Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.417
Filter
1.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731451

ABSTRACT

A novel second-generation blue fluorescent polyamidoamine dendrimer peripherally modified with sixteen 4-N,N-dimethylaninoethyloxy-1,8-naphthalimide units was synthesized. Its basic photophysical characteristics were investigated in organic solvents of different polarity. It was found that in these solvents, the dendrimer is colorless and emitted blue fluorescence with different intensities depending on their polarity. The effect of the pH of the medium on the fluorescence intensity was investigated and it was found that in the acidic medium, the fluorescence is intense and is quenched in the alkaline medium. The ability of the dendrimer to detect metal ions (Pb2+, Zn2+, Mg2+, Sn2+, Ba2+, Ni2+, Sn2+, Mn2+, Co2+, Fe3+, and Al3+) was also investigated, and it was found that in the presence of Fe3+, the fluorescent intensity was amplified more than 66 times. The antimicrobial activity of the new compound has been tested in vitro against Gram-positive B. cereus and Gram-negative P. aeruginosa. The tests were performed in the dark and after irradiation with visible light. The antimicrobial activity of the compound enhanced after light irradiation and B. cereus was found slightly more sensitive than P. aeruginosa. The increase in antimicrobial activity after light irradiation is due to the generation of singlet oxygen particles, which attack bacterial cell membranes.


Subject(s)
Dendrimers , Microbial Sensitivity Tests , Naphthalimides , Polyamines , Naphthalimides/chemistry , Naphthalimides/pharmacology , Dendrimers/chemistry , Dendrimers/pharmacology , Polyamines/chemistry , Polyamines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fluorescence , Pseudomonas aeruginosa/drug effects , Hydrogen-Ion Concentration , Bacillus cereus/drug effects , Light , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence
2.
Anal Chim Acta ; 1307: 342630, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719407

ABSTRACT

BACKGROUND: MicroRNAs, as oncogenes or tumor suppressors, enable to up or down-regulate gene expression during tumorigenesis. The detection of miRNAs with high sensitivity is crucial for the early diagnosis of cancer. Inspired by biological ion channels, artificial nanochannels are considered as an excellent biosensing platform with relatively high sensitivity and stability. The current nanochannel biosensors are mainly based on homogeneous membranes, and their monotonous structure and functionality limit its further development. Therefore, it is necessary to develop a heterostructured nanochannel with high ionic current rectification to achieve highly sensitive miRNA detection. RESULTS: In this work, an asymmetric heterostructured nanochannel constructed from dendrimer-gold nanoparticles network and anodic aluminum oxide are designed through an interfacial super-assembly method, which can regulate ion transport and achieve sensitive detection of target miRNA. The symmetry breaking is demonstrated to endow the heterostructured nanochannels with an outstanding ionic current rectification performance. Arising from the change of surface charges in the nanochannels triggered by DNA cascade signal amplification in solution, the proposed heterogeneous nanochannels exhibits excellent DNA-regulated ionic current response. Relying on the nucleic acid's hybridization and configuration transformation, the target miRNA-122 associated with liver cancer can be indirectly quantified with a detection limit of 1 fM and a wide dynamic range from 1 fM to 10 pM. The correlation fitting coefficient R2 of the calibration curve can reach to 0.996. The experimental results show that the method has a good recovery rate (98%-105 %) in synthetic samples. SIGNIFICANCE: This study reveals how the surface charge density of nanochannels regulate the ionic current response in the heterostructured nanochannels. The designed heterogeneous nanochannels not only possess high ionic current rectification property, but also enable to induce superior transport performance by the variation of surface chemistry. The proposed biosensor is promising for applications in early diagnosis of cancers, life science research, and single-entity electrochemical detection.


Subject(s)
Aluminum Oxide , Biosensing Techniques , Dendrimers , Gold , MicroRNAs , MicroRNAs/analysis , Gold/chemistry , Dendrimers/chemistry , Aluminum Oxide/chemistry , Humans , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Limit of Detection , Electrochemical Techniques/methods , Nanostructures/chemistry
3.
Colloids Surf B Biointerfaces ; 238: 113909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599076

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy, which is characterized by high incidence and aggression with poor diagnosis and limited therapeutic opportunity. The innovative strategy for achieving precise NPC active-targeting drug delivery has emerged as a prominent focus in clinical research. Here, a minimalist cancer cell membrane (CCM) shielded biomimetic nanoparticle (NP) was designed for NPC active-targeting therapy. Chemotherapeutant model drug doxorubicin (DOX) was loaded in polyamidoamine (PAMAM) dendrimer. The PAMAM/DOX (PD) NP was further shielded by human CNE-2 NPC CCM. Characterization results verified that the biomimetic PAMAM/DOX@CCM (abbreviated as PDC) NPs had satisfactory physical properties with high DOX-loading and excellent stability. Cell experiments demonstrated that the CNE-2 membrane-cloaked PDC NPs presented powerful cellular uptake in the sourcing cells by homologous targeting and adhesive interaction. Further in vivo results confirmed that this biomimetic nanoplatform had extended circulation and remarkable tumor-targeting capability, and the PDC NPs effectively suppressed the progression of CNE-2 tumors by systemic administration. This CCM-shielded biomimetic NP displayed a minimalist paradigm nanoplatform for precise NPC therapy, and the strategy of CCM-shielded biomimetic drug delivery system (DDS) has great potential for extensive cancer active-targeting therapy.


Subject(s)
Biomimetic Materials , Cell Membrane , Doxorubicin , Nanoparticles , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Nanoparticles/chemistry , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/drug effects , Animals , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Dendrimers/chemistry , Mice , Cell Line, Tumor , Drug Delivery Systems , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Cell Proliferation/drug effects , Mice, Nude , Mice, Inbred BALB C , Biomimetics , Particle Size
4.
Biomacromolecules ; 25(5): 2780-2791, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38613487

ABSTRACT

Linear-dendritic block copolymers assemble in solution due to differences in the solubility or charge properties of the blocks. The monodispersity and multivalency of the dendritic block provide unparalleled control for the design of drug delivery systems when incorporating poly(ethylene glycol) (PEG) as a linear block. An accelerated synthesis of PEG-dendritic block copolymers based on the click and green chemistry pillars is described. The tandem composed of the thermal azide-alkyne cycloaddition with internal alkynes and azide substitution is revealed as a flexible, reliable, atom-economical, and user-friendly strategy for the synthesis and functionalization of biodegradable (polyester) PEG-dendritic block copolymers. The high orthogonality of the sequence has been exploited for the preparation of heterolayered copolymers with terminal alkenes and alkynes, which are amenable for subsequent functionalization by thiol-ene and thiol-yne click reactions. Copolymers with tunable solubility and charge were so obtained for the preparation of various types of nanoassemblies with promising applications in drug delivery.


Subject(s)
Alkynes , Azides , Click Chemistry , Cycloaddition Reaction , Drug Delivery Systems , Polyethylene Glycols , Alkynes/chemistry , Polyethylene Glycols/chemistry , Azides/chemistry , Drug Delivery Systems/methods , Click Chemistry/methods , Dendrimers/chemistry , Dendrimers/chemical synthesis , Polymers/chemistry
5.
Int J Biol Macromol ; 268(Pt 1): 131590, 2024 May.
Article in English | MEDLINE | ID: mdl-38621563

ABSTRACT

This work aimed to prepare a new system for daunorubicin (DNR) delivery to improve therapeutic efficiency and decrease unwanted side effects. Typically, at first, a carboxylic acid functional group containing metal-organic framework (UiO-66-COOH) was synthesized in a simple way. Then, a third generation of citric acid dendrimer (CAD G3) was grown on it (UiO-66-COOH-CAD G3). Finally, the system was functionalized with pre-modified hyaluronic acid (UiO-66-COOH-CAD-HA). SEM analysis displayed that the synthesized particles have a spherical shape with an average particle size ranging from 260 to 280 nm. An increase in hydrodynamic diameter from 223 nm for UiO-66-COOH to 481 nm for UiO-66-COOH-CAD-HA is a sign of success in the performed reactions. Also, the average pore size was calculated at about 4.04 nm. The DNR loading efficiency of UiO-66-COOH-CAD-HA was evaluated at ∼74 % (DNR@UiO-66-COOH-CAD-HA). It was observed that the drug release rate at a lower pH is more than higher pH. The maximum hemolysis of <3 % means that the UiO-66-COOH-CAD-HA is hemocompatible. The use of DNR-loaded UiO-66-COOH-CAD-HA led to cell-killing of 77.9 % for MDA-MB 231. These results specified the great potential of UiO-66-COOH-CAD-HA for tumor drug delivery, so it could be proposed as a new carrier for anticancer agents to minimize adverse effects and improve therapeutic efficacy.


Subject(s)
Citric Acid , Daunorubicin , Dendrimers , Drug Carriers , Drug Liberation , Hyaluronic Acid , Daunorubicin/chemistry , Daunorubicin/pharmacology , Hyaluronic Acid/chemistry , Citric Acid/chemistry , Dendrimers/chemistry , Humans , Drug Carriers/chemistry , Metal-Organic Frameworks/chemistry , Hemolysis/drug effects , Biocompatible Materials/chemistry , Drug Delivery Systems , Particle Size , Cell Line, Tumor , Animals , Hydrogen-Ion Concentration , Phthalic Acids
6.
J Chem Inf Model ; 64(8): 3430-3442, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38588472

ABSTRACT

Peptide dendrimers are a type of branched, symmetric, and topologically well-defined molecule that have already been used as delivery systems for nucleic acid transfection. Several of the most promising sequences showed high efficiency in many key steps of transfection, namely, binding siRNA, entering cells, and evading the endosome. However, small changes to the peptide dendrimers, such as in the hydrophobic core, the amino acid chirality, or the total available charges, led to significantly different experimental results with unclear mechanistic insights. In this work, we built a computational model of several of those peptide dendrimers (MH18, MH13, and MH47) and some of their variants to study the molecular details of the structure and function of these molecules. We performed CpHMD simulations in the aqueous phase and in interaction with a lipid bilayer to assess how conformation and protonation are affected by pH in different environments. We found that while the different peptide dendrimer sequences lead to no substantial structural differences in the aqueous phase, the total charge and, more importantly, the total charge density are key for the capacity of the dendrimer to interact and destabilize the membrane. These dendrimers become highly charged when the pH changes from 7.5 to 4.5, and the presence of a high charge density, which is decreased for MH47 that has four fewer titratable lysines, is essential to trigger membrane destabilization. These findings are in excellent agreement with the experimental data and help us to understand the high efficiency of some dendrimers and why the dendrimer MH47 is unable to complete the transfection process. This evidence provides further understanding of the mode of action of these peptide dendrimers and will be pivotal for the future design of new sequences with improved transfection capabilities.


Subject(s)
Dendrimers , Endosomes , Peptides , Dendrimers/chemistry , Endosomes/metabolism , Peptides/chemistry , Peptides/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Hydrogen-Ion Concentration , Static Electricity , Models, Molecular
7.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675623

ABSTRACT

Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Copper , Dendrimers , Pyridines , Schiff Bases , Copper/chemistry , Dendrimers/chemistry , Humans , Pyridines/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Schiff Bases/chemistry , Imines/chemistry , Neoplasms/drug therapy , Animals , Chelating Agents/chemistry , Chelating Agents/pharmacology
8.
Biosens Bioelectron ; 257: 116312, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657380

ABSTRACT

Pre-eclampsia (PE) is a life-threatening complication that occurs during pregnancy, affecting a large number of pregnant women and newborns worldwide. Rapid, on-site and affordable screening of PE at an early stage is necessary to ensure timely treatment and minimize both maternal and neonatal morbidity and mortality rates. Placental growth factor (PlGF) is an angiogenic blood biomarker used for PE diagnosis. Herein, we report the plasmonic fiber optic absorbance biosensor (P-FAB) strategy for detecting PlGF at femtomolar concentration using polymethyl methacrylate (PMMA) based U-bent polymeric optical fiber (POF) sensor probes. A novel poly(amidoamine) (PAMAM) dendrimer based PMMA surface modification is established to obtain a greater immobilization of the bioreceptors compared to a linear molecule like hexamethylenediamine (HMDA). Plasmonic sandwich immunoassay was realized by immobilizing the mouse anti-PlGF (3H1) on the U-bent POF sensor probe surface and gold nanoparticles (AuNP) labels conjugated with mouse anti-PlGF (6H9). The POF sensor probes could measure PlGF within 30 min using the P-FAB strategy. The limit-of-detection (LoD) was found to be 0.19 pg/mL and 0.57 pg/mL in phosphate-buffered saline and 10× diluted serum, respectively. The clinical sample testing, with eleven positive and eleven negative preeclamptic pregnancy samples, successfully confirmed the accuracy, reliability, specificity, and sensitivity of the P-FAB based POF sensor platform, thereby paving the way for cost-effective technology for PlGF detection and its potential for pre-eclampsia diagnosis.


Subject(s)
Biosensing Techniques , Dendrimers , Gold , Metal Nanoparticles , Optical Fibers , Placenta Growth Factor , Pre-Eclampsia , Pre-Eclampsia/diagnosis , Pre-Eclampsia/blood , Pregnancy , Female , Humans , Dendrimers/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Placenta Growth Factor/blood , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Immunoassay/methods , Immunoassay/instrumentation , Fiber Optic Technology/instrumentation , Animals , Mice , Polymethyl Methacrylate/chemistry
9.
Colloids Surf B Biointerfaces ; 238: 113906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615388

ABSTRACT

Combination chemotherapy has been recognized as a more powerful strategy for tumor treatment rather than the single chemotherapy. However, the interactive mechanism of the two hydrophobic chemotherapeutic drugs has not been explored by now. Aiming for a better synergistic effect, such interactive mechanism was investigated in the present work, by designing CPT@DOX-DPUTEA-PEG nanomedicine with encapsulated camptothecin (CPT) and conjugated doxorubicin (DOX). The synergistic controlled drug release effect was found for the two drugs loaded on the different sites of the dendritic polyurethane core. Synergism was achieved on the HepG2 cells with a combination index (CI) of 0.58 in the in vitro cellular experiments. The results demonstrated the promising application of the unimolecular micelles-based nanomedicine with independently loading of two hydrophobic chemotherapeutic drugs.


Subject(s)
Camptothecin , Doxorubicin , Drug Liberation , Micelles , Prodrugs , Doxorubicin/pharmacology , Doxorubicin/chemistry , Camptothecin/pharmacology , Camptothecin/chemistry , Humans , Hydrogen-Ion Concentration , Hep G2 Cells , Prodrugs/chemistry , Prodrugs/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Polymers/chemistry , Cell Survival/drug effects , Dendrimers/chemistry , Drug Delivery Systems , Drug Synergism , Polyethylene Glycols/chemistry
10.
J Oleo Sci ; 73(4): 547-562, 2024.
Article in English | MEDLINE | ID: mdl-38556288

ABSTRACT

Physicochemical investigations on the inclusion of anionic polyamidoaminesuccinamic acid dendrimer, generation 5 (PAMAM-SA, G5) with positively charged hybrid vesicles (HCV), prepared using soylecithin, ion pair amphiphile (IPA), cholesterol and dihexadecyldimethylammonium bromide, were investigated by dynamic light scattering, transmission electron/atomic force microscopy (TEM/AFM), differential scanning calorimetry, fluorescence spectroscopy and surface pressure-time isotherm studies. Adsorption of dendrimer onto vesicle surface and subsequent bilayer disruption strongly depends on the bilayer composition and dendrimer concentration. Change in the zeta potential value with increasing dendrimer concentration suggests the dendrimer-vesicle interaction to be electrostatic in nature. AFM studies also confirm the adsorption of dendrimer as well as hole formation in the bilayer. Impact of the inclusion of dendrimer into the bilayer were further investigated through differential scanning calorimetry by monitoring the chain melting temperature and enthalpy of the chain melting processes. Dendrimer at low concentration does not alter bilayer integrity, while hole formations are noted at higher dendrimer concentration. Fluorescence anisotropy studies confirm the adsorption and subsequent bilayer disruption due to dendrimer inclusion. Dendrimer induced vesicle disintegration kinetics conclusively illustrate the transformation of cationic bilayer to monolayer and thereby exposing the role of IPA. In vitro cytotoxicity studies on PAMAM-SA, G5 and HCVs mixtures against human breast cancer cell line suggest that dendrimer-liposome aggregates (dendriosomes) exhibit substantial anticancer activities with insignificant side effects. It is expected that the dendriosomes may have application to host and deliver anticancer drug in the field of targeted drug delivery.


Subject(s)
Dendrimers , Humans , Dendrimers/chemistry , Lipid Bilayers/chemistry , Liposomes , Drug Delivery Systems , Adsorption
11.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542106

ABSTRACT

This review describes the two-photon absorption properties of dendrimers, which are arborescent three-dimensional macromolecules differing from polymers by their perfectly defined structure. The two-photon absorption process is a third order non-linear optical property that is attractive because it can be used in a wide range of applications. In this review, dendrimers that were studied for their two-photon absorption properties are first described. Then, the use of dendritic TPA chromophores for light harvesting, photopolymerization, optical power limitation, cell imaging, singlet oxygen generation, and photodynamic therapy is described. This review thus proposes an overview of the properties and possible applications of two-photon absorbing dendrimers.


Subject(s)
Dendrimers , Photochemotherapy , Dendrimers/chemistry , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Photons , Polymers/chemistry
12.
ACS Infect Dis ; 10(4): 1034-1055, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38428037

ABSTRACT

Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.


Subject(s)
Anti-Bacterial Agents , Dendrimers , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Dendrimers/pharmacology , Dendrimers/chemistry , Peptides/pharmacology , Peptides/chemistry , Bacteria
13.
Angew Chem Int Ed Engl ; 63(20): e202319849, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38439625

ABSTRACT

Glycans on tumor cell surface have significant impacts in the immune-killing process. Here an ultra-galactocation to sialic acid (Sia) strategy is designed to hugely introduce galactose (Gal) to Sia and on tumor cells in vivo by using a penta-functional dendritic probe (Den@5F), which efficiently enhances the immune-killing of tumor cells. The Den@5F contains five different kinds of functional groups, including Gal, Cy5, amino, phenylboronic acid (PBA) and 4-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy) butanoate (mNB), which can be conveniently prepared through a two-step reaction. After injecting into the tumor-bearing mouse, Den@5F can efficiently block Sia through the specific recognition between PBA and Sia on tumor cells and hugely introduce Gal through the subsequent photo-crosslinking between mNB and amino groups to multiply conjugate excessive Den@5Fs. The comprehensively blocked Sia can prevent the immune escape, and the hugely introduced Gal can promote the immune stimulation of the immune cells, which lead to an efficient enhancement of the immune-killing. The proposed strategy provides a significant and promising tool to promote the clinical immunotherapy of tumor.


Subject(s)
Galactose , N-Acetylneuraminic Acid , N-Acetylneuraminic Acid/chemistry , Humans , Animals , Mice , Galactose/chemistry , Cell Line, Tumor , Dendrimers/chemistry , Dendrimers/pharmacology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology
14.
Sci Rep ; 14(1): 5946, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467715

ABSTRACT

The use of dendrimers as drug and nucleic acid delivery systems requires knowledge of their interactions with objects on their way to the target. In the present work, we investigated the interaction of a new class of carbosilane dendrimers functionalized with polyphenolic and caffeic acid residues with human serum albumin, which is the most abundant blood protein. The addition of dendrimers to albumin solution decreased the zeta potential of albumin/dendrimer complexes as compared to free albumin, increased density of the fibrillary form of albumin, shifted fluorescence spectrum towards longer wavelengths, induced quenching of tryptophan fluorescence, and decreased ellipticity of circular dichroism resulting from a reduction in the albumin α-helix for random coil structural form. Isothermal titration calorimetry showed that, on average, one molecule of albumin was bound by 6-10 molecules of dendrimers. The zeta size confirmed the binding of the dendrimers to albumin. The interaction of dendrimers and albumin depended on the number of caffeic acid residues and polyethylene glycol modifications in the dendrimer structure. In conclusion, carbosilane polyphenolic dendrimers interact with human albumin changing its structure and electrical properties. However, the consequences of such interaction for the efficacy and side effects of these dendrimers as drug/nucleic acid delivery system requires further research.


Subject(s)
Caffeic Acids , Dendrimers , Nucleic Acids , Humans , Serum Albumin, Human/metabolism , Dendrimers/chemistry , Silanes/chemistry
15.
J Am Chem Soc ; 146(6): 3627-3634, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306714

ABSTRACT

Constitutional isomerism has been previously demonstrated by one of our laboratories to represent a powerful design strategy for the elaboration of complex functional self-organizations. Here we report the design, synthesis, and characterization of 14 positional, skeletal, and functional constitutional isomeric one-component, multifunctional, sequence-defined, amphiphilic ionizable Janus dendrimers (IAJDs). Their coassembly by simple injection with luciferase mRNA (Luc-mRNA) to form dendrimersome nanoparticles (DNPs) was studied. Subsequently, the resulting DNPs were employed to investigate, with screening experiments, the delivery of Luc-mRNA in vivo. Constitutional isomerism was shown to produce changes of up to two orders of magnitude of the total-body luciferase activity and targeted luciferase activity to the spleen and liver, of up to three orders of magnitude difference in targeted luciferase activity to the lungs and up to six orders of magnitude to lymph nodes. These results indicate that constitutional isomerism may represent not only a simple but also an important synthetic strategy that most probably may impact the activity of all components of synthetic vectors used in RNA-based nanomedicine, including in mRNA vaccines and therapeutics.


Subject(s)
Dendrimers , Nanoparticles , Isomerism , Dendrimers/chemistry , RNA, Messenger/genetics , Luciferases
16.
Biomacromolecules ; 25(3): 2007-2015, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38349647

ABSTRACT

Chemoselective reactions allow near-precision control over the polymer composition and topology to create sequence-controlled polymers with similar secondary and tertiary structures to those found in proteins. Dendrimers are recognized as well-defined macromolecules with the potential to mimic protein surface functionality due to the large number of functional groups available at its periphery with the internal structure acting as the support scaffold. Transitioning from using small-molecule dendrimers to dendritic macromolecules will not only allow retention of the high peripheral functionality but also provide an internal scaffold with a desired polymer composition within each generational layer. Here, we exemplify a systematic approach to creating a dendritic macromolecule with the placement of different polymer building blocks in precise locations within the internal structure and the placement of three different amino acid moieties clustered at the periphery. The synthesis of this ABC dendritic macromolecule was accomplished through iterative chemoselective reactions.


Subject(s)
Dendrimers , Dendrimers/chemistry , Amino Acids/chemistry , Polymers/chemistry , Proteins
17.
Biomater Sci ; 12(6): 1346-1356, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38362780

ABSTRACT

Glioma, as a disease of the central nervous system, is difficult to be treated due to the presence of the blood-brain barrier (BBB) that can severely hamper the efficacy of most therapeutic agents. Hence, drug delivery to glioma in an efficient, safe, and specifically targeted manner is the key to effective treatment of glioma. With the advances in nanotechnology, targeted drug delivery systems have been extensively explored to deliver chemotherapeutic agents, nucleic acids, and contrast agents. Among these nanocarriers, dendrimers have played a significant role since they possess highly branched structures, and are easy to be decorated, thus offering numerous binding sites for various drugs and ligands. Dendrimers can be designed to cross the BBB for glioma targeting, therapy or theranostics. In this review, we provide a concise overview of dendrimer-based carrier designs including dendrimer surface modification with hydroxyl termini, peptides, and transferrin etc. for glioma imaging diagnostics, chemotherapy, gene therapy, or imaging-guided therapy. Finally, the future perspectives of dendrimer-based glioma theraputics are also briefly discussed.


Subject(s)
Dendrimers , Glioma , Humans , Blood-Brain Barrier/metabolism , Dendrimers/chemistry , Precision Medicine , Glioma/diagnostic imaging , Glioma/drug therapy , Glioma/metabolism , Drug Delivery Systems/methods
18.
Biomacromolecules ; 25(3): 1541-1549, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38394608

ABSTRACT

Amphiphilic Janus dendrimers (JDs), synthetic alternatives to lipids, have the potential to expand the scope of nanocarrier delivery systems. JDs self-assemble into vesicles called dendrimersomes, encapsulate both hydrophobic cargo and nucleic acids, and demonstrate enhanced stability in comparison to lipid nanoparticles (LNPs). Here, we report the ability to enhance the cellular uptake of Janus dendrimersomes using DNA aptamers. Azido-modified JDs were synthesized and conjugated to alkyne-modified DNAs using copper-catalyzed azide alkyne cycloaddition. DNA-functionalized JDs form nanometer-sized dendrimersomes in aqueous solution via thin film hydration. These vesicles, now displaying short DNAs, are then hybridized to transferrin receptor binding DNA aptamers. Aptamer-targeted dendrimersomes show improved cellular uptake as compared to control vesicles via fluorescence microscopy and flow cytometry. This work demonstrates the versatility of using click chemistry to conjugate functionalized JDs with biologically relevant molecules and the feasibility of targeting DNA-modified dendrimersomes for drug delivery applications.


Subject(s)
Aptamers, Nucleotide , Dendrimers , Dendrimers/chemistry , Drug Delivery Systems , DNA , Alkynes
19.
Langmuir ; 40(4): 2111-2119, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38171364

ABSTRACT

The ionic partition property and transfer mechanism of the anthraquinone antitumor agent mitoxantrone (MTX) were studied in detail at the water|1,2-dichloroethane (DCE) interface by means of surface-sensitive spectroelectrochemical techniques. The interfacial mechanism of the cationic MTX species was composed of potential-driven ion transfer and adsorption processes. The ion association between MTX and zwitterionic polyamidoamine (PAMAM) dendrimers with peripheral carboxy groups was also investigated in terms of the effects of pH and dendritic generation. The monovalent HMTX+ interacted effectively with the negatively charged dendrimers at neutral pH, while the divalent H2MTX2+ exhibited a weak association under acidic conditions. The higher stability of the dendrimer-MTX associates in the interfacial region was found for higher dendritic generations: G3.5 ≥ G2.5 > G1.5. The interfacial behavior of MTX and its dendrimer associates was further analyzed at the phospholipid-modified interface as a model biomembrane surface. The adsorption process of HMTX+ occurred mainly on the hydrophilic side of the phospholipid layer. The spectroelectrochemical results indicated that the dendrimers penetrate into the phospholipid layer and alter the transfer mechanism of HMTX+ across the interface.


Subject(s)
Antineoplastic Agents , Dendrimers , Dendrimers/chemistry , Mitoxantrone , Phospholipids , Cations
20.
Sci Rep ; 14(1): 1615, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238354

ABSTRACT

Gene therapy presents an innovative approach to the treatment of previously incurable diseases. The advancement of research in the field of nanotechnology has the potential to overcome the current limitations and challenges of conventional therapy methods, and therefore to unlocking the full potential of dendrimers for use in the gene therapy of neurodegenerative disorders. The blood-brain barrier (BBB) poses a significant challenge when delivering therapeutic agents to the central nervous system. In this study, we investigated the biophysical properties of dendrimers and their complexes with siRNA directed against the apolipoprotein E (APOE) gene to identify an appropriate nanocarrier capable of safely delivering the cargo across the BBB. Our study yielded valuable insights into the complexation process, stability over time, the mechanisms of interaction, the influence of dendrimers on the oligonucleotide's spatial structure, and the potential cytotoxic effects on human cerebral microvascular endothelium cells. Based on our findings, we identified that the dendrimer G3Si PEG6000 was an optimal candidate for further research, potentially serving as a nanocarrier capable of safely delivering therapeutic agents across the BBB for the treatment of neurodegenerative disorders.


Subject(s)
Dendrimers , Neurodegenerative Diseases , Humans , RNA, Small Interfering/genetics , Dendrimers/chemistry , Silanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...