Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 318
Filter
1.
IUBMB Life ; 76(6): 313-331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38116887

ABSTRACT

Although Multiple Sclerosis (MS) is primarily thought to be an autoimmune condition, its possible viral etiology must be taken into consideration. When mice are administered neurotropic viruses like mouse hepatitis virus MHV-A59, a murine coronavirus, or its isogenic recombinant strain RSA59, neuroinflammation along with demyelination are observed, which are some of the significant manifestations of MS. MHV-A59/RSA59 induced neuroinflammation is one of the best-studied experimental animal models to understand the viral-induced demyelination concurrent with axonal loss. In this experimental animal model, one of the major immune checkpoint regulators is the CD40-CD40L dyad, which helps in mediating both acute-innate, innate-adaptive, and chronic-adaptive immune responses. Hence, they are essential in reducing acute neuroinflammation and chronic progressive adaptive demyelination. While CD40 is expressed on antigen-presenting cells and endothelial cells, CD40L is expressed primarily on activated T cells and during severe inflammation on NK cells and mast cells. Experimental evidences revealed that genetic deficiency of both these proteins can lead to deleterious effects in an individual. On the other hand, interferon-stimulated genes (ISGs) possess potent antiviral properties and directly or indirectly alter acute neuroinflammation. In this review, we will discuss the role of an ISG, ISG54, and its tetratricopeptide repeat protein Ifit2; the genetic and experimental studies on the role of CD40 and CD40L in a virus-induced neuroinflammatory demyelination model.


Subject(s)
CD40 Antigens , CD40 Ligand , Demyelinating Diseases , Murine hepatitis virus , Neuroinflammatory Diseases , Animals , CD40 Ligand/metabolism , CD40 Ligand/genetics , CD40 Ligand/immunology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/virology , Demyelinating Diseases/virology , Demyelinating Diseases/pathology , Demyelinating Diseases/immunology , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Humans , CD40 Antigens/metabolism , CD40 Antigens/genetics , CD40 Antigens/immunology , Murine hepatitis virus/pathogenicity , Murine hepatitis virus/immunology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Disease Models, Animal
2.
Virol J ; 20(1): 51, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966345

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is characterized by neuroinflammation and demyelination orchestrated by activated neuroglial cells, CNS infiltrating leukocytes, and their reciprocal interactions through inflammatory signals. An inflammatory stimulus triggers inducible nitric oxide synthase (NOS2), a pro-inflammatory marker of microglia/macrophages (MG/Mφ) to catalyze sustained nitric oxide production. NOS2 during neuroinflammation, has been associated with MS disease pathology; however, studies dissecting its role in demyelination are limited. We studied the role of NOS2 in a recombinant ß-coronavirus-MHV-RSA59 induced neuroinflammation, an experimental animal model mimicking the pathological hallmarks of MS: neuroinflammatory demyelination and axonal degeneration. OBJECTIVE: Understanding the role of NOS2 in murine-ß-coronavirus-MHV-RSA59 demyelination. METHODS: Brain and spinal cords from mock and RSA59 infected 4-5-week-old MHV-free C57BL/6 mice (WT) and NOS2-/- mice were harvested at different disease phases post infection (p.i.) (day 5/6-acute, day 9/10-acute-adaptive and day 30-chronic phase) and compared for pathological outcomes. RESULTS: NOS2 was upregulated at the acute phase of RSA59-induced disease in WT mice and its deficiency resulted in severe disease and reduced survival at the acute-adaptive transition phase. Low survival in NOS2-/- mice was attributed to (i) high neuroinflammation resulting from increased accumulation of macrophages and neutrophils and (ii) Iba1 + phagocytic MG/Mφ mediated-early demyelination as observed at this phase. The phagocytic phenotype of CNS MG/Mφ was confirmed by significantly higher mRNA transcripts of phagocyte markers-CD206, TREM2, and Arg1 and double immunolabelling of Iba1 with MBP and PLP. Further, NOS2 deficiency led to exacerbated demyelination at the chronic phase as well. CONCLUSION: Taken together the results imply that the immune system failed to control the disease progression in the absence of NOS2. Thus, our observations highlight a protective role of NOS2 in murine-ß-coronavirus induced demyelination.


Subject(s)
Coronavirus Infections , Demyelinating Diseases , Murine hepatitis virus , Nitric Oxide Synthase Type II , Animals , Mice , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Membrane Glycoproteins , Mice, Inbred C57BL , Murine hepatitis virus/metabolism , Neuroinflammatory Diseases , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Receptors, Immunologic , Coronavirus Infections/pathology
3.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575975

ABSTRACT

Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.


Subject(s)
Crotonates/pharmacology , DNA Viruses/drug effects , Hydroxybutyrates/pharmacology , Leukoencephalopathy, Progressive Multifocal/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Neuroglia/drug effects , Nitriles/pharmacology , Toluidines/pharmacology , Astrocytes/drug effects , Astrocytes/virology , Cell Line , Choroid Plexus/drug effects , Choroid Plexus/virology , DNA Viruses/pathogenicity , Demyelinating Diseases/drug therapy , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Epithelial Cells/drug effects , Epithelial Cells/virology , Extracellular Vesicles/drug effects , Extracellular Vesicles/virology , Humans , Immunologic Factors/adverse effects , Immunologic Factors/therapeutic use , JC Virus/drug effects , JC Virus/pathogenicity , Leukoencephalopathy, Progressive Multifocal/chemically induced , Leukoencephalopathy, Progressive Multifocal/pathology , Leukoencephalopathy, Progressive Multifocal/virology , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/virology , Neuroglia/virology , Virus Diseases/drug therapy , Virus Diseases/genetics , Virus Diseases/virology
4.
Brain Pathol ; 31(6): e13000, 2021 11.
Article in English | MEDLINE | ID: mdl-34231271

ABSTRACT

Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV-induced demyelinating disease (TMEV-IDD), depending on the used mouse strain. The aim of the present study was to compare initial transcriptomic changes occurring in the brain of TMEV-infected SJL (TMEV-IDD susceptible) and C57BL/6 (TMEV-IDD resistant) mice. Animals were infected with TMEV and sacrificed 4, 7, or 14 days post infection. RNA was isolated from brain tissue and analyzed by whole-transcriptome sequencing. Selected differences were confirmed on a protein level by immunohistochemistry. In mock-infected SJL and C57BL/6 mice, >200 differentially expressed genes (DEGs) were detected. Following TMEV-infection, the number of DEGs increased to >700. Infected C57BL/6 mice showed a higher expression of transcripts related to antigen presentation via major histocompatibility complex (MHC) I, innate antiviral immune responses and cytotoxicity, compared with infected SJL animals. Expression of many of those genes was weaker or delayed in SJL mice, associated with a failure of viral clearance in this mouse strain. SJL mice showed prolonged elevation of MHC II and chemotactic genes compared with C57BL/6 mice, which presumably facilitates the induction of chronic demyelinating disease. In addition, elevated expression of several genes associated with immunomodulatory or -suppressive functions was observed in SJL mice. The exploratory study confirms previous observations in the model and provides an extensive list of new immunologic parameters potentially contributing to different outcomes of viral encephalitis in two mouse strains.


Subject(s)
Brain/metabolism , Cardiovirus Infections/metabolism , Demyelinating Diseases/metabolism , Gene Expression Profiling , Immunity, Innate/physiology , Animals , Brain/pathology , Brain/virology , Cardiovirus Infections/genetics , Cardiovirus Infections/pathology , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Disease Models, Animal , Mice , Theilovirus
5.
J Neurovirol ; 27(4): 656-661, 2021 08.
Article in English | MEDLINE | ID: mdl-34101087

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) commonly results in a respiratory illness in symptomatic patients; however, those critically ill can develop a leukoencephalopathy. We describe two patients who had novel subacute MRI findings in the context of coronavirus disease 2019 (COVID-19) leukoencephalopathy, which we hypothesize could implicate a potent small-vessel vasculitis, ischemic demyelination and the presence of prolonged ischemia. Recent evidence of the direct neuroinvasiness of SARS-CoV-2 leading to ischemia and vascular damage supports this hypothesis.


Subject(s)
COVID-19/complications , Demyelinating Diseases/pathology , Leukoencephalopathies/pathology , Leukoencephalopathies/virology , Vasculitis, Central Nervous System/pathology , Demyelinating Diseases/virology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , SARS-CoV-2 , Vasculitis, Central Nervous System/virology
6.
Acta Neurol Belg ; 121(4): 859-866, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33934300

ABSTRACT

The coronavirus disease of 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2), that already appeared as a global pandemic. Presentation of the disease often includes upper respiratory symptoms like dry cough, dyspnea, chest pain, and rhinorrhea that can develop to respiratory failure, needing intubation. Furthermore, the occurrence of acute and subacute neurological manifestations such as stroke, encephalitis, headache, and seizures are frequently stated in patients with COVID-19. One of the reported neurological complications of severe COVID-19 is the demolition of the myelin sheath. Indeed, the complex immunological dysfunction provides a substrate for the development of demyelination. Nevertheless, few published reports in the literature describe demyelination in subjects with COVID-19. In this short narrative review, we discuss probable pathological mechanisms that may trigger demyelination in patients with SARS-CoV-2 infection and summarize the clinical evidence, confirming SARS-CoV-2 condition as a risk factor for the destruction of myelin.


Subject(s)
COVID-19/complications , COVID-19/immunology , Demyelinating Diseases/virology , Humans , SARS-CoV-2
7.
Ann Clin Transl Neurol ; 8(2): 456-470, 2021 02.
Article in English | MEDLINE | ID: mdl-33440071

ABSTRACT

OBJECTIVE: To determine whether animals with Japanese macaque encephalomyelitis (JME), a spontaneous demyelinating disease similar to multiple sclerosis (MS), harbor myelin-specific T cells in their central nervous system (CNS) and periphery. METHODS: Mononuclear cells (MNCs) from CNS lesions, cervical lymph nodes (LNs) and peripheral blood of Japanese macaques (JMs) with JME, and cervical LN and blood MNCs from healthy controls or animals with non-JME conditions were analyzed for the presence of myelin-specific T cells and changes in interleukin 17 (IL-17) and interferon gamma (IFNγ) expression. RESULTS: Demyelinating JME lesions contained CD4+ T cells and CD8+ T cells specific to myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and/or proteolipid protein (PLP). CD8+ T-cell responses were absent in JME peripheral blood, and in age- and sex-matched controls. However, CD4+ Th1 and Th17 responses were detected in JME peripheral blood versus controls. Cervical LN MNCs from eight of nine JME animals had CD3+ T cells specific for MOG, MBP, and PLP that were not detected in controls. Mapping myelin epitopes revealed a heterogeneity in responses among JME animals. Comparison of myelin antigen sequences with those of JM rhadinovirus (JMRV), which is found in JME lesions, identified six viral open reading frames (ORFs) with similarities to myelin antigen sequences. Overlapping peptides to these JMRV ORFs did not induce IFNγ responses. INTERPRETATIONS: JME possesses an immune-mediated component that involves both CD4+ and CD8+ T cells specific for myelin antigens. JME may shed new light on inflammatory demyelinating disease pathogenesis linked to gamma-herpesvirus infection.


Subject(s)
Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/pathology , Encephalomyelitis/diagnostic imaging , Encephalomyelitis/pathology , Myelin Sheath/immunology , T-Lymphocytes/immunology , Animals , Autoimmune Diseases/immunology , Demyelinating Diseases/virology , Encephalomyelitis/virology , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes/genetics , Epitopes/immunology , Female , Herpesviridae Infections/immunology , Interferon-gamma/analysis , Interleukin-17/analysis , Macaca fuscata , Male , Monkey Diseases , Myelin Basic Protein/genetics , Myelin Basic Protein/immunology , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/immunology , Myelin Sheath/pathology , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/immunology , Rhadinovirus/genetics , Rhadinovirus/immunology
8.
J Virol ; 95(4)2021 01 28.
Article in English | MEDLINE | ID: mdl-33208451

ABSTRACT

We recently reported the role of type 2 innate lymphoid cells (ILC2s) in central nervous system (CNS) demyelination using a model of CNS demyelination involving recombinant herpes simplex virus 1 (HSV-1) that constitutively expresses mouse interleukin 2 (HSV-IL-2). In this investigation, we studied how ILC2s respond to HSV-IL-2 at the cellular level using cytokine and gene expression profiling. ILC2s infected with HSV-IL-2 expressed higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, IL-6, IL-13, IP-10, MIP-2, and RANTES, which include proinflammatory cytokines, than did those infected with parental control virus. In contrast, TH2 cytokines IL-4 and IL-9, which are typically expressed by ILC2s, were not induced upon HSV-IL-2 infection. Transcriptome sequencing (RNA-seq) analysis of HSV-IL-2 infected ILC2s showed significant upregulation of over 350 genes and downregulation of 157 genes compared with parental virus-infected ILC2s. Gene Ontology (GO) term analysis indicated that genes related to "mitosis" and "inflammatory response" were among the upregulated genes, suggesting that HSV-IL-2 infection drives the excessive proliferation and atypical inflammatory response of ILC2s. This change in ILC2 activation state could underlie the pathology of demyelinating diseases.IMPORTANCE Innate lymphocytes have plasticity and can change functionality; type 2 innate lymphoid cells (ILC2s) can convert to ILC1 or ILC3 cells or change their activation state to produce IL-17 or IL-10 depending on environmental cues. In this study, we investigated the gene and cytokine profiles of ILC2s, which play a major role in HSV-IL-2-induced CNS demyelination. ILC2s infected with HSV-IL-2 displayed a massive remodeling of cellular state. Additionally, ILC2s infected with HSV-IL-2 differed from those infected with parental HSV in cellular and viral gene expression profiles and in cytokine/chemokine induction, and they displayed enhanced activation and proinflammatory responses. These changes in ILC2 activation state could underlie the pathology of demyelinating diseases. These results also highlight the possible importance of pathogens as environmental cues to modify innate lymphocyte functionalities.


Subject(s)
Demyelinating Diseases , Herpesvirus 1, Human/physiology , Interleukin-2/metabolism , Lymphocytes , Transcriptome/immunology , Animals , Cells, Cultured , Cytokines/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/virology , Gene Expression , Lymphocytes/metabolism , Lymphocytes/virology , Mice , Mice, Inbred C57BL , Rabbits
10.
Int J Mol Sci ; 21(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086489

ABSTRACT

The infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces a T cell-mediated demyelinating disease. This system has been studied as a relevant infection model for multiple sclerosis (MS). Therefore, defining the type of T cell responses and their functions is critically important for understanding the relevant pathogenic mechanisms. In this study, we adoptively transferred naive VP2-specific TCR-Tg CD4+ T cells into syngeneic susceptible SJL mice and monitored the development of the disease and the activation and proliferation of CD4+ T cells during the early stages of viral infection. The preexisting VP2-specific naive CD4+ T cells promoted the pathogenesis of the disease in a dose-dependent manner. The transferred VP2-specific CD4+ T cells proliferated rapidly in the CNS starting at 2-3 dpi. High levels of FoxP3+CD4+ T cells were found in the CNS early in viral infection (3 dpi) and persisted throughout the infection. Activated VP2-specific FoxP3+CD4+ T cells inhibited the production of IFN-γ, but not IL-17, via the same VP2-specific CD4+ T cells without interfering in proliferation. Thus, the early presence of regulatory T cells in the CNS with viral infection may favor the induction of pathogenic Th17 cells over protective Th1 cells in susceptible mice, thereby establishing the pathogenesis of virus-induced demyelinating disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cardiovirus Infections/immunology , Cardiovirus Infections/virology , Central Nervous System/immunology , Central Nervous System/virology , Theilovirus/physiology , Adoptive Transfer , Animals , Cell Proliferation , Central Nervous System/pathology , Cytokines/biosynthesis , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Forkhead Transcription Factors/metabolism , Interferon-gamma/metabolism , Interleukin-17/biosynthesis , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , Species Specificity
12.
Proc Natl Acad Sci U S A ; 117(39): 24464-24474, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32929007

ABSTRACT

Microglia are considered both pathogenic and protective during recovery from demyelination, but their precise role remains ill defined. Here, using an inhibitor of colony stimulating factor 1 receptor (CSF1R), PLX5622, and mice infected with a neurotropic coronavirus (mouse hepatitis virus [MHV], strain JHMV), we show that depletion of microglia during the time of JHMV clearance resulted in impaired myelin repair and prolonged clinical disease without affecting the kinetics of virus clearance. Microglia were required only during the early stages of remyelination. Notably, large deposits of extracellular vesiculated myelin and cellular debris were detected in the spinal cords of PLX5622-treated and not control mice, which correlated with decreased numbers of oligodendrocytes in demyelinating lesions in drug-treated mice. Furthermore, gene expression analyses demonstrated differential expression of genes involved in myelin debris clearance, lipid and cholesterol recycling, and promotion of oligodendrocyte function. The results also demonstrate that microglial functions affected by depletion could not be compensated by infiltrating macrophages. Together, these results demonstrate that microglia play key roles in debris clearance and in the initiation of remyelination following infection with a neurotropic coronavirus but are not necessary during later stages of remyelination.


Subject(s)
Coronavirus Infections/pathology , Demyelinating Diseases/pathology , Microglia/pathology , Remyelination , Animals , Coronavirus Infections/immunology , Coronavirus Infections/virology , Demyelinating Diseases/immunology , Demyelinating Diseases/virology , Disease Models, Animal , Female , Gene Expression Regulation , Immunity, Cellular/drug effects , Inflammation , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Murine hepatitis virus/drug effects , Murine hepatitis virus/physiology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Oligodendroglia/pathology , Organic Chemicals/administration & dosage , Organic Chemicals/adverse effects , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Remyelination/genetics , Spinal Cord/immunology , Spinal Cord/pathology
13.
Int J Mol Sci ; 21(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708697

ABSTRACT

Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous systems. After primary infection in epithelial cells, HSV-1 spreads retrogradely to the peripheral nervous system (PNS), where it establishes a latent infection in the trigeminal ganglia (TG). The virus can reactivate from the latent state, traveling anterogradely along the axon and replicating in the local surrounding tissue. Occasionally, HSV-1 may spread trans-synaptically from the TG to the brainstem, from where it may disseminate to higher areas of the central nervous system (CNS). It is not completely understood how HSV-1 reaches the CNS, although the most accepted idea is retrograde transport through the trigeminal or olfactory tracts. Once in the CNS, HSV-1 may induce demyelination, either as a direct trigger or as a risk factor, modulating processes such as remyelination, regulation of endogenous retroviruses, or molecular mimicry. In this review, we describe the current knowledge about the involvement of HSV-1 in demyelination, describing the pathways used by this herpesvirus to spread throughout the CNS and discussing the data that suggest its implication in demyelinating processes.


Subject(s)
Central Nervous System/virology , Demyelinating Diseases/virology , Herpes Simplex/complications , Herpesvirus 1, Human/physiology , Animals , Central Nervous System/pathology , Demyelinating Diseases/etiology , Demyelinating Diseases/pathology , Herpes Simplex/pathology , Herpes Simplex/virology , Host-Pathogen Interactions , Humans
14.
Mult Scler Relat Disord ; 44: 102324, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32615528

ABSTRACT

After the novel coronavirus disease outbreak first began in Wuhan, China, in December 2019, the viral epidemic has quickly spread across the world, and it is now a major public health concern. Here we present a 21-year-old male with encephalomyelitis following intermittent vomiting and malaise for 4 days. He reported upper respiratory signs and symptoms 2 weeks before this presentation. Two cerebrospinal fluid (CSF) analyses were notable for mononuclear pleocytosis, elevated protein (more than 100 mg/dl), and hypoglycorrhachia. Brain Magnetic Resonance Imaging (MRI) showed bilateral posterior internal capsule lesions extending to the ventral portion of the pons and a marbled splenium hyperintensity pattern. Cervical and thoracic MRI showed longitudinally extensive transverse myelitis (LETM), none of which were enhanced with gadolinium. Both the AQP4 and MOG antibodies were negative. Spiral chest computed tomography (CT) scan confirmed to COVID-19 as did the high IgG level against coronavirus, but the oropharyngeal swabs were negative. Neurological manifestations of COVID-19 have not been adequately studied. Some COVID-19 patients, especially those suffering from a severe disease, are highly likely to have central nervous system (CNS) manifestations. Our case is a post-COVID-19 demyelinating event in the CNS.


Subject(s)
COVID-19/complications , Demyelinating Diseases/virology , Encephalomyelitis/virology , Adult , Demyelinating Diseases/diagnostic imaging , Encephalomyelitis/diagnostic imaging , Humans , Lung/diagnostic imaging , Male , Young Adult
15.
J Vis Exp ; (159)2020 05 19.
Article in English | MEDLINE | ID: mdl-32510499

ABSTRACT

The central nervous system (CNS) is comprised of the brain and spinal cord and is enveloped by the meninges, membranous layers serving as a barrier between the periphery and the CNS. The CNS is an immunologically specialized site, and in steady state conditions, immune privilege is most evident in the CNS parenchyma. In contrast, the meninges harbor a diverse array of resident cells, including innate and adaptive immune cells. During inflammatory conditions triggered by CNS injury, autoimmunity, infection, or even neurodegeneration, peripherally derived immune cells may enter the parenchyma and take up residence within the meninges. These cells are thought to perform both beneficial and detrimental actions during CNS disease pathogenesis. Despite this knowledge, the meninges are often overlooked when analyzing the CNS compartment, because conventional CNS tissue extraction methods omit the meningeal layers. This protocol presents two distinct methods for the rapid isolation of murine CNS tissues (i.e., brain, spinal cord, and meninges) that are suitable for downstream analysis via single-cell techniques, immunohistochemistry, and in situ hybridization methods. The described methods provide a comprehensive analysis of CNS tissues, ideal for assessing the phenotype, function, and localization of cells occupying the CNS compartment under homeostatic conditions and during disease pathogenesis.


Subject(s)
Central Nervous System/cytology , Central Nervous System/immunology , Meninges/cytology , Meninges/immunology , Animals , Brain/cytology , Brain/immunology , Cell Aggregation , Cryopreservation , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Female , Leukocyte Common Antigens/metabolism , Mice , Paraffin Embedding , Spinal Cord/cytology , Spinal Cord/immunology , Theilovirus/physiology , Tissue Fixation
16.
J Neurol ; 267(11): 3154-3156, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32564153

ABSTRACT

The association between coronaviruses and central nervous system (CNS) demyelinating lesions has been previously shown. However, no case has been described of an association between the novel coronavirus (SARS-COV-2) and CNS demyelinating disease so far. SARS-COV-2 was previously detected in cerebrospinal fluid (CSF) sample of a patient with encephalitis. However, the virus identity was not confirmed by deep sequencing of SARS-COV-2 detected in the CSF. Here, we report a case of a patient with mild respiratory symptoms and neurological manifestations compatible with clinically isolated syndrome. The viral genome of SARS-COV-2 was detected and sequenced in CSF with 99.74-100% similarity between the patient virus and worldwide sequences. This report suggests a possible association of SARS-COV-2 infection with neurological symptoms of demyelinating disease, even in the absence of relevant upper respiratory tract infection signs.


Subject(s)
Coronavirus Infections/cerebrospinal fluid , Coronavirus Infections/complications , Demyelinating Diseases/cerebrospinal fluid , Demyelinating Diseases/virology , Pneumonia, Viral/cerebrospinal fluid , Pneumonia, Viral/complications , Adult , Betacoronavirus , COVID-19 , Female , Humans , Pandemics , SARS-CoV-2
20.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31597775

ABSTRACT

Demyelinating central nervous system (CNS) disorders like multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM) have been difficult to study and treat due to the lack of understanding of their etiology. Numerous cases point to the link between herpes simplex virus (HSV) infection and multifocal CNS demyelination in humans; however, convincing evidence from animal models has been missing. In this work, we found that HSV-1 infection of the cotton rat Sigmodon hispidus via a common route (lip abrasion) can cause multifocal CNS demyelination and inflammation. Remyelination occurred shortly after demyelination in HSV-1-infected cotton rats but could be incomplete, resulting in "scars," further supporting an association between HSV-1 infection and multifocal demyelinating disorders. Virus was detected sequentially in the lip, trigeminal ganglia, and brain of infected animals. Brain pathology developed primarily on the ipsilateral side of the brain stem, in the cerebellum, and contralateral side of the forebrain/midbrain, suggesting that the changes may ascend along the trigeminal lemniscus pathway. Neurologic defects occasionally detected in infected animals (e.g., defective whisker touch and blink responses and compromised balance) could be representative of the brain stem/cerebellum dysfunction. Immunization of cotton rats with a split HSV-1 vaccine protected animals against viral replication and brain pathology, suggesting that vaccination against HSV-1 may protect against demyelinating disorders.IMPORTANCE Our work demonstrates for the first time a direct association between infection with herpes simplex virus 1, a ubiquitous human pathogen generally associated with facial cold sores, and multifocal brain demyelination in an otherwise normal host, the cotton rat Sigmodon hispidus For a long time, demyelinating diseases were considered to be autoimmune in nature and were studied by indirect methods, such as immunizing animals with myelin components or feeding them toxic substances that induce demyelination. Treatment against demyelinating diseases has been elusive, partially because of their unknown etiology. This work provides the first experimental evidence for the role of HSV-1 as the etiologic agent of multifocal brain demyelination in a normal host and suggests that vaccination against HSV-1 can help to combat demyelinating disorders.


Subject(s)
Demyelinating Diseases/prevention & control , Encephalitis/prevention & control , Herpes Simplex Virus Vaccines/administration & dosage , Herpes Simplex/prevention & control , Herpesvirus 1, Human/drug effects , Animals , Brain Stem/drug effects , Brain Stem/immunology , Brain Stem/pathology , Brain Stem/virology , Cerebellum/drug effects , Cerebellum/immunology , Cerebellum/pathology , Cerebellum/virology , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Disease Models, Animal , Encephalitis/immunology , Encephalitis/pathology , Encephalitis/virology , Female , Herpes Simplex/immunology , Herpes Simplex/pathology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Humans , Male , Prosencephalon/drug effects , Prosencephalon/immunology , Prosencephalon/pathology , Prosencephalon/virology , Sigmodontinae , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/immunology , Trigeminal Ganglion/pathology , Trigeminal Ganglion/virology , Vaccination , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...