Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
J Gene Med ; 26(6): e3707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811236

ABSTRACT

BACKGROUND: Dental pulp in a confined environment, with little connection to the outside and only a small distribution of immune cells, provides a good research model for investigating how cells respond to bacterial infections through cytokines. METHODS: The data of single-cell transcriptome sequencing of healthy and inflamed pulp tissue were downloaded from the GEO dataset. The expression character of 79 cytokines was analyzed based on the expression matrix. RESULTS: The cytokine secretion profiles of the two populations of pulp cells in healthy dental pulp were associated with vascularization and nervous system development, as well as immune cell regulation. For the three populations of pulp stem cells with stem cell activity in the dental pulp, the secretion of cytokines related to nervous system development, regulation of endothelial cell proliferation and migration, and regulation of immune cell function comprised the characteristics that we observed. The cytokines secreted by T cells and macrophages were more of an immune reserve against pathogenic microorganisms. In the inflammatory state, the spectrum of cytokines secreted by various types of cells in the dental pulp tended to be identical, such that it mainly resisted pathogenic microorganisms. CONCLUSIONS: The cytokine secretion profiles of various cell types in healthy and inflamed dental pulp at the single-cell level are summarized.


Subject(s)
Bacterial Infections , Cytokines , Dental Pulp , Dental Pulp/immunology , Dental Pulp/microbiology , Dental Pulp/metabolism , Humans , Cytokines/metabolism , Bacterial Infections/immunology , Transcriptome , Gene Expression Profiling , Single-Cell Analysis , Stem Cells/metabolism , Macrophages/immunology , Macrophages/metabolism
2.
J Formos Med Assoc ; 122(1): 47-57, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36031486

ABSTRACT

BACKGROUND/PURPOSE: The signaling mechanisms for Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammation in human dental pulp cells are not fully clarified. This in vitro study aimed to evaluate the involvement of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in PgLPS-induced pulpal inflammation. METHODS: Human dental pulp cells (HDPCs) were challenged with PgLPS with or without pretreatment and coincubation with a PI3K/Akt inhibitor (LY294002). The gene or protein levels of PI3K, Akt, interleukin (IL)-6, IL-8, alkaline phosphatase (ALP), osteocalcin and osteonectin were analyzed by reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and immunofluorescent staining. In addition, an enzyme-linked immunosorbent assay was used to analyze IL-6 and IL-8 levels in culture medium. RESULTS: In response to 5 µg/ml PgLPS, IL-6, IL-8, and PI3K, but not Akt mRNA expression of HDPCs, was upregulated. IL-6, IL-8, PI3K, and p-Akt protein levels were stimulated by 10-50 µg/ml of PgLPS in HDPCs. PgLPS also induced IL-6 and IL-8 secretion at concentrations higher than 5 µg/ml. Pretreatment and co-incubation by LY294002 attenuated PgLPS-induced IL-6 and IL-8 mRNA expression in HDPCs. The mRNA expression of ALP, but not osteocalcin and osteonectin, was inhibited by higher concentrations of PgLPS in HDPCs. CONCLUSION: P. gingivalis contributes to pulpal inflammation in HDPCs by dysregulating PI3K/Akt signaling pathway to stimulate IL-6 and IL-8 mRNA/protein expression and secretion. These results are useful for understanding the pulpal inflammation and possible biomarkers of inflamed pulp diagnosis and treatment.


Subject(s)
Dental Pulp , Interleukin-6 , Interleukin-8 , Lipopolysaccharides , Porphyromonas gingivalis , Proto-Oncogene Proteins c-akt , Pulpitis , Humans , Dental Pulp/immunology , Dental Pulp/microbiology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Osteonectin/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Porphyromonas gingivalis/immunology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Pulpitis/immunology , Pulpitis/microbiology
3.
BMC Oral Health ; 22(1): 563, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463168

ABSTRACT

BACKGROUND: Toll like receptors (TLR) 2 and 4 present on innate immune cells of the dental pulp detect cariogenic bacteria. Along with bacteria, C. albicans may also be present in dental caries. The presence of C. albicans can be detected by Dectin-1 a C type Lectin receptor. Expression of Dectin-1 in human pulpits has not been reported. Similarly, cytokines are released as a consequence of dental pulp inflammation caused by cariogenic bacteria. The T helper (Th) 1 inflammatory response leads to exacerbation of inflammation and its relationship with Osteopontin (OPN) is not known in pulp inflammation. OBJECTIVE: The aim of this study was to observe the expression of Dectin-1, TLR-2, OPN and pro-inflammatory cytokines in irreversibly inflamed human dental pulp and to observe relationship between Dectin-1/TLR-2 and OPN/Pro-inflammatory cytokines in the presence of appropriate controls. METHODS: A total of 28 subjects diagnosed with irreversible pulpitis were included in this ex-vivo study. Fifteen samples were subjected to standard hematoxylin and Eosin (H&E) and immunohistochemistry staining. Whereas, gene expression analysis was performed on 13 samples to observe mRNA expression of pro-inflammatory cytokines; tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (ß), IL-6 Dectin-1, OPN, TLR-2 and TLR-4. SPSS version 21 was used for statistical analysis. One way analysis of variance (ANOVA), Pearson correlation and Chi-square test were used at p ≤ 0.05. RESULTS: Gene expressions of Dectin-1, TLR-2 and TLR-4 were observed in all samples. Dectin-1 and TLR-2 expressions were significantly correlated (r = 0.5587, p = 0.0002). Similarly, OPN and TNF-α expression showed a significant correlation (r = 0.5860, p = 0001). The agreement between histologic and clinical diagnosis was 69.2% in the cases of irreversible pulpitis. CONCLUSION: Dectin-1 was expressed by inflamed human dental pulp. Dectin-1 and TLR-2 expression pattern was suggestive of a collaborative receptor response in inflamed pulp environment. OPN and TNF-α expressions showed a positive correlation indicating a possible relationship.


Subject(s)
Dental Caries , Dental Pulp , Pulpitis , Humans , Candida albicans , Cytokines , Dental Caries/genetics , Dental Caries/immunology , Dental Pulp/immunology , Gene Expression , Inflammation/genetics , Inflammation/immunology , Osteopontin/genetics , Osteopontin/immunology , Pulpitis/genetics , Pulpitis/immunology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Gene Expression Profiling
4.
Front Cell Infect Microbiol ; 12: 958722, 2022.
Article in English | MEDLINE | ID: mdl-36569197

ABSTRACT

The prevalence of dental caries in the Mexican adult population aged 20 to 85 years is around 93.3%, and 50% in Mexican children and adolescents. Worldwide, it is the most common non-communicable disease. One of the main etiological factors for dental caries is the oral microbiome and changes in its structure and function, with an expansion of pathogenic bacteria like Streptococcus mutans. The exposed dental pulp tissue triggers an innate immune response to counteract this bacterial invasion. The relation between oral dysbiosis and innate immune responses remains unclear. We aimed to understand the relationship between innate immune response and the oral microbiota by quantifying the expression of Toll-like receptors (TLRs) and proinflammatory markers (cytokines and a chemokine) in dental pulp tissue, either exposed or not to carious dentin, and to correlate this information with the oral microbiome found in healthy teeth and those with moderate caries. RNA was purified from pulp tissue, subjected to RT-qPCR and analysed with the ΔΔCt method. Supragingival dental plaque of non-carious teeth and dentin of carious teeth were subjected to 16S targeted sequencing. Principal coordinate analysis, permutational multivariate ANOVA, and linear discriminant analysis were used to assess differences between non-carious and carious teeth. Correlations were assessed with Spearman´s test and corrected for multiple comparisons using the FDR method. The relative abundance (RA) of Lactobacillus, Actinomyces, Prevotella, and Mitsuokella was increased in carious teeth; while the RA of Haemophilus and Porphyromonas decreased. Olsenella and Parascardovia were only detected in carious teeth. Significant overexpression of interleukin 1 beta (IL1 ß), IL6, and CXCL8 was detected in pulp tissue exposed to carious dentin. IL1ß correlated positively with TLR2 and Actinomyces; yet negatively with Porphyromonas. These findings suggest that immune response of pulp tissue chronically exposed to cariogenic microbiome is triggered by proinflammatory cytokines IL1ß and IL6 and the chemokine CXCL8.


Subject(s)
Dental Caries , Dental Pulp , Microbiota , Adolescent , Adult , Child , Humans , Actinobacteria , Actinomyces , Cytokines/immunology , Dental Caries/immunology , Dental Caries/microbiology , Dental Pulp/immunology , Dental Pulp/microbiology , Dentin/metabolism , Dentin/microbiology , Interleukin-6/metabolism , Microbiota/genetics , Microbiota/immunology , Streptococcus mutans/genetics
5.
Small Methods ; 5(9): e2100747, 2021 09.
Article in English | MEDLINE | ID: mdl-34928049

ABSTRACT

The cellular atlas of the stroma is not well understood. Here, the cell populations in human dental pulp through single-cell RNA sequencing are profiled. Dental pulp stem cells, pulp cells, T cells, macrophages, endothelial cells, and glial cells are identified in human dental pulp. These cells support each other through sending growth signals. Based on the appearance of ligand-receptor pairs between two cell populations, pulp cells have the greatest communication with other cell types, while T cells have the least communication. In addition, T cells expressing TLR1, TLR2, and TLR4, and endothelial cells expressing TLR4, monitor bacterial invasion. These findings provide the census of normal dental pulp.


Subject(s)
Dental Pulp/immunology , Gene Expression Profiling/methods , Toll-Like Receptor 1/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics , Adolescent , Cell Differentiation , Endothelial Cells/immunology , Female , Gene Expression Regulation , Humans , Sequence Analysis, RNA/methods , Single-Cell Analysis , T-Lymphocytes/immunology , Exome Sequencing
6.
Stem Cell Res Ther ; 12(1): 598, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34863286

ABSTRACT

BACKGROUND: Dental pulp stem cells (DPSCs) are low immunogenic and hold immunomodulatory properties that, along with their well-established multi-potency, might enhance their potential application in autoimmune and inflammatory diseases. The present study focused on the ability of DPSCs to modulate the inflammatory microenvironment through PD1/PD-L1 pathway. METHODS: Inflammatory microenvironment was created in vitro by the activation of T cells isolated from healthy donors and rheumatoid arthritis (RA) patients with anti-CD3 and anti-CD28 antibodies. Direct and indirect co-cultures between DPSCs and PBMCs were carried out to evaluate the activation of immunomodulatory checkpoints in DPSCs and the inflammatory pattern in PBMCs. RESULTS: Our data suggest that the inflammatory stimuli trigger DPSCs immunoregulatory functions that can be exerted by both direct and indirect contact. As demonstrated by using a selective PD-L1 inhibitor, DPSCs were able to activate compensatory pathways targeting to orchestrate the inflammatory process by modulating pro-inflammatory cytokines in pre-activated T lymphocytes. The involvement of PD-L1 mechanism was also observed in autologous inflammatory status (pulpitis) and after direct exposure to pre-activated T cells from RA patients suggesting that immunomodulatory/anti-inflammatory properties are strictly related to their stemness status. CONCLUSIONS: Our findings point out that the communication with the inflammatory microenvironment is essential in licensing their immunomodulatory properties.


Subject(s)
B7-H1 Antigen , Dental Pulp , Immunomodulation , Mesenchymal Stem Cells , B7-H1 Antigen/physiology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dental Pulp/immunology , Humans , Mesenchymal Stem Cells/immunology
7.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884488

ABSTRACT

In dental pulp, diverse types of cells mediate the dental pulp immunity in a highly complex and dynamic manner. Yet, 3D spatiotemporal changes of various pulpal immune cells dynamically reacting against foreign pathogens during immune response have not been well characterized. It is partly due to the technical difficulty in detailed 3D comprehensive cellular-level observation of dental pulp in whole intact tooth beyond the conventional histological analysis using thin tooth slices. In this work, we validated the optical clearing technique based on modified Murray's clear as a valuable tool for a comprehensive cellular-level analysis of dental pulp. Utilizing the optical clearing, we successfully achieved a 3D visualization of CD11c+ dendritic cells in the dentin-pulp complex of a whole intact murine tooth. Notably, a small population of unique CD11c+ dendritic cells extending long cytoplasmic processes into the dentinal tubule while located at the dentin-pulp interface like odontoblasts were clearly visualized. 3D visualization of whole murine tooth enabled a reliable observation of these rarely existing cells with a total number less than a couple of tens in one tooth. These CD11c+ dendritic cells with processes in the dentinal tubule were significantly increased in the dental pulpitis model induced by mechanical and chemical irritation. Additionally, the 3D visualization revealed a distinct spatial 3D arrangement of pulpal CD11c+ cells in the pulp into a front-line barrier-like formation in the pulp within 12 h after the irritation. Collectively, these observations demonstrated the unique capability of optical clearing-based comprehensive 3D cellular-level visualization of the whole tooth as an efficient method to analyze 3D spatiotemporal changes of various pulpal cells in normal and pathological conditions.


Subject(s)
CD11c Antigen/metabolism , Dendritic Cells/immunology , Dental Pulp/immunology , Imaging, Three-Dimensional/methods , Pulpitis/immunology , Tooth/immunology , Animals , Dendritic Cells/metabolism , Dendritic Cells/pathology , Dental Pulp/metabolism , Dental Pulp/pathology , Male , Mice , Mice, Inbred C57BL , Pulpitis/metabolism , Pulpitis/pathology , Tooth/metabolism , Tooth/pathology
8.
Cell Biochem Funct ; 39(7): 886-895, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34235754

ABSTRACT

Human dental pulp stem cells (hDPSCs) have significant potential of immunomodulatory for therapeutic and regenerative biomedical applications compared to other mesenchymal stem cells (MSCs). Nowadays, alteration of gene expression is an important way to improve the performance of MSCs in the clinic. MicroRNAs (miRs) and CD200 are known to modulate the immune system in MSCs. Curcumin is famous for its anti-inflammatory impacts. Phytosomal curcumin (PC) is a nanoparticle synthesized from curcumin that removes the drawbacks of curcumin. The purpose of this research was to assess the effects of PC on the expression of the CD200 and four key miRNAs in immune system. PC (30 µM) treatment of hDPSCs could ameliorate their immunoregulatory property, presented by reduced expressions of miR-21, miR-155 and miR-126, as well as enhanced expressions of miR-23 and CD200. The PC was also able to reduce PI3K\AKT1\NF-κB expressions that were target genes for these miRs and involved in inflammatory pathways. Moreover, PC was more effective than curcumin in improving the immune modulation of hDPSCs. Evidence in this study suggested that PC mediates immunoregulatory activities in hDPSC via miRs and CD200 to regulate PI3K\AKT1\NF-κB signalling pathways, which may provide a theoretical basis for PC in the treatment of many diseases. SIGNIFICANCE OF THE STUDY: Autoimmune diseases or tooth caries are partly attributed to global health problems and their common drug treatments have several side effects. The goal of this study is dentin regeneration and autoimmune diseases treatment via stem cell-based approaches with phytosomal curcumin (PC), for the first time. Because dental pulp stem cells have unique advantages (including higher immunomodulatory capacity) over other mesenchymal stem cells, we considered them the best option for treating these diseases. Using PC, we try to increase the immunomodulatory properties of these cells.


Subject(s)
Antigens, CD/genetics , Curcumin/pharmacology , Dental Pulp/drug effects , Inflammation/drug therapy , MicroRNAs/antagonists & inhibitors , Stem Cells/drug effects , Antigens, CD/immunology , Cells, Cultured , Curcumin/chemistry , Dental Pulp/immunology , Humans , Inflammation/immunology , MicroRNAs/genetics , MicroRNAs/immunology , Nanoparticles/chemistry , Stem Cells/immunology
9.
Molecules ; 26(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34299403

ABSTRACT

A wide range of mediators are released from the pulp tissue because of bacterial invasion which causes inflammation. Interleukins (ILs) and matrix metalloproteinases (MMPs) have a leading role in initiating and spreading of inflammation because of their synergic action. Biomarkers such as ILs and MMPs can be identified via several methods, establishing the inflammatory response of the dental pulp. The aim of this systematic review is to evaluate the levels of ILs and/or MMPs in human dental pulp. PubMed, OVID, Cochrane, Scopus, Web of Science and Wiley online library databases were searched for original clinical studies. After applying inclusion and exclusion criteria, a quality assessment of studies was performed based on a modified Newcastle-Ottawa scale. In the review were included articles that evaluated the presence of ILs and/or MMPs in pulp tissue using enzyme-linked immunosorbent assay (ELISA) or western blot or multiplex assay. Six articles were included in the present synthesis. Although various diagnostic methods were used, statistically significant higher levels of ILs and/or MMPs were mostly found in the experimental groups compared to healthy pulp samples. The biomarkers studied can be a promising tool to evaluate pulp tissue health or even in pulpitis treatment.


Subject(s)
Dental Pulp/pathology , Inflammation/physiopathology , Interleukins/metabolism , Matrix Metalloproteinases/metabolism , Dental Pulp/immunology , Dental Pulp/metabolism , Humans , Inflammation/metabolism
10.
Curr Issues Mol Biol ; 43(1): 116-126, 2021 May 13.
Article in English | MEDLINE | ID: mdl-34068275

ABSTRACT

The role of inflammatory mediators in dental pulp is unique. The local environment of pulp responds to any changes in the physiology that are highly fundamental, like odontoblast cell differentiation and other secretory activity. The aim of this review is to assess the role of cathelicidins based on their capacity to heal wounds, their immunomodulatory potential, and their ability to stimulate cytokine production and stimulate immune-inflammatory response in pulp and periapex. Accessible electronic databases were searched to find studies reporting the role of cathelicidins in pulpal inflammation and regeneration published between September 2010 and September 2020. The search was performed using the following databases: Medline, Scopus, Web of Science, SciELO and PubMed. The electronic search was performed using the combination of keywords "cathelicidins" and "dental pulp inflammation". On the basis of previous studies, it can be inferred that LL-37 plays an important role in odontoblastic cell differentiation and stimulation of antimicrobial peptides. Furthermore, based on these outcomes, it can be concluded that LL-37 plays an important role in reparative dentin formation and provides signaling for defense by activating the innate immune system.


Subject(s)
Cathelicidins/therapeutic use , Dental Pulp/drug effects , Inflammation/drug therapy , Odontoblasts/cytology , Wound Healing/drug effects , Cell Differentiation/drug effects , Dental Pulp/cytology , Dental Pulp/immunology , Dental Pulp/metabolism , Humans , Immunomodulation , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Odontoblasts/drug effects , Odontoblasts/immunology , Odontoblasts/metabolism
11.
Acta Histochem ; 122(8): 151636, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33132168

ABSTRACT

INTRODUCTION: Mesenchymal stem cells (MSCs) are characterized by the potential to differentiate into multiple cell lineages, high proliferation rates, and self-renewal capacity, in addition to the ability to maintain their undifferentiated state. These cells have been identified in physiological oral tissues such as pulp tissue, dental follicle, apical papilla and periodontal ligament, as well as in pathological situations such as chronic periapical lesions (CPLs). The criteria used for the identification of MSCs include the positive expression of specific surface antigens, with CD73, CD90, CD105, CD44, CD146, STRO-1, CD166, NANOG and OCT4 being the most specific for these cells. AIM: The aim of this review was to explore the literature on markers able to identify MSCs as well as the presence of these cells in the healthy periodontal ligament and CPLs, highlighting their role in regenerative medicine and implications in the progression of these lesions. METHODS: Narrative literature review searching the PubMed and Medline databases. Articles published in English between 1974 and 2020 were retrieved. CONCLUSION: The included studies confirmed the presence of MSCs in the healthy periodontal ligament and in CPLs. Several surface markers are used for the characterization of these cells which, although not specific, are effective in cell recognition. Mesenchymal stem cells participate in tissue repair, exerting anti- inflammatory, immunosuppressive and proangiogenic effects, and are therefore involved in the progression and attenuation of CPLs or even in the persistence of these lesions.


Subject(s)
Mesenchymal Stem Cells/cytology , Periapical Diseases/pathology , Periodontal Ligament/cytology , Regenerative Endodontics/methods , Adipocytes/cytology , Adipocytes/immunology , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Surface/genetics , Antigens, Surface/immunology , Biomarkers/metabolism , Cell Differentiation , Cell Lineage/genetics , Cell Lineage/immunology , Chondrocytes/cytology , Chondrocytes/immunology , Dental Pulp/cytology , Dental Pulp/immunology , Gene Expression , Humans , Mesenchymal Stem Cells/immunology , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/immunology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/immunology , Osteoblasts/cytology , Osteoblasts/immunology , Osteogenesis/genetics , Osteogenesis/immunology , Periapical Diseases/genetics , Periapical Diseases/immunology , Periapical Diseases/therapy , Periodontal Ligament/immunology
12.
Eur Cell Mater ; 40: 74-87, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32818290

ABSTRACT

Current pulpotomy is limited in its ability to induce regeneration of the dental-pulp (DP) complex. Hydrogels are reported to be well-suited for tissue engineering and are unlikely to induce an inflammatory response that might damage the remaining tissue. The present study investigated the molecular and cellular actors in the early inflammatory/immune response and deciphered M1/M2 macrophage polarisation to a chitosan-enriched fibrin hydrogel in pulpotomised rat incisors. Both fibrin and fibrin-chitosan hydrogels induced a strong increase in interleukin-6 (IL-6) transcript in the DP when compared to the DP of untreated teeth. Gene expression of other inflammatory mediators was not significantly modified after 3 h. In the viable DP cell population, the percentage of leukocytes assessed by flow cytometry was similar to fibrin and fibrin-chitosan hydrogels after 1 d. In this leukocyte population, the proportion of granulocytes increased beneath both hydrogels whereas the antigen-presenting cell, myeloid dendritic cells, T cells and B cells decreased. The natural killer (NK) cell population was significantly decreased only in DPs from teeth treated with fibrin-chitosan hydrogel. Immunolabeling analysis of the DP/hydrogel interface showed accumulation of neutrophil granulocytes in contact with both hydrogels 1 d after treatment. The DP close to this granulocyte area contained M2 but no M1 macrophages. These data collectively demonstrated that fibrin-chitosan hydrogels induced an inflammatory/immune response similar to that of the fibrin hydrogel. The results confirmed the potential clinical use of fibrin-chitosan hydrogel as a new scaffold for vital-pulp therapies.


Subject(s)
Chitosan/chemistry , Dental Pulp/immunology , Dental Pulp/pathology , Fibrin/chemistry , Hydrogels/chemistry , Immunity , Incisor/immunology , Pulpotomy , Animals , Female , Gene Expression Regulation , Humans , Inflammation Mediators/metabolism , Macrophage Activation , Macrophages/metabolism , Neutrophils/metabolism , Prosthesis Implantation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley
13.
Cell Transplant ; 29: 963689720952089, 2020.
Article in English | MEDLINE | ID: mdl-32830527

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, originating from Wuhan, China, is known to cause severe acute respiratory symptoms. The occurrence of a cytokine storm in the lungs is a critical step in the disease pathogenesis, as it causes pathological lesions, pulmonary edema, and acute respiratory distress syndrome, potentially resulting in death. Currently, there is no effective treatment that targets the cytokine storm and helps regenerate the damaged tissue. Mesenchymal stem cells (MSCs) are known to act as anti-inflammatory/immunomodulatory candidates and activate endogenous regeneration. As a result, MSC therapy is a potential treatment approach for COVID-19. Intravenous injection of clinical-grade MSCs into COVID-19 patients can induce an immunomodulatory response along with improved lung function. Dental pulp stem cells (DPSCs) are considered a potential source of MSCs for immunomodulation, tissue regeneration, and clinical application. Although some current clinical trials have treated COVID-19 patients with DPSCs, this therapy has not been approved. Here, we review the potential use of DPSCs and their significance in the development of a therapy for COVID-19.


Subject(s)
Coronavirus Infections/therapy , Dental Pulp/cytology , Immunomodulation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Pneumonia, Viral/therapy , Betacoronavirus/immunology , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/immunology , Cytokines/immunology , Dental Pulp/immunology , Humans , Immunotherapy/methods , Inflammation/immunology , Inflammation/therapy , Lung/immunology , Lung/physiology , Lung Injury/immunology , Lung Injury/therapy , Mesenchymal Stem Cells/cytology , Pandemics , Pneumonia, Viral/immunology , Regeneration , SARS-CoV-2
14.
Arch Oral Biol ; 117: 104794, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32553945

ABSTRACT

OBJECTIVE: This study aims to investigate the expression pattern of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 6 (NLRP6) in human dental pulp tissues and cells, and roughly explore the role of NLRP6 in dental pulp immunity. METHODS: Immunohistochemistry and immunofluorescence double staining were performed to determine the expression and localization of NLRP6 in healthy and inflamed pulp tissues. The expression of NLRP6 in human dental pulp cells (HDPCs) was investigated by immunocytofluorescence. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) and western blot were used to evaluate the impact of lipopolysaccharide (LPS) stimulation on NLRP6 expression in HDPCs. Last, NLRP6 gene was silenced by lentiviral short hairpin RNA to explore the impact of NLRP6 on LPS-induced interleukin (IL)-1ß. RESULTS: NLRP6 was predominantly expressed in odontoblasts layer and blood vessels of healthy dental pulp, as well as infiltrated immune cells and fibroblasts of inflamed pulp. Further immunofluorescence double staining showed that pericytes and endothelial cells in the dental pulp blood vessels, macrophages and T cells as well as fibroblasts in the inflamed pulp expressed NLRP6. NLRP6 was also basically expressed in cultured HDPCs and upregulated by LPS stimulation. Knockdown of NLRP6 in HDPCs significantly inhibited the LPS-induced IL-1ß expression. CONCLUSIONS: Our study revealed the expression and distribution of NLRP6 in human dental pulp tissues. Furthermore, NLRP6 was also basically expressed in cultured HDPCs, which could be upregulated by LPS stimulation, indicating the involvement of NLRP6 in dental pulp immune response.


Subject(s)
Dental Pulp/metabolism , Endothelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Odontoblasts/metabolism , Cells, Cultured , Dental Pulp/immunology , Humans , Lipopolysaccharides/pharmacology
15.
Cytokine ; 126: 154896, 2020 02.
Article in English | MEDLINE | ID: mdl-31670007

ABSTRACT

Pulpitis is known as a typical inflammation of dental pulp tissue, and microorganisms of the oral microbiome are involved in this opportunistic infection. Studies indicated that several factors related to host response have a crucial role in pulpitis. Among these factors, inflammatory mediators of the immune system such as cytokines and chemokines contribute to pulpal defense mechanisms. A wide range of cytokines have been observed in dental pulp and these small molecules are able to trigger inflammation and participate in immune cell trafficking, cell proliferation, inflammation, and tissue damage in pulp space. Therefore, the aim of this review was to describe the role of cytokines in the pathogenesis of pulpitis.


Subject(s)
Bacteria/immunology , Cytokines/immunology , Dental Pulp/pathology , Inflammation Mediators/immunology , Pulpitis/pathology , Animals , Cell Proliferation , Dental Pulp/immunology , Dental Pulp/microbiology , Humans , Inflammation/immunology , Pulpitis/drug therapy , Pulpitis/microbiology
16.
Int J Mol Sci ; 21(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861863

ABSTRACT

Human ß defensin-3-C15, an epithelium-derived cationic peptide that has antibacterial/antifungal and immuno-regulatory properties, is getting attention as potential therapeutic agent in endodontics. This study aimed to investigate if synthetic human ß defensin-3-C15 (HBD3-C15) peptides could inhibit inflammatory responses in human dental pulp cells (hDPCs), which had been induced by gram-positive endodontic pathogen. hDPC explant cultures were stimulated with Streptococcus gordonii lipoprotein extracts for 24 h to induce expression of pro-inflammatory mediators. The cells were then treated with either HBD3-C15 (50 µg/mL) or calcium hydroxide (CH, 100 µg/mL) as control for seven days, to assess their anti-inflammatory effects. Quantitative RT-PCR analyses and multiplex assays showed that S. gordonii lipoprotein induced the inflammatory reaction in hDPCs. There was a significant reduction of IL-8 and MCP-1 within 24 h of treatment with either CH or HBD3-C15 (p < 0.05), which was sustained over 1 week of treatment. Alleviation of inflammation in both medications was related to COX-2 expression and PGE2 secretion (p < 0.05), rather than TLR2 changes (p > 0.05). These findings demonstrate comparable effects of CH and HDB3-C15 as therapeutic agents for inflamed hDPCs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Lipoproteins/immunology , Streptococcal Infections/immunology , Streptococcus gordonii/immunology , beta-Defensins/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Cells, Cultured , Dental Pulp/cytology , Dental Pulp/drug effects , Dental Pulp/immunology , Humans , Inflammation/drug therapy , Inflammation/etiology , Inflammation/immunology , Models, Molecular , Streptococcal Infections/complications , Streptococcal Infections/drug therapy , beta-Defensins/chemical synthesis
17.
Cells ; 8(12)2019 11 22.
Article in English | MEDLINE | ID: mdl-31766697

ABSTRACT

Bone marrow mesenchymal stem/stromal cells (BM-MSCs) have immunoregulatory properties and have been used as immune regulators for the treatment of graft-versus-host disease (GVHD). Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to BM-MSCs for potential clinical applications because of their accessibility and easy preparation. The aim of this in vitro study was to compare MSCs from dental pulp (DP-MSCs), gingival tissue (G-MSCs), and periodontal ligament (PDL-MSCs) in terms of their immunosuppressive properties against lymphoid cell populations enriched for CD3+ T cells to determine which MSCs would be the most appropriate for in vivo immunoregulatory applications. BM-MSCs were included as the gold standard. Our results demonstrated, in vitro, that MSCs from DP, G, and PDL showed immunoregulatory properties similar to those from BM, in terms of the cellular proliferation inhibition of both CD4+- and CD8+-activated T-cells. This reduced proliferation in cell co-cultures correlated with the production of interferon-γ and tumor necrosis factor alpha (TNF-α) and the upregulation of programmed death ligand 1 (PD-L1) in MSCs and cytotoxic T-cell-associated Ag-4 (CTLA-4) in T-cells and increased interleukin-10 and prostaglandin E2 production. Interestingly, we observed differences in the production of cytokines and surface and secreted molecules that may participate in T-cell immunosuppression in co-cultures in the presence of DT-MSCs compared with BM-MSCs. Importantly, MSCs from four sources favored the generation of T-cell subsets displaying the regulatory phenotypes CD4+CD25+Foxp3+ and CD4+CD25+CTLA-4+. Our results in vitro indicate that, in addition to BM-MSCs, MSCs from all of the dental sources analyzed in this study might be candidates for future therapeutic applications.


Subject(s)
Dental Pulp/cytology , Gingiva/cytology , Mesenchymal Stem Cells/immunology , Periodontal Ligament/cytology , T-Lymphocytes/immunology , Adult , CD3 Complex/immunology , Cell Proliferation , Cells, Cultured , Coculture Techniques , Dental Pulp/immunology , Gingiva/immunology , Healthy Volunteers , Humans , Periodontal Ligament/immunology
18.
Immunol Res ; 67(4-5): 432-442, 2019 10.
Article in English | MEDLINE | ID: mdl-31407157

ABSTRACT

Substantial discoveries suggested that exosomes released from multiple sources of stem cells can affect the biological functions of target cells. In present period, the immunosuppressive properties of exosomes derived from bone marrow mesenchymal stem cells (BMMSCs-E) have been extensively recognized, but few studies have been reported about exosomes secreted from dental pulp stem cells (DPSCs-E) in the field of medical immunity. Hence, the aim of this study is to compare the immunomodulatory capacity of BMMSCs-E and DPSCs-E. Peripheral blood mononuclear cells (PBMCs) were co-cultured with them respectively and the proportion of regulatory T cells (Treg) was detected to increase. Subsequently, we stimulated CD4+T cells with BMMSCs-E and DPSCs-E to observe their effects on the polarizations, chemokines secretion, apoptosis, and proliferation of CD4+T cells. We found that DPSCs-E inhibited the differentiation of CD4+T cells into T helper 17 cells (Th17) and reduced the secretions of pro-inflammatory factors IL-17 and TNF-α, while promoted the polarization of CD4+T cells into Treg and increased the release of anti-inflammatory factors IL-10 and TGF-ß. What's more, these capabilities of DPSCs-E were stronger than those of BMMSCs-E. In addition, DPSCs-E were more effective in inducing apoptosis of CD4+T cells compared with BMMSCs-E, and DPSCs-E inhibited the proliferation of CD4+T cells, which is similar to BMMSCs-E. We draw a conclusion that DPSCs-E have stronger immune-modulating activities than BMMSCs-E, and may be a new therapeutic tool for the treatment of immunological diseases.


Subject(s)
Bone Marrow Cells/immunology , Dental Pulp/immunology , Exosomes/immunology , Immunomodulation , Mesenchymal Stem Cells/immunology , Adult , Bone Marrow Cells/cytology , Cell Differentiation/immunology , Cell Proliferation , Dental Pulp/cytology , Female , Humans , Interleukin-10/immunology , Male , Mesenchymal Stem Cells/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/cytology , Th17 Cells/immunology , Transforming Growth Factor beta/immunology
19.
J Cell Physiol ; 234(11): 21331-21341, 2019 11.
Article in English | MEDLINE | ID: mdl-31042008

ABSTRACT

microRNAs are small noncoding RNA molecules that regulate RNA silencing and posttranscriptional gene expression, and many microRNAs are involved in inflammatory processes. In particular, microRNA 21 (miR-21) is upregulated in inflammatory environment and reported to induce anti-inflammatory responses. However, the involvement of miR-21 in pulpal inflammation and the precise mechanisms of anti-inflammatory reactions induced by miR-21 remain unclear. We hypothesized that miR-21-5p expression is induced in lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs) and that miR-21-5p downregulates the proinflammatory cytokine expression in LPS-stimulated hDPCs. We found that miR-21-5p was upregulated in LPS-stimulated hDPCs concomitant with elevated proinflammatory cytokine expression and nuclear factor-kappa B (NF-κB) phosphorylation. miR-21-5p and cytokine expression were downregulated by BAY11-7085 and caffeic acid phenylethyl ester (CAPE), specific and potent NF-κB inhibitors. Enforced expression of miR-21-5p downregulated the Toll-like receptor (TLR)/NF-κB signaling via reducing the expression of TNF receptor-associated factor 6 (TRAF6) and programmed cell death 4 (PDCD4), which further induced the decrease of proinflammatory cytokine expression. hDPCs forcibly overexpressing miR-21-5p downregulated the LPS-induced expression of TNF receptor-associated factor 6 (TRAF6; a component of the Toll-like receptor [TLR]/NF-κB signaling pathway), programmed cell death 4 (PDCD4, a positive regulator of the TLR/NF-κB signaling pathway), and proinflammatory cytokines. In contrast, miR-21-5p inhibitor-transfected hDPCs upregulated the expression of TRAF6, PDCD4, and inflammatory cytokines following LPS stimulation. These findings suggest that miR-21-5p expression was induced by the NF-κB signaling pathway, which was in turn negatively regulated by miR-21-5p via downregulation of TRAF6 and PDCD4 expression in LPS-stimulated hDPCs.


Subject(s)
Dental Pulp/immunology , Inflammation/immunology , MicroRNAs/immunology , Pulpitis/immunology , Signal Transduction/immunology , Animals , Humans , Inflammation/metabolism , Lipopolysaccharides/immunology , Mice , MicroRNAs/metabolism , Pulpitis/metabolism , Rats , Rats, Sprague-Dawley
20.
Cell Prolif ; 52(3): e12595, 2019 May.
Article in English | MEDLINE | ID: mdl-30953394

ABSTRACT

OBJECTIVES: Mesenchymal stem cells (MSCs) could regulate the function of various immune cells. It remains unclear whether MSCs additionally possess immunostimulatory properties. We investigated the impact of human MSCs on the responsiveness of primary natural killer (NK) cells in terms of induction of anti-inflammatory purinergic signalling. MATERIAL AND METHODS: We obtained human bone marrow mesenchymal stem cells (BMMSCs) and dental pulp stem cells (DPSCs). NK cells were isolated from peripheral blood of healthy volunteers. Activated NK cells were cultured with MSCs. Proliferation assay, apoptosis analysis, activating or inhibitory receptor expression and degranulation assay were used to explore NK cells' function. High-performance liquid chromatography was used to investigate the purinergic signalling in activated NK cells. RESULTS: Both DPSCs and BMMSCs could impair proliferation and promote apoptosis of activated NK cells. Also, activated NK cells could cause DPSCs to lyse. Furthermore, the expression of activating NK cells' receptors was decreased, but inhibitory receptors of NK cells were elevated following co-cultivation. NK cells acquired CD73 expression, while MSCs could release ATP into the extracellular space where nucleotides were converted into adenosine (ADO) following co-culture system. Under the existence of exogenous 2-chloroadenosine (CADO), the cytotoxic capacity of NK cells was remarkably depressed in a concentration-dependent manner. CONCLUSIONS: DPSCs and BMMSCs could depress NK cells' function by hydrolysing ATP to ADO using CD39 and CD73 enzymatic activity. Our data suggested that DPSCs might represent a new strategy for treating immune-related diseases by regulating previously unrecognized functions in innate immune responses.


Subject(s)
Dental Pulp/cytology , Dental Pulp/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mesenchymal Stem Cells/immunology , 2-Chloroadenosine/pharmacology , 5'-Nucleotidase/metabolism , Apoptosis , Cell Proliferation , Coculture Techniques , Cytotoxicity, Immunologic/drug effects , GPI-Linked Proteins/metabolism , Humans , Inflammation Mediators/metabolism , K562 Cells , Killer Cells, Natural/cytology , Lymphocyte Activation , Purines/metabolism , Receptors, Natural Killer Cell/drug effects , Receptors, Natural Killer Cell/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...