGP-CCM method, we conducted extensive experiments using chaotic time series models with varying noise levels, sequence lengths, and causal driving strengths. In addition, we employed the CMVGP-CCM method to explore the NVC between EEG and fNIRS signals collected from 26 healthy participants using a working memory (WM) task. Results revealed a significant causal effect of EEG signals, particularly the delta, theta, and alpha frequency bands, on the fNIRS signals during WM. This influence was notably observed in the frontal lobe, and its strength exhibited a decline as cognitive demands increased. This study illuminates the complex connections between brain electrical activity and cerebral blood flow, offering new insights into the underlying NVC mechanisms of WM.


Subject(s)
Algorithms , Electroencephalography , Memory, Short-Term , Neurovascular Coupling , Spectroscopy, Near-Infrared , Humans , Electroencephalography/methods , Male , Female , Spectroscopy, Near-Infrared/methods , Adult , Normal Distribution , Neurovascular Coupling/physiology , Young Adult , Memory, Short-Term/physiology , Healthy Volunteers , Reproducibility of Results , Multivariate Analysis , Frontal Lobe/physiology , Frontal Lobe/diagnostic imaging , Brain Mapping/methods , Theta Rhythm/physiology , Brain/physiology , Brain/diagnostic imaging , Brain/blood supply , Nonlinear Dynamics , Delta Rhythm/physiology , Alpha Rhythm/physiology
8.
J Psychiatr Res ; 174: 332-339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697012

ABSTRACT

Electroencephalographic (EEG) deficits in slow wave activity or Delta power (0.5-4 Hz) indicate disturbed sleep homeostasis and are hallmarks of depression. Sleep homeostasis is linked to restorative sleep and potential antidepressant response via non-rapid eye movement (NREM) slow wave sleep (SWS) during which neurons undergo essential repair and rejuvenation. Decreased Low Delta power (0.5-2 Hz) was previously reported in individuals with depression. This study investigated power levels in the Low Delta (0.5-<2 Hz), High Delta (2-4 Hz), and Total Delta (0.5-4 Hz) bands and their association with age, sex, and disrupted sleep in treatment-resistant depression (TRD). Mann-Whitney U tests were used to compare the nightly progressions of Total Delta, Low Delta, and High Delta in 100 individuals with TRD and 24 healthy volunteers (HVs). Polysomnographic parameters were also examined, including Total Sleep Time (TST), Sleep Efficiency (SE), and Wake after Sleep Onset (WASO). Individuals with TRD had lower Delta power during the first NREM episode (NREM1) than HVs. The deficiency was observed in the Low Delta band versus High Delta. Females with TRD had higher Delta power than males during the first NREM1 episode, with the most noticeable sex difference observed in Low Delta. In individuals with TRD, Low Delta power correlated with WASO and SE, and High Delta correlated with WASO. Low Delta power deficits in NREM1 were observed in older males with TRD, but not females. These results provide compelling evidence for a link between age, sex, Low Delta power, sleep homeostasis, and non-restorative sleep in TRD.


Subject(s)
Delta Rhythm , Depressive Disorder, Treatment-Resistant , Electroencephalography , Polysomnography , Humans , Female , Male , Middle Aged , Adult , Depressive Disorder, Treatment-Resistant/physiopathology , Delta Rhythm/physiology , Aged , Sex Characteristics , Young Adult , Sleep Wake Disorders/physiopathology , Sleep/physiology
9.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717398

ABSTRACT

We use a multiscale symbolic approach to study the complex dynamics of temporal lobe refractory epilepsy employing high-resolution intracranial electroencephalogram (iEEG). We consider the basal and preictal phases and meticulously analyze the dynamics across frequency bands, focusing on high-frequency oscillations up to 240 Hz. Our results reveal significant periodicities and critical time scales within neural dynamics across frequency bands. By bandpass filtering neural signals into delta, theta, alpha, beta, gamma, and ripple high-frequency bands (HFO), each associated with specific neural processes, we examine the distinct nonlinear dynamics. Our method introduces a reliable approach to pinpoint intrinsic time lag scales τ within frequency bands of the basal and preictal signals, which are crucial for the study of refractory epilepsy. Using metrics such as permutation entropy (H), Fisher information (F), and complexity (C), we explore nonlinear patterns within iEEG signals. We reveal the intrinsic τmax that maximize complexity within each frequency band, unveiling the nonlinear subtle patterns of the temporal structures within the basal and preictal signal. Examining the H×F and C×F values allows us to identify differences in the delta band and a band between 200 and 220 Hz (HFO 6) when comparing basal and preictal signals. Differences in Fisher information in the delta and HFO 6 bands before seizures highlight their role in capturing important system dynamics. This offers new perspectives on the intricate relationship between delta oscillations and HFO waves in patients with focal epilepsy, highlighting the importance of these patterns and their potential as biomarkers.


Subject(s)
Biomarkers , Delta Rhythm , Humans , Biomarkers/metabolism , Delta Rhythm/physiology , Electroencephalography/methods , Epilepsy/physiopathology , Signal Processing, Computer-Assisted , Male , Nonlinear Dynamics , Female , Adult , Epilepsy, Temporal Lobe/physiopathology
10.
Sleep Med ; 119: 438-450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781667

ABSTRACT

BACKGROUND: During preadolescence the sleep electroencephalography undergoes massive qualitative and quantitative modifications. Despite these relevant age-related peculiarities, the specific EEG pattern of the wake-sleep transition in preadolescence has not been exhaustively described. METHODS: The aim of the present study is to characterize regional and temporal electrophysiological features of the sleep onset (SO) process in a group of 23 preadolescents (9-14 years) and to compare the topographical pattern of slow wave activity and delta/beta ratio of preadolescents with the EEG pattern of young adults. RESULTS: Results showed in preadolescence the same dynamics known for adults, but with peculiarities in the delta and beta activity, likely associated with developmental cerebral modifications: the delta power showed a widespread increase during the SO with central maxima, and the lower bins of the beta activity showed a power increase after SO. Compared to adults, preadolescents during the SO exhibited higher delta power only in the slowest bins of the band: before SO slow delta activity was higher in prefrontal, frontal and occipital areas in preadolescents, and, after SO the younger group had higher slow delta activity in occipital areas. In preadolescents delta/beta ratio was higher in more posterior areas both before and after the wake-sleep transition and, after SO, preadolescents showed also a lower delta/beta ratio in frontal areas, compared to adults. CONCLUSION: Results point to a general higher homeostatic drive for the developing areas, consistently with plastic-related maturational modifications, that physiologically occur during preadolescence.


Subject(s)
Delta Rhythm , Electroencephalography , Humans , Child , Male , Female , Adolescent , Delta Rhythm/physiology , Young Adult , Sleep Stages/physiology , Adult , Sleep/physiology , Beta Rhythm/physiology , Polysomnography , Age Factors , Brain/physiology , Wakefulness/physiology
11.
Curr Biol ; 34(12): 2570-2579.e5, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38772363

ABSTRACT

In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of the cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from the PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep, we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12 but not at P10. PZ delta was also phase locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in the PZ across these ages, supporting a role for local GABAergic inhibition in the PZ's rhythmicity. The unexpected discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-provides a new perspective on the brainstem's role in regulating sleep and promoting long-range functional connectivity in early development.


Subject(s)
Cerebral Cortex , Delta Rhythm , Medulla Oblongata , Sleep , Animals , Sleep/physiology , Rats , Delta Rhythm/physiology , Medulla Oblongata/physiology , Cerebral Cortex/physiology , Cerebral Cortex/growth & development , Male , Rats, Sprague-Dawley
12.
Brain Res Bull ; 211: 110945, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608544

ABSTRACT

Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.


Subject(s)
CA1 Region, Hippocampal , Delta Rhythm , Postoperative Cognitive Complications , Sleep Deprivation , Theta Rhythm , Animals , Sleep Deprivation/physiopathology , Sleep Deprivation/complications , Mice , Theta Rhythm/physiology , Male , Delta Rhythm/physiology , CA1 Region, Hippocampal/physiopathology , Mice, Inbred C57BL , Electroencephalography/methods , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Sleep/physiology , Aging/physiology
14.
J Am Coll Cardiol ; 83(17): 1671-1684, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38573282

ABSTRACT

BACKGROUND: Delta wave activity is a prominent feature of deep sleep, which is significantly associated with sleep quality. OBJECTIVES: The authors hypothesized that delta wave activity disruption during sleep could predict long-term cardiovascular disease (CVD) and CVD mortality risk. METHODS: The authors used a comprehensive power spectral entropy-based method to assess delta wave activity during sleep based on overnight polysomnograms in 4,058 participants in the SHHS (Sleep Heart Health Study) and 2,193 participants in the MrOS (Osteoporotic Fractures in Men Study) Sleep study. RESULTS: During 11.0 ± 2.8 years of follow-up in SHHS, 729 participants had incident CVD and 192 participants died due to CVD. During 15.5 ± 4.4 years of follow-up in MrOS, 547 participants had incident CVD, and 391 died due to CVD. In multivariable Cox regression models, lower delta wave entropy during sleep was associated with higher risk of coronary heart disease (SHHS: HR: 1.46; 95% CI: 1.02-2.06; P = 0.03; MrOS: HR: 1.79; 95% CI: 1.17-2.73; P < 0.01), CVD (SHHS: HR: 1.60; 95% CI: 1.21-2.11; P < 0.01; MrOS: HR: 1.43; 95% CI: 1.00-2.05; P = 0.05), and CVD mortality (SHHS: HR: 1.94; 95% CI: 1.18-3.18; P < 0.01; MrOS: HR: 1.66; 95% CI: 1.12-2.47; P = 0.01) after adjusting for covariates. The Shapley Additive Explanations method indicates that low delta wave entropy was more predictive of coronary heart disease, CVD, and CVD mortality risks than conventional sleep parameters. CONCLUSIONS: The results suggest that delta wave activity disruption during sleep may be a useful metric to identify those at increased risk for CVD and CVD mortality.


Subject(s)
Cardiovascular Diseases , Polysomnography , Humans , Male , Cardiovascular Diseases/mortality , Cardiovascular Diseases/physiopathology , Middle Aged , Female , Polysomnography/methods , Aged , Delta Rhythm/physiology , Follow-Up Studies , Sleep/physiology
15.
Article in English | MEDLINE | ID: mdl-38683718

ABSTRACT

Sleep is vital to our daily activity. Lack of proper sleep can impair functionality and overall health. While stress is known for its detrimental impact on sleep quality, the precise effect of pre-sleep stress on subsequent sleep structure remains unknown. This study introduced a novel approach to study the pre-sleep stress effect on sleep structure, specifically slow-wave sleep (SWS) deficiency. To achieve this, we selected forehead resting EEG immediately before and upon sleep onset to extract stress-related neurological markers through power spectra and entropy analysis. These markers include beta/delta correlation, alpha asymmetry, fuzzy entropy (FuzzEn) and spectral entropy (SpEn). Fifteen subjects were included in this study. Our results showed that subjects lacking SWS often exhibited signs of stress in EEG, such as an increased beta/delta correlation, higher alpha asymmetry, and increased FuzzEn in frontal EEG. Conversely, individuals with ample SWS displayed a weak beta/delta correlation and reduced FuzzEn. Finally, we employed several supervised learning models and found that the selected neurological markers can predict subsequent SWS deficiency. Our investigation demonstrated that the classifiers could effectively predict varying levels of slow-wave sleep (SWS) from pre-sleep EEG segments, achieving a mean balanced accuracy surpassing 0.75. The SMOTE-Tomek resampling method could improve the performance to 0.77. This study suggests that stress-related neurological markers derived from pre-sleep EEG can effectively predict SWS deficiency. Such information can be integrated with existing sleep-improving techniques to provide a personalized sleep forecasting and improvement solution.


Subject(s)
Algorithms , Electroencephalography , Entropy , Sleep, Slow-Wave , Humans , Electroencephalography/methods , Male , Female , Sleep, Slow-Wave/physiology , Adult , Young Adult , Stress, Psychological/physiopathology , Alpha Rhythm/physiology , Forecasting , Beta Rhythm/physiology , Delta Rhythm , Sleep Deprivation/physiopathology , Reproducibility of Results
16.
J Cogn Neurosci ; 36(7): 1472-1492, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38652108

ABSTRACT

Human language offers a variety of ways to create meaning, one of which is referring to entities, objects, or events in the world. One such meaning maker is understanding to whom or to what a pronoun in a discourse refers to. To understand a pronoun, the brain must access matching entities or concepts that have been encoded in memory from previous linguistic context. Models of language processing propose that internally stored linguistic concepts, accessed via exogenous cues such as phonological input of a word, are represented as (a)synchronous activities across a population of neurons active at specific frequency bands. Converging evidence suggests that delta band activity (1-3 Hz) is involved in temporal and representational integration during sentence processing. Moreover, recent advances in the neurobiology of memory suggest that recollection engages neural dynamics similar to those which occurred during memory encoding. Integrating from these two research lines, we here tested the hypothesis that neural dynamic patterns, especially in delta frequency range, underlying referential meaning representation, would be reinstated during pronoun resolution. By leveraging neural decoding techniques (i.e., representational similarity analysis) on a magnetoencephalogram data set acquired during a naturalistic story-listening task, we provide evidence that delta-band activity underlies referential meaning representation. Our findings suggest that, during spoken language comprehension, endogenous linguistic representations such as referential concepts may be proactively retrieved and represented via activation of their underlying dynamic neural patterns.


Subject(s)
Delta Rhythm , Magnetoencephalography , Humans , Male , Female , Adult , Young Adult , Delta Rhythm/physiology , Comprehension/physiology , Brain/physiology , Speech Perception/physiology , Psycholinguistics
17.
Eur Arch Otorhinolaryngol ; 281(7): 3821-3828, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641736

ABSTRACT

OBJECTIVE: The current study aimed to evaluate the efficacy of delta frequency binaural beats stimulation in treatment of individuals with tinnitus having normal hearing sensitivity. METHOD: Twenty-four individuals who reported bothersome tinnitus in the presence of clinically normal hearing were grouped into two (I and II). The group was provided with delta frequency binaural beats and II was provided with white noise stimulation (both of 20 min duration) for 30 days. Post 30 days, the re-assessment of tinnitus handicap, depression, anxiety, and quality of life parameters were performed and compared with that of pre-treatment scores. RESULTS: A considerable reduction of tinnitus handicap scores, depression and anxiety levels were observed for both the groups, except for the quality-of-life parameters. However, few of the participants showed limited or negligible improvement post-treatment. On comparison of reduction of scores observed across the groups, there was a higher reduction of scores observed for group I when compared to group II. CONCLUSION: The current study was an initial attempt to study the efficacy of binaural beats in treatment of individuals with tinnitus having normal hearing. Apart from a few individuals, the delta wave stimulation acted as a helpful tool in improving tinnitus borne distress symptoms in such patients with normal hearing. The results of the present study put forward the scope of adapting binaural beats stimulation for the treatment of individuals presenting with tinnitus having normal hearing sensitivity. This technique could be adopted into clinical practice after extensive research involving an extended treatment duration on a larger population.


Subject(s)
Quality of Life , Tinnitus , Humans , Tinnitus/therapy , Tinnitus/physiopathology , Female , Male , Adult , Middle Aged , Acoustic Stimulation/methods , Delta Rhythm/physiology , Treatment Outcome , Young Adult , Anxiety/therapy , Depression/therapy
18.
Einstein (Säo Paulo) ; 18: eAO5442, 2020. tab, graf
Article in English | LILACS | ID: biblio-1133738

ABSTRACT

ABSTRACT Objective: To verify if, by three distinct quantifiers, the measured electroencephalographic signal at rest is different from the signal measured during a word reading situation, especially considering the faster rhythms, gamma and high-gamma, as it occurs in clinical rhythms (delta to beta). Methods: A total of 96 electroencephalographic signals measured from neurologically healthy volunteers were evaluated at two moments: resting and word reading. Each signal segment was measured by three quantifiers that separately assess normalized power, percent power, and right and left hemisphere coherence. The Mann-Whitney test was used to compare the results of the quantifiers in each brain range. Results: The gamma and high-gamma rhythms presented a more distinct behavior when comparing the analyzed moments (resting and reading) than the clinical rhythms. Conclusion: This finding contributes to the scarce literature on faster rhythms, which can contain information that is normally disregarded in neurological clinical practice.


RESUMO Objetivo: Verificar se, por meio de três quantificadores distintos, o sinal eletroencefalográfico medido em repouso é diferente do sinal medido durante o processo de leitura, especialmente considerando os ritmos rápidos, gama e supergama, assim como ocorre nos ritmos clínicos delta a beta. Métodos: Foram avaliados 96 sinais eletroencefalográficos medidos em voluntários neurologicamente saudáveis, em dois momentos: repouso e leitura de palavras. Cada trecho do sinal foi mensurado por três quantificadores que medem, de maneira isolada, a potência normalizada e a potência percentual, bem como a coerência entre os hemisférios direito e esquerdo. O teste estatístico de Mann-Whitney foi usado para comparar os resultados dos quantificadores em cada faixa cerebral. Resultados: Os ritmos gama e supergama apresentaram comportamento mais distinto entre os momentos analisados (repouso e leitura) que os ritmos clinicamente analisados. Conclusão: Esse achado contribui com a escassa literatura segundo a qual os ritmos rápidos podem conter informações que normalmente são descartadas na neurologia clínica.


Subject(s)
Reading , Brain/diagnostic imaging , Electroencephalography/methods , Gamma Rhythm , Beta Rhythm , Delta Rhythm
20.
Article in English | WPRIM (Western Pacific) | ID: wpr-88558

ABSTRACT

BACKGROUND AND PURPOSE: The purpose of this study was to characterize abnormal cortical activity during sleep in restless legs syndrome (RLS) patients and to determine the effects of treatment with a dopamine agonist. Based on whole-brain electroencephalograms, we attempted to verify alterations in the functional network as well as the spectral power of neural activities during sleep in RLS patients and to determine whether the changes are reversed by treatment with pramipexole. METHODS: Twelve drug-naïve RLS patients participated in the study. Overnight polysomnography was performed before and after treatment: the first recording was made immediately prior to administering the first dose of pramipexole, and the second recording was made 12–16 weeks after commencing pramipexole administration. Sixteen age-matched healthy participants served as a control group. The spectral power and interregional phase synchrony were analyzed in 30-s epochs. The functional characteristics of the cortical network were quantified using graph-theory measures. RESULTS: The delta-band power was significantly increased and the small-world network characteristics in the delta band were disrupted in RLS patients compared to the healthy controls. These abnormalities were successfully treated by dopaminergic medication. The delta-band power was significantly correlated with the RLS severity score in the RLS patients prior to treatment. CONCLUSIONS: Our findings suggest that the spectral and functional network characteristics of neural activities during sleep become abnormal in RLS patients, and these abnormalities can be successfully treated by a dopamine agonist.


Subject(s)
Humans , Delta Rhythm , Dopamine Agonists , Dopamine , Electroencephalography , Healthy Volunteers , Polysomnography , Restless Legs Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL