Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.090
Filter
1.
Proc Natl Acad Sci U S A ; 121(20): e2316266121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709923

ABSTRACT

Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here, we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a unique kinesin-based mechanism for polarized transport of vesicles to dendrites.


Subject(s)
14-3-3 Proteins , Dendrites , Kinesins , Protein Serine-Threonine Kinases , Receptors, Transferrin , Kinesins/metabolism , Kinesins/genetics , 14-3-3 Proteins/metabolism , Dendrites/metabolism , Phosphorylation , Receptors, Transferrin/metabolism , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Binding Sites , Microtubules/metabolism , Rats , Mice , Protein Binding
2.
PLoS Genet ; 20(4): e1011237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662763

ABSTRACT

An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.


Subject(s)
Connexins , Dendrites , Drosophila Proteins , Epidermis , Larva , MicroRNAs , Nociceptors , Animals , Larva/genetics , Dendrites/metabolism , Dendrites/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nociceptors/metabolism , Epidermis/metabolism , Drosophila melanogaster/genetics , Epidermal Cells/metabolism , Nociception/physiology , Drosophila/genetics
3.
Nature ; 628(8009): 818-825, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658687

ABSTRACT

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Subject(s)
Autistic Disorder , Long QT Syndrome , Oligonucleotides, Antisense , Syndactyly , Animals , Female , Humans , Male , Mice , Alternative Splicing/drug effects , Alternative Splicing/genetics , Autistic Disorder/drug therapy , Autistic Disorder/genetics , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Cell Movement/drug effects , Dendrites/metabolism , Exons/genetics , Long QT Syndrome/drug therapy , Long QT Syndrome/genetics , Neurons/metabolism , Neurons/drug effects , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Organoids/drug effects , Organoids/metabolism , Prosencephalon/metabolism , Prosencephalon/cytology , Syndactyly/drug therapy , Syndactyly/genetics , Interneurons/cytology , Interneurons/drug effects
4.
Nat Commun ; 15(1): 3406, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649706

ABSTRACT

Synapses at dendritic branches exhibit specific properties for information processing. However, how the synapses are orchestrated to dynamically modify their properties, thus optimizing information processing, remains elusive. Here, we observed at hippocampal dendritic branches diverse configurations of synaptic connectivity, two extremes of which are characterized by low transmission efficiency, high plasticity and coding capacity, or inversely. The former favors information encoding, pertinent to learning, while the latter prefers information storage, relevant to memory. Presynaptic intracellular Mg2+ crucially mediates the dynamic transition continuously between the two extreme configurations. Consequently, varying intracellular Mg2+ levels endow individual branches with diverse synaptic computations, thus modulating their ability to process information. Notably, elevating brain Mg2+ levels in aging animals restores synaptic configuration resembling that of young animals, coincident with improved learning and memory. These findings establish intracellular Mg2+ as a crucial factor reconfiguring synaptic connectivity at dendrites, thus optimizing their branch-specific properties in information processing.


Subject(s)
Dendrites , Hippocampus , Magnesium , Neuronal Plasticity , Synapses , Synaptic Transmission , Animals , Magnesium/metabolism , Synapses/physiology , Synapses/metabolism , Hippocampus/physiology , Hippocampus/metabolism , Neuronal Plasticity/physiology , Dendrites/physiology , Dendrites/metabolism , Synaptic Transmission/physiology , Male , Memory/physiology , Rats , Learning/physiology , Mice , Mice, Inbred C57BL
5.
J Neural Eng ; 21(3)2024 May 09.
Article in English | MEDLINE | ID: mdl-38648784

ABSTRACT

Objective.Traditional quantification of fluorescence signals, such asΔF/F, relies on ratiometric measures that necessitate a baseline for comparison, limiting their applicability in dynamic analyses. Our goal here is to develop a baseline-independent method for analyzing fluorescence data that fully exploits temporal dynamics to introduce a novel approach for dynamical super-resolution analysis, including in subcellular resolution.Approach.We introduce ARES (Autoregressive RESiduals), a novel method that leverages the temporal aspect of fluorescence signals. By focusing on the quantification of residuals following linear autoregression, ARES obviates the need for a predefined baseline, enabling a more nuanced analysis of signal dynamics.Main result.We delineate the foundational attributes of ARES, illustrating its capability to enhance both spatial and temporal resolution of calcium fluorescence activity beyond the conventional ratiometric measure (ΔF/F). Additionally, we demonstrate ARES's utility in elucidating intracellular calcium dynamics through the detailed observation of calcium wave propagation within a dendrite.Significance.ARES stands out as a robust and precise tool for the quantification of fluorescence signals, adept at analyzing both spontaneous and evoked calcium dynamics. Its ability to facilitate the subcellular localization of calcium signals and the spatiotemporal tracking of calcium dynamics-where traditional ratiometric measures falter-underscores its potential to revolutionize baseline-independent analyses in the field.


Subject(s)
Calcium Signaling , Calcium , Nonlinear Dynamics , Calcium/metabolism , Animals , Calcium Signaling/physiology , Signal Processing, Computer-Assisted , Cells, Cultured , Dendrites/metabolism , Dendrites/physiology , Rats , Algorithms
6.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38587100

ABSTRACT

During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.


Subject(s)
Dendrites , Drosophila Proteins , Microtubule-Associated Proteins , Microtubules , Animals , Microtubules/metabolism , Dendrites/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Drosophila melanogaster/metabolism , Tubulin/metabolism , Drosophila/metabolism , Humans , Neurons/metabolism , Neurons/cytology
7.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38606636

ABSTRACT

Microtubules are nucleated by γ-tubulin ring complexes (γ-TuRCs) and are essential for neuronal development. Nevertheless, γ-TuRC depletion has been reported to perturb only higher-order branching in elaborated Drosophila larval class IV dendritic arborization (da) neurons. This relatively mild phenotype has been attributed to defects in microtubule nucleation from Golgi outposts, yet most Golgi outposts lack associated γ-TuRCs. By analyzing dendritic arbor regrowth in pupae, we show that γ-TuRCs are also required for the growth and branching of primary and secondary dendrites, as well as for higher-order branching. Moreover, we identify the augmin complex (hereafter augmin), which recruits γ-TuRCs to the sides of pre-existing microtubules, as being required predominantly for higher-order branching. Augmin strongly promotes the anterograde growth of microtubules in terminal dendrites and thus terminal dendrite stability. Consistent with a specific role in higher-order branching, we find that augmin is expressed less strongly and is largely dispensable in larval class I da neurons, which exhibit few higher-order dendrites. Thus, γ-TuRCs are essential for various aspects of complex dendritic arbor development, and they appear to function in higher-order branching via the augmin pathway, which promotes the elaboration of dendritic arbors to help define neuronal morphology.


Subject(s)
Dendrites , Drosophila Proteins , Microtubules , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Dendrites/metabolism , Microtubules/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Tubulin/metabolism , Larva/metabolism , Larva/growth & development , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Drosophila/metabolism
8.
Nat Neurosci ; 27(5): 822-835, 2024 May.
Article in English | MEDLINE | ID: mdl-38589584

ABSTRACT

Learning and memory require activity-induced changes in dendritic translation, but which mRNAs are involved and how they are regulated are unclear. In this study, to monitor how depolarization impacts local dendritic biology, we employed a dendritically targeted proximity labeling approach followed by crosslinking immunoprecipitation, ribosome profiling and mass spectrometry. Depolarization of primary cortical neurons with KCl or the glutamate agonist DHPG caused rapid reprogramming of dendritic protein expression, where changes in dendritic mRNAs and proteins are weakly correlated. For a subset of pre-localized messages, depolarization increased the translation of upstream open reading frames (uORFs) and their downstream coding sequences, enabling localized production of proteins involved in long-term potentiation, cell signaling and energy metabolism. This activity-dependent translation was accompanied by the phosphorylation and recruitment of the non-canonical translation initiation factor eIF4G2, and the translated uORFs were sufficient to confer depolarization-induced, eIF4G2-dependent translational control. These studies uncovered an unanticipated mechanism by which activity-dependent uORF translational control by eIF4G2 couples activity to local dendritic remodeling.


Subject(s)
Dendrites , Eukaryotic Initiation Factor-4G , Neurons , Open Reading Frames , Protein Biosynthesis , Animals , Dendrites/metabolism , Eukaryotic Initiation Factor-4G/metabolism , Protein Biosynthesis/physiology , Neurons/metabolism , Open Reading Frames/genetics , Rats , Mice , Cells, Cultured , Potassium Chloride/pharmacology
9.
Mol Biol Cell ; 35(6): ar81, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598291

ABSTRACT

Neurons are polarized and typically extend multiple dendrites and one axon. To maintain polarity, vesicles carrying dendritic proteins are arrested upon entering the axon. To determine whether kinesin regulation is required for terminating anterograde axonal transport, we overexpressed the dendrite-selective kinesin KIF13A. This caused mistargeting of dendrite-selective vesicles to the axon and a loss of dendritic polarity. Polarity was not disrupted if the kinase MARK2/Par1b was coexpressed. MARK2/Par1b is concentrated in the proximal axon, where it maintains dendritic polarity-likely by phosphorylating S1371 of KIF13A, which lies in a canonical 14-3-3 binding motif. We probed for interactions of KIF13A with 14-3-3 isoforms and found that 14-3-3ß and 14-3-3ζ bound KIF13A. Disruption of MARK2 or 14-3-3 activity by small molecule inhibitors caused a loss of dendritic polarity. These data show that kinesin regulation is integral for dendrite-selective transport. We propose a new model in which KIF13A that moves dendrite-selective vesicles in the proximal axon is phosphorylated by MARK2. Phosphorylated KIF13A is then recognized by 14-3-3, which causes dissociation of KIF13A from the vesicle and termination of transport. These findings define a new paradigm for the regulation of vesicle transport by localized kinesin tail phosphorylation, to restrict dendrite-selective vesicles from entering the axon.


Subject(s)
14-3-3 Proteins , Axons , Dendrites , Kinesins , Kinesins/metabolism , Dendrites/metabolism , 14-3-3 Proteins/metabolism , Animals , Axons/metabolism , Phosphorylation , Humans , Protein Serine-Threonine Kinases/metabolism , Cell Polarity/physiology , Axonal Transport/physiology , Rats , Neurons/metabolism
10.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673828

ABSTRACT

Dendritic structures play a pivotal role in the computational processes occurring within neurons. Signal propagation along dendrites relies on both passive conduction and active processes related to voltage-dependent ion channels. Among these channels, extrasynaptic N-methyl-D-aspartate channels (exNMDA) emerge as a significant contributor. Prior studies have mainly concentrated on interactions between synapses and nearby exNMDA (100 nm-10 µm from synapse), activated by presynaptic membrane glutamate. This study concentrates on the correlation between synaptic inputs and distal exNMDA (>100 µm), organized in clusters that function as signal amplifiers. Employing a computational model of a dendrite, we elucidate the mechanism underlying signal amplification in exNMDA clusters. Our findings underscore the pivotal role of the optimal spatial positioning of the NMDA cluster in determining signal amplification efficiency. Additionally, we demonstrate that exNMDA subunits characterized by a large conduction decay constant. Specifically, NR2B subunits exhibit enhanced effectiveness in signal amplification compared to subunits with steeper conduction decay. This investigation extends our understanding of dendritic computational processes by emphasizing the significance of distant exNMDA clusters as potent signal amplifiers. The implications of our computational model shed light on the spatial considerations and subunit characteristics that govern the efficiency of signal amplification in dendritic structures, offering valuable insights for future studies in neurobiology and computational neuroscience.


Subject(s)
Computer Simulation , Dendrites , Receptors, N-Methyl-D-Aspartate , Synapses , Receptors, N-Methyl-D-Aspartate/metabolism , Dendrites/metabolism , Synapses/metabolism , Animals , Models, Neurological , Humans , Signal Transduction
11.
Proc Natl Acad Sci U S A ; 121(10): e2310740121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408233

ABSTRACT

Autophagy is essential for the turnover of damaged organelles and long-lived proteins. It is responsible for many biological processes such as maintaining brain functions and aging. Impaired autophagy is often linked to neurodevelopmental and neurodegenerative diseases in humans. However, the role of autophagy in neuronal pruning during development remains poorly understood. Here, we report that autophagy regulates dendrite-specific pruning of ddaC sensory neurons in parallel to local caspase activation. Impaired autophagy causes the formation of ubiquitinated protein aggregates in ddaC neurons, dependent on the autophagic receptor Ref(2)P. Furthermore, the metabolic regulator AMP-activated protein kinase and the insulin-target of rapamycin pathway act upstream to regulate autophagy during dendrite pruning. Importantly, autophagy is required to activate the transcription factor CncC (Cap "n" collar isoform C), thereby promoting dendrite pruning. Conversely, CncC also indirectly affects autophagic activity via proteasomal degradation, as impaired CncC results in the inhibition of autophagy through sequestration of Atg8a into ubiquitinated protein aggregates. Thus, this study demonstrates the important role of autophagy in activating CncC prior to dendrite pruning, and further reveals an interplay between autophagy and CncC in neuronal pruning.


Subject(s)
Drosophila Proteins , Drosophila , Quaternary Ammonium Compounds , Animals , Humans , Autophagy/physiology , Dendrites/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Neuronal Plasticity , Ubiquitinated Proteins/metabolism
12.
Mol Autism ; 15(1): 10, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383466

ABSTRACT

BACKGROUND: A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS: To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS: Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS: The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS: Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.


Subject(s)
Autism Spectrum Disorder , Cytokines , Female , Male , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Leukocytes, Mononuclear/metabolism , Interleukin-1alpha/metabolism , Interleukin-1alpha/pharmacology , Autism Spectrum Disorder/metabolism , Cells, Cultured , Sexism , Macrophages/metabolism , Granulocytes/metabolism , Dendrites/metabolism
13.
Sci Signal ; 17(819): eadh7673, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227686

ABSTRACT

The precise development of neuronal morphologies is crucial to the establishment of synaptic circuits and, ultimately, proper brain function. Signaling by the axon guidance cue semaphorin 3A (Sema3A) and its receptor complex of neuropilin-1 and plexin-A4 has multifunctional outcomes in neuronal morphogenesis. Downstream activation of the RhoGEF FARP2 through interaction with the lysine-arginine-lysine motif of plexin-A4 and consequent activation of the small GTPase Rac1 promotes dendrite arborization, but this pathway is dispensable for axon repulsion. Here, we investigated the interplay of small GTPase signaling mechanisms underlying Sema3A-mediated dendritic elaboration in mouse layer V cortical neurons in vitro and in vivo. Sema3A promoted the binding of the small GTPase Rnd1 to the amino acid motif lysine-valine-serine (LVS) in the cytoplasmic domain of plexin-A4. Rnd1 inhibited the activity of the small GTPase RhoA and the kinase ROCK, thus supporting the activity of the GTPase Rac1, which permitted the growth and branching of dendrites. Overexpression of a dominant-negative RhoA, a constitutively active Rac1, or the pharmacological inhibition of ROCK activity rescued defects in dendritic elaboration in neurons expressing a plexin-A4 mutant lacking the LVS motif. Our findings provide insights into the previously unappreciated balancing act between Rho and Rac signaling downstream of specific motifs in plexin-A4 to mediate Sema3A-dependent dendritic elaboration in mammalian cortical neuron development.


Subject(s)
Cell Adhesion Molecules , Monomeric GTP-Binding Proteins , Nerve Tissue Proteins , Semaphorins , Mice , Animals , Monomeric GTP-Binding Proteins/metabolism , Semaphorin-3A/genetics , Semaphorin-3A/metabolism , Lysine/metabolism , Neurons/metabolism , Dendrites/metabolism , Semaphorins/metabolism , Mammals/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism
14.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199568

ABSTRACT

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Subject(s)
Armadillo Domain Proteins , Cytoskeletal Proteins , Neurons , Animals , Mice , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Calpain/metabolism , Cytoskeletal Proteins/metabolism , Dendrites/metabolism , Neurons/metabolism , Signal Transduction
15.
J Psychiatr Res ; 171: 99-107, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262166

ABSTRACT

BACKGROUND: Autoimmunity plays an important role in schizophrenia (SCZ). Autoantibodies against SFT2D2 have been reported in patients with SCZ; however, the specific mechanism remains unclear. This study aimed to describe an autoimmune model, namely, mice immunized against SFT2D2-peptides. METHODS: ApoE-/- and WT mice (C57BL/6) were immunized four times (day 0, day 14, day 21, day 35) with SFT2D2 peptide or KLH via subcutaneous injection. Behavioral tests were conducted after the third immunization, and immunochemistry of brain tissue were performed after the sacrifice of the mice. RESULTS: Active immunization with KLH-coupled SFT2D2-derived peptides in both WT and ApoE-/- (compromised blood-brain barrier) mice led to high circulating levels of anti-SFT2D2 IgG. While there was no detectable deficit in WT mice, impaired pre-pulse inhibition, motor impairments, and reduced cognition in ApoE-/- mice, without signs of anxiety and depression were observed. In addition, immunohistochemical assays demonstrated that activated microglia and astrocytes were increased but neuronal dendritic spine densities were decreased, accompanied by increased expression of complement molecule C4 across brain regions in ApoE-/- mice. CONCLUSIONS: In model mice with compromised blood-brain barrier, endogenous anti-SFT2D2 IgG can activate glial cells and modulate synaptic plasticity, and induce a series of psychosis-like changes. These antibodies may reveal valuable therapeutic targets, which may improve the treatment strategies for a subgroup of SCZ patients.


Subject(s)
Autoantibodies , Immunoglobulin G , Humans , Mice , Animals , Mice, Inbred C57BL , Immunoglobulin G/metabolism , Apolipoproteins E , Peptides , Dendrites/metabolism
16.
Brain Res ; 1823: 148679, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37972846

ABSTRACT

Emerging evidence highlights the relevance of the protein post-translational modification by SUMO (Small Ubiquitin-like Modifier) in the central nervous system for modulating cognition and plasticity in health and disease. In these processes, astrocyte-to-neuron crosstalk mediated by extracellular vesicles (EVs) plays a yet poorly understood role. Small EVs (sEVs), including microvesicles and exosomes, contain a molecular cargo of lipids, proteins, and nucleic acids that define their biological effect on target cells. Here, we investigated whether SUMOylation globally impacts the sEV protein cargo. For this, sEVs were isolated from primary cultures of astrocytes by ultracentrifugation or using a commercial sEV isolation kit. SUMO levels were regulated: 1) via plasmids that over-express SUMO, or 2) via experimental conditions that increase SUMOylation, i.e., by using the stress hormone corticosterone, or 3) via the SUMOylation inhibitor 2-D08 (2',3',4'-trihydroxy-flavone, 2-(2,3,4-Trihydroxyphenyl)-4H-1-Benzopyran-4-one). Corticosterone and 2-D08 had opposing effects on the number of sEVs and on their protein cargo. Proteomic analysis showed that increased SUMOylation in corticosterone-treated or plasmid-transfected astrocytes increased the presence of proteins related to cell division, transcription, and protein translation in the derived sEVs. When sEVs derived from corticosterone-treated astrocytes were transferred to neurons to assess their impact on protein synthesis using the fluorescence non-canonical amino acid tagging assay (FUNCAT), we detected an increase in protein synthesis, while sEVs from 2-D08-treated astrocytes had no effect. Our results show that SUMO conjugation plays an important role in the modulation of the proteome of astrocyte-derived sEVs with a potential functional impact on neurons.


Subject(s)
Extracellular Vesicles , Proteome , Proteome/metabolism , Astrocytes/metabolism , Sumoylation , Proteomics , Corticosterone/pharmacology , Extracellular Vesicles/metabolism , Neurons/metabolism , Dendrites/metabolism
17.
Purinergic Signal ; 20(2): 115-125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37246192

ABSTRACT

During the establishment of neuronal circuits, axons and dendrites grow and branch to establish specific synaptic connections. This complex process is highly regulated by positive and negative extracellular cues guiding the axons and dendrites. Our group was pioneer in describing that one of these signals are the extracellular purines. We found that extracellular ATP, through its selective ionotropic P2X7 receptor (P2X7R), negatively regulates axonal growth and branching. Here, we evaluate if other purinergic compounds, such as the diadenosine pentaphosphate (Ap5A), may module the dynamics of dendritic or axonal growth and branching in cultured hippocampal neurons. Our results show that Ap5A negatively modulates the dendrite's growth and number by inducing transient intracellular calcium increases in the dendrites' growth cone. Interestingly, phenol red, commonly used as a pH indicator in culture media, also blocks the P2X1 receptors, avoided the negative modulation of Ap5A on dendrites. Subsequent pharmacological studies using a battery of selective P2X1R antagonists confirmed the involvement of this subunit. In agreement with pharmacological studies, P2X1R overexpression caused a similar reduction in dendritic length and number as that induced by Ap5A. This effect was reverted when neurons were co-transfected with the vector expressing the interference RNA for P2X1R. Despite small hairpin RNAs reverting the reduction in the number of dendrites caused by Ap5A, it did not avoid the dendritic length decrease induced by the polyphosphate, suggesting, therefore, the involvement of a heteromeric P2X receptor. Our results are indicating that Ap5A exerts a negative influence on dendritic growth.


Subject(s)
Adenosine Triphosphate , Dinucleoside Phosphates , Receptors, Purinergic P2 , Adenosine Triphosphate/pharmacology , Receptors, Purinergic P2/metabolism , Neurons/metabolism , Dendrites/metabolism , Hippocampus/metabolism
18.
Alzheimers Dement ; 20(1): 601-614, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37753835

ABSTRACT

INTRODUCTION: Human data suggest susceptibility and resilience to features of Alzheimer's disease (AD) such as microglia activation and synaptic dysfunction are under genetic control. However, causal relationships between these processes, and how genomic diversity modulates them remain systemically underexplored in mouse models. METHODS: AD-vulnerable hippocampal neurons were virally labeled in inbred (C57BL/6J) and wild-derived (PWK/PhJ) APP/PS1 and wild-type mice, and brain microglia depleted from 4 to 8 months of age. Dendrites were assessed for synapse plasticity changes by evaluating spine densities and morphologies. RESULTS: In C57BL/6J, microglia depletion blocked amyloid-induced synaptic density and morphology changes. At a finer scale, synaptic morphology on individual branches was dependent on microglia-dendrite physical interactions. Conversely, synapses from PWK/PhJ mice showed remarkable stability in response to amyloid, and no evidence of microglia contact-dependent changes on dendrites. DISCUSSION: These results demonstrate that microglia-dependent synaptic alterations in specific AD-vulnerable projection pathways are differentially controlled by genetic context.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Microglia/metabolism , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Hippocampus/metabolism , Disease Models, Animal , Neuronal Plasticity/genetics , Synapses/metabolism , Amyloid/metabolism , Dendrites/metabolism
19.
Neurosci Res ; 199: 30-35, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37659612

ABSTRACT

Dendritic spines are unique postsynaptic structures that emerge from the dendrites of neurons. They undergo activity-dependent morphological changes known as structural plasticity. The changes involve actin cytoskeletal remodeling, which is regulated by actin-binding proteins. CaMKII is a crucial molecule in synaptic plasticity. Notably, CaMKIIß subtype is known to bind to filamentous-actin and is closely involved in structural plasticity. We have shown that CaMKIIß binds to drebrin, and is localized in spines as both drebrin-dependent and drebrin-independent pools. However, the nanoscale relationship between drebrin and CaMKIIß within dendritic spines has not been clarified. In this study, we used stochastic optical reconstruction microscopy (STORM) to examine the detailed localization of these proteins. STORM imaging showed that CaMKIIß co-localized with drebrin in the core region of spines, and localized in the submembrane region of spines without drebrin. Interestingly, the dissociation of CaMKIIß and drebrin in the core region was induced by NMDA receptor activation. In drebrin knockdown neurons, CaMKIIß was decreased in the core region but not in the submembrane region. Together it indicates that the clustering of CaMKIIß in the spine core region is dependent on drebrin. These findings suggest that drebrin-dependent CaMKIIß is in a standby state before its activation.


Subject(s)
Dendrites , Dendritic Spines , Neuropeptides , Dendrites/metabolism , Dendritic Spines/metabolism , Actins/metabolism , Neurons/metabolism
20.
Cell Rep ; 42(11): 113268, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38007691

ABSTRACT

Branching allows neurons to make synaptic contacts with large numbers of other neurons, facilitating the high connectivity of nervous systems. Neuronal arbors have geometric properties such as branch lengths and diameters that are optimal in that they maximize signaling speeds while minimizing construction costs. In this work, we asked whether neuronal arbors have topological properties that may also optimize their growth or function. We discovered that for a wide range of invertebrate and vertebrate neurons the distributions of their subtree sizes follow power laws, implying that they are scale invariant. The power-law exponent distinguishes different neuronal cell types. Postsynaptic spines and branchlets perturb scale invariance. Through simulations, we show that the subtree-size distribution depends on the symmetry of the branching rules governing arbor growth and that optimal morphologies are scale invariant. Thus, the subtree-size distribution is a topological property that recapitulates the functional morphology of dendrites.


Subject(s)
Dendrites , Neurons , Dendrites/metabolism , Neurons/physiology , Morphogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...