Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.573
Filter
1.
Elife ; 132024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146380

ABSTRACT

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.


Subject(s)
Actins , Dendrites , Hippocampus , Neuronal Plasticity , Polymerization , Receptors, AMPA , Animals , Receptors, AMPA/metabolism , Actins/metabolism , Rats , Neuronal Plasticity/physiology , Dendrites/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Protein Transport , Neurons/metabolism , Cells, Cultured , Exocytosis
2.
Sci Adv ; 10(32): eadl5722, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39110798

ABSTRACT

Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.


Subject(s)
Glaucoma , Insulin , Retinal Ganglion Cells , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Glaucoma/drug therapy , Glaucoma/metabolism , Glaucoma/pathology , Insulin/metabolism , Insulin/pharmacology , Animals , Humans , Mice , Disease Models, Animal , Dendrites/metabolism , Dendrites/drug effects , Synapses/metabolism , Synapses/drug effects , Calcium/metabolism
3.
Sci Rep ; 14(1): 18226, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107382

ABSTRACT

Theory predicts that nonlinear summation of synaptic potentials within dendrites allows neurons to perform linearly non-separable computations (LNSCs). Using Boolean analysis approaches, we predicted that both supralinear and sublinear synaptic summation could allow single neurons to implement a type of LNSC, the feature binding problem (FBP), which does not require inhibition contrary to the exclusive-or function (XOR). Notably, sublinear dendritic operations enable LNSCs when scattered synaptic activation generates increased somatic spike output. However, experimental demonstrations of scatter-sensitive neuronal computations have not yet been described. Using glutamate uncaging onto cerebellar molecular layer interneurons, we show that scattered synaptic-like activation of dendrites evoked larger compound EPSPs than clustered synaptic activation, generating a higher output spiking probability. Moreover, we also demonstrate that single interneurons can indeed implement the FBP. Using a biophysical model to explore the conditions in which a neuron might be expected to implement the FBP, we establish that sublinear summation is necessary but not sufficient. Other parameters such as the relative sublinearity, the EPSP size, depolarization amplitude relative to action potential threshold, and voltage fluctuations all influence whether the FBP can be performed. Since sublinear synaptic summation is a property of passive dendrites, we expect that many different neuron types can implement LNSCs.


Subject(s)
Dendrites , Interneurons , Models, Neurological , Dendrites/physiology , Animals , Interneurons/physiology , Action Potentials/physiology , Excitatory Postsynaptic Potentials/physiology , Synapses/physiology , Cerebellum/physiology , Cerebellum/cytology , Neurons/physiology , Mice
4.
Cell Mol Life Sci ; 81(1): 354, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158743

ABSTRACT

Mature neurons have stable dendritic architecture, which is essential for the nervous system to operate correctly. The ability to undergo structural plasticity, required to support adaptive processes like memory formation, is still present in mature neurons. It is unclear what molecular and cellular processes control this delicate balance between dendritic structural plasticity and stabilization. Failures in the preservation of optimal dendrite structure due to atrophy or maladaptive plasticity result in abnormal connectivity and are associated with various neurological diseases. Vascular endothelial growth factor D (VEGFD) is critical for the maintenance of mature dendritic trees. Here, we describe how VEGFD affects the neuronal cytoskeleton and demonstrate that VEGFD exerts its effects on dendrite stabilization by influencing the actin cortex and reducing microtubule dynamics. Further, we found that during synaptic activity-induced structural plasticity VEGFD is downregulated. Our findings revealed that VEGFD, acting on its cognate receptor VEGFR3, opposes structural changes by negatively regulating dendrite growth in cultured hippocampal neurons and in vivo in the adult mouse hippocampus with consequences on memory formation. A phosphoproteomic screening identified several regulatory proteins of the cytoskeleton modulated by VEGFD. Among the actin cortex-associated proteins, we found that VEGFD induces dephosphorylation of ezrin at tyrosine 478 via activation of the striatal-enriched protein tyrosine phosphatase (STEP). Activity-triggered structural plasticity of dendrites was impaired by expression of a phospho-deficient mutant ezrin in vitro and in vivo. Thus, VEGFD governs the equilibrium between stabilization and plasticity of dendrites by acting as a molecular brake of structural remodeling.


Subject(s)
Dendrites , Hippocampus , Neuronal Plasticity , Signal Transduction , Animals , Dendrites/metabolism , Mice , Hippocampus/metabolism , Hippocampus/cytology , Mice, Inbred C57BL , Cells, Cultured , Cytoskeleton/metabolism , Male , Neurons/metabolism , Neurons/cytology , Actins/metabolism , Phosphorylation , Microtubules/metabolism
5.
PLoS Genet ; 20(8): e1011362, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39110773

ABSTRACT

A recently reported Schizophrenia-associated genetic variant in the 3'UTR of the human furin gene, a homolog of C. elegans kpc-1, highlights an important role of the furin 3'UTR in neuronal development. We isolate three kpc-1 mutants that display abnormal dendrite arborization in PVD neurons and defective male mating behaviors. We show that the kpc-1 3'UTR participates in dendrite branching and self-avoidance. The kpc-1 3'UTR facilitates mRNA localization to branching points and contact points between sibling dendrites and promotes translation efficiency. A predicted secondary structural motif in the kpc-1 3'UTR is required for dendrite self-avoidance. Animals with over-expression of DMA-1, a PVD dendrite receptor, exhibit similar dendrite branching and self-avoidance defects that are suppressed with kpc-1 over-expression. Our results support a model in which KPC-1 proteins are synthesized at branching points and contact points to locally down-regulate DMA-1 receptors to promote dendrite branching and self-avoidance of a mechanosensory neuron important for male courtship.


Subject(s)
3' Untranslated Regions , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Courtship , Dendrites , RNA, Messenger , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Male , Dendrites/metabolism , Dendrites/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , 3' Untranslated Regions/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Protein Biosynthesis , Sexual Behavior, Animal/physiology , Humans , Mutation , Membrane Proteins
6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125895

ABSTRACT

The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein-protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the molecular scaffold Pdlim5 and delta-catenin, in conjunction, are two proteins that help regulate the branching and elongation of dendrites in cultured hippocampal neurons and do so through a phosphorylation-dependent mechanism triggered by upstream glutamate signaling. In this report we have focused on Pdlim5's multiple scaffolding domains and how each contributes to dendrite branching. The three identified regions within Pdlim5 are the PDZ, DUF, and a trio of LIM domains; however, unresolved is the intra-molecular conformation of Pdlim5 as well as which domains are essential to regulate dendritic branching. We address Pdlim5's structure and function by examining the role of each of the domains individually and using deletion mutants in the context of the full-length protein. Results using primary hippocampal neurons reveal that the Pdlim5 DUF domain plays a dominant role in increasing dendritic branching. Neither the PDZ domain nor the LIM domains alone support increased branching. The central role of the DUF domain was confirmed using deletion mutants in the context of full-length Pdlim5. Guided by molecular modeling, additional domain mapping studies showed that the C-terminal LIM domain forms a stable interaction with the N-terminal PDZ domain, and we identified key amino acid residues at the interface of each domain that are needed for this interaction. We posit that the central DUF domain of Pdlim5 may be subject to modulation in the context of the full-length protein by the intra-molecular interaction between the N-terminal PDZ and C-terminal LIM domains. Overall, our studies reveal a novel mechanism for the regulation of Pdlim5's function in the regulation of neuronal branching and highlight the critical role of the DUF domain in mediating these effects.


Subject(s)
Dendrites , Hippocampus , LIM Domain Proteins , PDZ Domains , Dendrites/metabolism , Animals , Hippocampus/metabolism , Hippocampus/cytology , LIM Domain Proteins/metabolism , LIM Domain Proteins/chemistry , LIM Domain Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Protein Domains , Neurons/metabolism , Rats , Cells, Cultured , Humans
7.
Methods Mol Biol ; 2831: 39-57, 2024.
Article in English | MEDLINE | ID: mdl-39134842

ABSTRACT

Dendritic arborization is a critical determinant of neuronal connectivity. The structure of a neuron's dendritic arbor determines the number of synaptic inputs a neuron can receive and how it processes synaptic input from other neurons. Here, we describe methods for visualizing and quantifying the dendritic arbor in primary cell cultures and in the intact rodent brain. These techniques can be used to answer significant scientific questions, such as the effects of disease processes, drugs, growth factors, and diverse environmental stressors on dendritogenesis in both in vitro and in vivo rodent models.


Subject(s)
Dendrites , Animals , Dendrites/metabolism , Mice , Rats , Cells, Cultured , Neurons/metabolism , Neurons/cytology , Rodentia , Brain/cytology , Brain/metabolism
8.
Methods Mol Biol ; 2831: 81-95, 2024.
Article in English | MEDLINE | ID: mdl-39134845

ABSTRACT

During the development of mammalian brains, pyramidal neurons in the cerebral cortex form highly organized six layers with different functions. These neurons undergo developmental processes such as axon extension, dendrite outgrowth, and synapse formation. A proper integration of the neuronal connectivity through dynamic changes of dendritic branches and spines is required for learning and memory. Disruption of these crucial developmental processes is associated with many neurodevelopmental and neurodegenerative disorders. To investigate the complex dendritic architecture, several useful staining tools and genetic methods to label neurons have been well established. Monitoring the dynamics of dendritic spine in a single neuron is still a challenging task. Here, we provide a methodology that combines in vivo two-photon brain imaging and in utero electroporation, which sparsely labels cortical neurons with fluorescent proteins. This protocol may help elucidate the dynamics of microstructure and neural complexity in living rodents under normal and disease conditions.


Subject(s)
Neurons , Animals , Mice , Neurons/cytology , Neurons/metabolism , Electroporation/methods , Microscopy, Fluorescence, Multiphoton/methods , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Pyramidal Cells/metabolism , Pyramidal Cells/cytology , Female , Cerebral Cortex/cytology , Dendrites/metabolism
9.
Methods Mol Biol ; 2831: 113-132, 2024.
Article in English | MEDLINE | ID: mdl-39134847

ABSTRACT

Neuronal development is characterized by the unidirectional flow of signal from the axon to the dendrites via synapses. Neuronal polarization is a critical step during development that allows the specification of the different neuronal processes as a single axon and multiple dendrites both structurally and functionally, allowing the unidirectional flow of information. Along with extrinsic and intrinsic signaling, a whole network of molecular complexes involved in positive and negative feedback loops play a major role in this critical distinction of neuronal processes. As a result, neuronal morphology is drastically altered during establishment of polarity. In this chapter, we discuss how we can analyze the morphological alterations of neurons in vitro in culture to assess the development and polarity status of the neuron. We also discuss how these studies can be conducted in vivo, where polarity studies pose a greater challenge with promising results for addressing multiple pathological conditions. Our experimental model is limited to rodent hippocampal/cortical neurons in culture and cortical neurons in brain tissues, which are well-characterized model systems for understanding neuronal polarization.


Subject(s)
Cell Polarity , Hippocampus , Neurons , Animals , Neurons/cytology , Neurons/physiology , Neurons/metabolism , Mice , Hippocampus/cytology , Cells, Cultured , Rats , Axons/physiology , Axons/metabolism , Dendrites/physiology , Dendrites/metabolism , Cerebral Cortex/cytology
10.
Methods Mol Biol ; 2831: 59-71, 2024.
Article in English | MEDLINE | ID: mdl-39134843

ABSTRACT

Dendrites of neurons receive synaptic or sensory inputs and are important sites of neuronal computation. The morphological features of dendrites not only are hallmarks of the neuronal type but also largely determine a neuron's function. Thus, dendrite morphogenesis has been a subject of intensive study in neuroscience. Quantification of dendritic morphology, which is required for accurate assessment of phenotypes, can often be a challenging task, especially for complex neurons. Because manual tracing of dendritic branches is labor-intensive and time-consuming, automated or semiautomated methods are required for efficient analysis of a large number of samples. A popular in vivo model system for studying the mechanisms of dendrite morphogenesis is dendritic arborization (da) neurons in the Drosophila larval peripheral nervous system. In this chapter, we introduce methods for visualizing and measuring the dendritic arbors of these neurons. We begin with an introduction of da neurons and an overview of the methods that have been used for measuring da neuron dendrites. We then discuss the techniques and detailed steps of neuron visualization and image acquisition. Finally, we provide example steps for dendrite tracing and measurement.


Subject(s)
Dendrites , Animals , Dendrites/physiology , Drosophila/cytology , Larva/cytology , Sensory Receptor Cells/cytology , Sensory Receptor Cells/physiology , Image Processing, Computer-Assisted/methods
11.
Methods Mol Biol ; 2831: 283-299, 2024.
Article in English | MEDLINE | ID: mdl-39134857

ABSTRACT

Mosaic Analysis with Double Markers (MADM) is a powerful genetic method typically used for lineage tracing and to disentangle cell autonomous and tissue-wide roles of candidate genes with single cell resolution. Given the relatively sparse labeling, depending on which of the 19 MADM chromosomes one chooses, the MADM approach represents the perfect opportunity for cell morphology analysis. Various MADM studies include reports of morphological anomalies and phenotypes in the central nervous system (CNS). MADM for any candidate gene can easily incorporate morphological analysis within the experimental workflow. Here, we describe the methods of morphological cell analysis which we developed in the course of diverse recent MADM studies. This chapter will specifically focus on methods to quantify aspects of the morphology of neurons and astrocytes within the CNS, but these methods can broadly be applied to any MADM-labeled cells throughout the entire organism. We will cover two analyses-soma volume and dendrite characterization-of physical characteristics of pyramidal neurons in the somatosensory cortex, and two analyses-volume and Sholl analysis-of astrocyte morphology.


Subject(s)
Astrocytes , Neuroglia , Neurons , Animals , Neurons/cytology , Neurons/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Mice , Mosaicism , Biomarkers , Dendrites/metabolism , Somatosensory Cortex/cytology
12.
Nat Commun ; 15(1): 6295, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060234

ABSTRACT

Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions, report an advancing gradient of dendritic theta phase along the basal-tuft axis, and describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find that spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.


Subject(s)
CA1 Region, Hippocampal , Dendrites , Pyramidal Cells , Animals , Dendrites/physiology , Dendrites/metabolism , Pyramidal Cells/physiology , Pyramidal Cells/metabolism , Mice , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Membrane Potentials/physiology , Male , Mice, Inbred C57BL , Hippocampus/physiology , Hippocampus/cytology , Spatial Navigation/physiology , Locomotion/physiology
13.
Nat Commun ; 15(1): 6337, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068160

ABSTRACT

Neuronal anatomy is central to the organization and function of brain cell types. However, anatomical variability within apparently homogeneous populations of cells can obscure such insights. Here, we report large-scale automation of neuronal morphology reconstruction and analysis on a dataset of 813 inhibitory neurons characterized using the Patch-seq method, which enables measurement of multiple properties from individual neurons, including local morphology and transcriptional signature. We demonstrate that these automated reconstructions can be used in the same manner as manual reconstructions to understand the relationship between some, but not all, cellular properties used to define cell types. We uncover gene expression correlates of laminar innervation on multiple transcriptomically defined neuronal subclasses and types. In particular, our results reveal correlates of the variability in Layer 1 (L1) axonal innervation in a transcriptomically defined subpopulation of Martinotti cells in the adult mouse neocortex.


Subject(s)
Axons , Dendrites , Neocortex , Transcriptome , Animals , Axons/metabolism , Mice , Dendrites/metabolism , Neocortex/cytology , Neocortex/metabolism , Neuroanatomy/methods , Neurons/metabolism , Neurons/cytology , Male , Gene Expression Profiling/methods , Mice, Inbred C57BL
14.
Open Biol ; 14(7): 240059, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39046196

ABSTRACT

The brain can adapt to changes in the environment through alterations in the number and structure of synapses. During embryonic and early postnatal stages, the synapses in the brain undergo rapid expansion and interconnections to form circuits. However, many of these synaptic connections are redundant or incorrect. Neurite pruning is a conserved process that occurs during both vertebrate and invertebrate development. It requires precise spatiotemporal control of local degradation of cellular components, comprising cytoskeletons and membranes, refines neuronal circuits, and ensures the precise connectivity required for proper function. The Drosophila's class IV dendritic arborization (C4da) sensory neuron has a well-characterized architecture and undergoes dendrite-specific sculpting, making it a valuable model for unravelling the intricate regulatory mechanisms underlie dendritic pruning. In this review, I attempt to provide an overview of the present state of research on dendritic pruning in C4da sensory neurons, as well as potential functional mechanisms in neurodevelopmental disorders.


Subject(s)
Dendrites , Sensory Receptor Cells , Animals , Dendrites/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/cytology , Neuronal Plasticity , Synapses/metabolism , Drosophila , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster
15.
Elife ; 122024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990761

ABSTRACT

Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.


Subject(s)
Dendrites , Synapses , Visual Cortex , Animals , Dendrites/physiology , Synapses/physiology , Mice , Visual Cortex/physiology , Visual Cortex/growth & development , Patch-Clamp Techniques , Mice, Inbred C57BL
16.
Mol Biol Cell ; 35(8): ar109, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38985523

ABSTRACT

The Drosophila RNA-binding protein (RBP) Nab2 acts in neurons to regulate neurodevelopment and is orthologous to the human intellectual disability-linked RBP, ZC3H14. Nab2 governs axon projection in mushroom body neurons and limits dendritic arborization of class IV sensory neurons in part by regulating splicing events in ∼150 mRNAs. Analysis of the Sex-lethal (Sxl) mRNA revealed that Nab2 promotes an exon-skipping event and regulates m6A methylation on Sxl pre-mRNA by the Mettl3 methyltransferase. Mettl3 heterozygosity broadly rescues Nab2null phenotypes implying that Nab2 acts through similar mechanisms on other RNAs, including unidentified targets involved in neurodevelopment. Here, we show that Nab2 and Mettl3 regulate the removal of a 5'UTR (untranslated region) intron in the trio pre-mRNA. Trio utilizes two GEF domains to balance Rac and RhoGTPase activity. Intriguingly, an isoform of Trio containing only the RhoGEF domain, GEF2, is depleted in Nab2null nervous tissue. Expression of Trio-GEF2 rescues projection defects in Nab2null axons and dendrites, while the GEF1 Rac1-regulatory domain exacerbates these defects, suggesting Nab2-mediated regulation Trio-GEF activities. Collectively, these data indicate that Nab2-regulated processing of trio is critical for balancing Trio-GEF1 and -GEF2 activity and show that Nab2, Mettl3, and Trio function in a common pathway that shapes axon and dendrite morphology.


Subject(s)
Axons , Dendrites , Drosophila Proteins , Drosophila melanogaster , Guanine Nucleotide Exchange Factors , RNA-Binding Proteins , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Axons/metabolism , Dendrites/metabolism , Drosophila melanogaster/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , RNA Splicing , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA Precursors/metabolism , RNA Precursors/genetics
17.
Mol Biol Cell ; 35(9): ar115, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38985513

ABSTRACT

The polarized nature of neurons depends on their microtubule dynamics and orientation determined by both microtubule-stabilizing and destabilizing factors. The role of destabilizing factors in developing and maintaining neuronal polarity is unclear. We investigated the function of KLP-7, a microtubule depolymerizing motor of the Kinesin-13 family, in axon-dendrite compartmentalization using PVD neurons in Caenorhabditis elegans. Loss of KLP-7 caused a mislocalization of axonal proteins, including RAB-3, SAD-1, and their motor UNC-104, to dendrites. This is rescued by cell-autonomous expression of the KLP-7 or colchicine treatment, indicating the involvement of KLP-7-dependent microtubule depolymerization. The high mobility of KLP-7 is correlated to increased microtubule dynamics in the dendrites, which restricts the enrichment of UNC-44, an integral component of Axon Initial Segment (AIS) in these processes. Due to the loss of KLP-7, ectopic enrichment of UNC-44 in the dendrite potentially redirects axonal traffic into dendrites that include plus-end out microtubules, axonal motors, and cargoes. These observations indicate that KLP-7-mediated depolymerization defines the microtubule dynamics conducive to the specific enrichment of AIS components in dendrites. This further compartmentalizes dendritic and axonal microtubules, motors, and cargoes, thereby influencing neuronal polarity.


Subject(s)
Axons , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Polarity , Dendrites , Kinesins , Microtubules , Animals , Caenorhabditis elegans/metabolism , Dendrites/metabolism , Caenorhabditis elegans Proteins/metabolism , Kinesins/metabolism , Microtubules/metabolism , Axons/metabolism , Cell Polarity/physiology , Neurons/metabolism , Protein Transport , Nerve Tissue Proteins/metabolism
18.
J Neurosci ; 44(33)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39025678

ABSTRACT

The hippocampal CA3 region plays an important role in learning and memory. CA3 pyramidal neurons (PNs) receive two prominent excitatory inputs-mossy fibers (MFs) from dentate gyrus (DG) and recurrent collaterals (RCs) from CA3 PNs-that play opposing roles in pattern separation and pattern completion, respectively. Although the dorsoventral heterogeneity of the hippocampal anatomy, physiology, and behavior has been well established, nothing is known about the dorsoventral heterogeneity of synaptic connectivity in CA3 PNs. In this study, we performed Timm's sulfide silver staining, dendritic and spine morphological analyses, and ex vivo electrophysiology in mice of both sexes to investigate the heterogeneity of MF and RC pathways along the CA3 dorsoventral axis. Our morphological analyses demonstrate that ventral CA3 (vCA3) PNs possess greater dendritic lengths and more complex dendritic arborization, compared with dorsal CA3 (dCA3) PNs. Moreover, using ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording, we found that the ratio of the RC-to-MF excitatory drive onto CA3 PNs increases substantially from dCA3 to vCA3, with vCA3 PNs receiving significantly weaker MFs, but stronger RCs, excitation than dCA3 PNs. Given the distinct roles of MF versus RC inputs in pattern separation versus completion, our findings of the significant dorsoventral variations of MF and RC excitation in CA3 PNs may have important functional implications for the contribution of CA3 circuit to the dorsoventral difference in hippocampal function.


Subject(s)
CA3 Region, Hippocampal , Pyramidal Cells , Synapses , Animals , Mice , Pyramidal Cells/physiology , CA3 Region, Hippocampal/physiology , CA3 Region, Hippocampal/cytology , Male , Female , Synapses/physiology , Mice, Inbred C57BL , Mossy Fibers, Hippocampal/physiology , Dendrites/physiology , Neural Pathways/physiology
19.
Commun Biol ; 7(1): 796, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951162

ABSTRACT

The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified "skeleton" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.


Subject(s)
Microscopy, Electron , Nerve Fibers , Synapses , Animals , Mice , Microscopy, Electron/methods , Nerve Fibers/ultrastructure , Synapses/ultrastructure , Axons/ultrastructure , Dendrites/ultrastructure , Brain/ultrastructure , Somatosensory Cortex/ultrastructure , Mice, Inbred C57BL , Male , Software , Hippocampus/ultrastructure , Hippocampus/cytology , Volume Electron Microscopy
20.
Prog Neurobiol ; 239: 102635, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825174

ABSTRACT

Dendrites are injured in a variety of clinical conditions such as traumatic brain and spinal cord injuries and stroke. How neurons detect injury directly to their dendrites to initiate a pro-regenerative response has not yet been thoroughly investigated. Calcium plays a critical role in the early stages of axonal injury detection and is also indispensable for regeneration of the severed axon. Here, we report cell and neurite type-specific differences in laser injury-induced elevations of intracellular calcium levels. Using a human KCNJ2 transgene, we demonstrate that hyperpolarizing neurons only at the time of injury dampens dendrite regeneration, suggesting that inhibition of injury-induced membrane depolarization (and thus early calcium influx) plays a role in detecting and responding to dendrite injury. In exploring potential downstream calcium-regulated effectors, we identify L-type voltage-gated calcium channels, inositol triphosphate signaling, and protein kinase D activity as drivers of dendrite regeneration. In conclusion, we demonstrate that dendrite injury-induced calcium elevations play a key role in the regenerative response of dendrites and begin to delineate the molecular mechanisms governing dendrite repair.


Subject(s)
Calcium , Dendrites , Nerve Regeneration , Dendrites/metabolism , Dendrites/physiology , Animals , Calcium/metabolism , Nerve Regeneration/physiology , Humans , Mice , Potassium Channels, Inwardly Rectifying/metabolism , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL