Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.580
Filter
1.
BMC Oral Health ; 24(1): 562, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745306

ABSTRACT

BACKGROUND: Dentin hypersensitivity (DH) is one of the most challenging and persistent dental complaints characterized by transient, intense pain triggered by various stimuli. It affects a significant portion of the global population, predominantly those aged 20-40. This study aims to evaluate the desensitizing efficacy of seventh-generation dentin bonding agents (Single Bond Universal by 3 M ESPE and Xeno-V + by Dentsply) against a control group using Bifluorid 12 by Voco in mitigating DH within a month of the follow-up period. METHODS: This was a single-center, parallel-group, double-blind, controlled randomized clinical trial conducted at Dow University of Health Sciences, Karachi, Pakistan. A total of 105 patients with DH were allocated into three groups for this study. The patients were divided into three groups (Single Bond Universal by 3 M ESPE and Xeno-V + by Dentsply) and the control group containing fluoride varnish (Bifluorid 12 by Voco). Discomfort Interval Scale scores and Schiff Cold Air Sensitivity Scale scores were recorded at baseline, immediately after the intervention, after 01 weeks, and after 01 month. RESULTS: All the materials demonstrated a statistically significant reduction in discomfort and sensitivity (DIS scores p-value 0.01) immediately after 01 week and over a period of 01 month after treatment compared with the baseline scores before application, with no single material proving superior over the one-month observation period. The study also provided insights into dental hygiene practices, with a significant majority using a toothbrush and sensitivity patterns, with cold stimuli being the most common cause of sensitivity. CONCLUSION: The study demonstrates that Single Bond Universal, Xeno V+, and Bifluorid 12 are equally effective in reducing dentin hypersensitivity, with no distinct superiority observed over a one-month period. The findings highlight the potential of fluoride varnishes as a less technique-sensitive and cost-effective option for treating DH, offering valuable insights for future research and clinical practice. TRIAL REGISTRATION: NCT04225247 ( https://clinicaltrials.gov/study/NCT04225247 ), Date of Registration: 13/01/2020. (Retrospectively registered).


Subject(s)
Dentin Desensitizing Agents , Dentin Sensitivity , Dentin-Bonding Agents , Fluorides, Topical , Humans , Dentin Sensitivity/drug therapy , Female , Double-Blind Method , Male , Adult , Dentin Desensitizing Agents/therapeutic use , Dentin-Bonding Agents/therapeutic use , Fluorides, Topical/therapeutic use , Fluorides/therapeutic use , Young Adult , Bisphenol A-Glycidyl Methacrylate/therapeutic use , Treatment Outcome , Resin Cements/therapeutic use , Pain Measurement
2.
J Contemp Dent Pract ; 25(3): 245-249, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690698

ABSTRACT

AIM: The aim of the study is to determine the difference in the shear bond strengths to dentin among dental composite (Filtek Z350®, 3M), compomer (Dyract Flow®, Dentsply) and Giomer (Beautifil®, Shofu) with 3MTM Single BondTM Universal Adhesive (SBU) (7th generation, self-etch, single solution adhesive) and AdperTM Single Bond 2 Adhesive (ASB) (5th generation, total-etch, two solution adhesive). MATERIALS AND METHODS: Sixty extracted human permanent teeth were collected, cleansed of debris, and placed in distilled water. The samples were segregated into two groups depicting the two bonding agents-AdperTM (ASB) and 3MTM Single Bond Universal (SBU) and sub-grouped into three groups depicting the three restorative materials (Composite, Giomer, and Compomer) used. Groups were respresented as follows: Group I-ASB + Composite; Group II-ASB + Giomer; Group III-ASB + Compomer; Group IV-SBU + Giomer; Group V-SBU + Compomer; Group VI-SBU + Composite. After applying the bonding agent as per the manufacturer's instructions, following which the restorative material was placed. A Universal Testing Machine (Instron 3366, UK) was employed to estimate the shear bond strength of the individual restorative material and shear bond strengths were calculated. RESULTS: Composite bonded with SBU (group VI) displayed the greatest shear strength (11.16 ± 4.22 MPa). Moreover, Giomers and flowable compomers displayed better bond strengths with ASB compared with their SBU-bonded counterparts. CONCLUSION: These results mark the importance of careful material selection in clinical practice and the bonding agent used to achieve optimal bond strength and enhance the clinical longevity and durability of dental restorations. CLINICAL SIGNIFICANCE: From a clinical perspective, to avoid a compressive or a shear failure, it would be preferrable to use a direct composite restorative material with SBU (Single bond universal adhesive, 7th generation) to achieve maximum bond strength. How to cite this article: Kuchibhotla N, Sathyamoorthy H, Balakrishnan S, et al. Effect of Bonding Agents on the Shear Bond Strength of Tooth-colored Restorative Materials to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):245-249.


Subject(s)
Compomers , Composite Resins , Dental Bonding , Dental Stress Analysis , Dentin-Bonding Agents , Dentin , Shear Strength , Composite Resins/chemistry , Humans , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , In Vitro Techniques , Compomers/chemistry , Bisphenol A-Glycidyl Methacrylate , Dental Restoration, Permanent/methods , Materials Testing , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Acrylic Resins/chemistry
3.
Braz Dent J ; 35: e245550, 2024.
Article in English | MEDLINE | ID: mdl-38775591

ABSTRACT

This in vitro study aimed to determine the efficacy of dentin bonding agents in preventing color changes following Regenerative Endodontic Procedures. One hundred twenty bovine incisors were endodontically prepared and randomly assigned to a two main factors design: application of a dentin bonding agent (Scotchbond Adper, 3M ESPE, St Paul, MN, USA) in the pulp chamber (Group 1, n=60) versus no bonding intervention (Group 2, n=60), and five levels of intracanal medication (n=12/subgroup): Triple antibiotic paste (TAP), double antibiotic paste (DAB), calcium hydroxide (CH), modified triple antibiotic paste (TAPM), and Control (CTL). Color changes were measured over 28 days at multiple time points (1, 3, 7, 14, 21, and 28 days) using the CIEDE2000 formula to calculate the color difference (ΔE00) from baseline (T0). The ΔE00 quantifies the perceptible color difference between the initial and final tooth color, with lower values indicating less discoloration. The results were analyzed using repeated measures ANOVA-2 and post-hoc Holm-Sidak tests. The TAP subgroups, both with and without the bonding agent, exhibited the highest color variation. However, a pulp chamber seal with a bonding agent showed a protective effect against discoloration compared to no seal, even though complete prevention was not achieved. All groups demonstrated ΔE00 values beyond acceptable interpretation thresholds for clinical application, primarily driven by a reduction in lightness (L*) and a decrease in redness (a* value, shifting towards green). In conclusion, while the pulp chamber seal with a bonding agent mitigated TAP-induced discoloration, it did not eliminate it.


Subject(s)
Dentin-Bonding Agents , Regenerative Endodontics , Dentin-Bonding Agents/chemistry , Animals , Cattle , In Vitro Techniques , Regenerative Endodontics/methods , Color , Anti-Bacterial Agents , Tooth Discoloration/prevention & control , Calcium Hydroxide
4.
Braz Dent J ; 35: e245720, 2024.
Article in English | MEDLINE | ID: mdl-38775593

ABSTRACT

This study evaluated a new method of adhesive system application on the bond strength between fiber post and root dentin using two adhesive systems. The canals of sixty bovine incisors were prepared and obturated. The roots were divided into six groups (n=10) according to the adhesive system (Clearfil SE - CSE and Single Bond Universal - SBU) and the application strategy (microbrush - MB; rotary brush - RB; and ultrasonic tip - US). The glass fiber posts were cemented with resin cement (RelyX ARC). The roots were sectioned perpendicularly to their long axis, and three slices per root were obtained. Previously to the push-out test, confocal laser scanning microscopy (CLSM) was performed to illustrate the interfacial adaptation of the cement to the root canal walls. Failure patterns were analyzed with 40x magnification. Shapiro-Wilk indicated a normal distribution of the data. The bond strength values were compared using one-way ANOVA and Tukey's tests. Student's T test analyzed the differences between the adhesive systems within each third and protocol. A significance level of 5% was used. CSE with RB showed higher mean bond strength values compared to MB (conventional technique) (P < 0.05). US application resulted in intermediate bond strength values for CSE (P > 0.05). The application of SBU using RB generated higher mean bond strength values compared to MB and US (P < 0.05). Adhesive failures were predominant (65.5%). CSE and SBU application with the new rotary brush improved the bond strength of fiber posts to root dentin compared to the conventional strategy.


Subject(s)
Dentin , Post and Core Technique , Resin Cements , Cattle , Animals , Resin Cements/chemistry , Dental Bonding/methods , Bisphenol A-Glycidyl Methacrylate/chemistry , Dentin-Bonding Agents/chemistry , Microscopy, Confocal , Polymethacrylic Acids/chemistry , Materials Testing , Glass/chemistry , Tooth Root , Polyethylene Glycols/chemistry , Dental Stress Analysis
5.
J Adhes Dent ; 26(1): 103-116, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38602234

ABSTRACT

PURPOSE: To investigate the antibacterial effects of Terminalia catappa Linn (TCL) leaf extracts at different concentrations and the effects of these extracts used as primers on the long-term adhesive properties of two universal adhesives. MATERIALS AND METHODS: After extract preparation, the antimicrobial and antibacterial activities of TCL against Streptococcus mutans (UA 159) were assessed in microdilution assays to provide the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Additionally, to provide quantitative data on the ability of TCL extract to reduce cell viability, colony forming units (CFU) were counted. To examine adhesive properties, 288 human molars were randomly assigned to 32 experimental conditions (n = 9) according to the following variables: (1) treatment agent: negative control (untreated surface), and primers at concentrations of 1xMIC, 5xMIC, and 10xMIC; (2) adhesives: Scotchbond Universal (SBU) and Futurabond Universal (FBU); (3) adhesive strategy: etch-and-rinse (ER) or self-etch (SE); and (4) storage time: 24 h or after 2 years. Primers were applied for 60 s, upon which the teeth were incrementally restored and sectioned into adhesive-dentin bonded sticks. These were tested for microtensile bond strength (µTBS) and nanoleakage (NL) after 24-h and 2-year water storage, as well as in-situ degree of conversion (DC) at 24 h. The chemical profile of the hybrid layer was determined via micro-Raman spectroscopy. Biofilm assay data were analyzed using the Kruskal-Wallis test; the pH of culture media and the chemical profile were analyzed by one-way ANOVA. The adhesive properties (µTBS, NL, DC) were evaluated using a four-way ANOVA and Tukey's test. Significance was set at 5%. RESULTS: Similar values of MIC and MBC were observed (2 mg/ml), showing bactericidal potential. CFU analysis demonstrated that concentrations of 5xMIC and 10xMIC significantly inhibited biofilm formation (p < 0.001). The application of the TCL primer at all concentrations significantly increased the immediate µTBS and DC, and decreased the immediate NL values when compared to the control group (p < 0.05), regardless of the adhesive and adhesive strategies. Despite an increase in the NL values for all groups after 2 years (p > 0.05), in groups where the TCL primer was applied, the µTBS remained constant after 2 years for both adhesives, while a decrease in the µTBS was observed in the control groups (p < 0.05). Usually, 10xMIC showed better results than 1xMIC and 5xMIC (p < 0.05). The application of TCL promoted cross-linking; cross-linking rates increased proportionally to the concentration of TCL (p < 0.05). CONCLUSION: Primers containing TCL promoted bactericidal and bacteriostatic action, as well as cross-linking with dentin, while maintaining the adhesive properties of the adhesive-dentin interface after 2 years of water storage.


Subject(s)
Dental Bonding , Terminalia , Humans , Dental Cements/pharmacology , Dental Cements/chemistry , Dentin-Bonding Agents/pharmacology , Dentin-Bonding Agents/chemistry , Composite Resins/chemistry , Dentin , Tensile Strength , Resin Cements/pharmacology , Resin Cements/chemistry , Water/chemistry , Anti-Bacterial Agents/pharmacology , Materials Testing
6.
J Mech Behav Biomed Mater ; 154: 106498, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581962

ABSTRACT

Chitosan (CS) and phloroglucinol (PhG), two extracts abundantly found in marine life, were investigated for their ability to biomodify demineralized dentin by enhancing collagen crosslinks and improving dentin extracellular matrix (ECM) mechanical and biochemical stability. Dentin obtained from non-carious extracted human molars were demineralized with phosphoric acid. Baseline Fourier-transform infrared (FTIR) spectra, apparent flexural elastic modulus (AE) and dry mass (DM) of each specimen were independently acquired. Specimens were randomly incubated for 5 min into either ultrapure water (no-treatment), 1% glutaraldehyde (GA), 1% CS or 1% PhG. Water and GA were used, respectively, as a negative and positive control for collagen crosslinks. Specimens' post-treatment FTIR spectra, AE, and DM were obtained and compared with correspondent baseline measurements. Additionally, the host-derived proteolytic activity of dentin ECM was assessed using hydroxyproline assay (HYP) and spectrofluorometric analysis of a fluorescent-quenched substrate specific for matrix metalloproteinases (MMPs). Finally, the bond strength of an etch-and-rinse adhesive was evaluated after application of marine compounds as non-rinsing dentin primers. Dentin specimens FTIR spectral profile changed remarkably, and their AE increased significantly after treatment with marine compounds. DM variation, HYP assay and fluorogenic substrate analysis concurrently indicated the biodegradation of CS- and PhG-treated specimens was significantly lesser in comparison with untreated specimens. CS and PhG treatments enhanced biomechanical/biochemical stability of demineralized dentin. These novel results show that PhG is a primer with the capacity to biomodify demineralized dentin, hence rendering it less susceptible to biodegradation by host-proteases.


Subject(s)
Chitosan , Dental Bonding , Humans , Dentin/chemistry , Extracellular Matrix/metabolism , Collagen/metabolism , Hydroxyproline , Dentin-Bonding Agents/chemistry , Water/metabolism , Tensile Strength
7.
J Dent ; 145: 104985, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574846

ABSTRACT

OBJECTIVE: Clinical contamination during direct adhesive restorative procedures can affect various adhesive interfaces differently and contribute to bulk failure of the restorations. This review aims to summarise the current knowledge on the influence of a variety of clinical contaminants on the bond strength at various adhesive interfaces during adhesive restorative procedures and identify gaps in the literature for future research. DATA AND SOURCES: An electronic database search was performed in PubMed and EMBASE to identify articles that investigated the influence of contaminants on direct restorative bonding procedures. A data-charting form was developed by two researchers to capture the key characteristics of each eligible study. STUDY SELECTION: The initial search yielded 1,428 articles. Fifty-seven articles published between 1 Jan 2007 and 25 Oct 2023 were included in the final review. Thirty-three of the articles examined the influence of saliva contamination, twelve articles examined the influence of blood contamination, and twenty-five articles examined the influence of other contaminants. CONCLUSION: Saliva contamination exerted less influence on the decrease in bond strength when self-etch systems were used, compared to when etch-and-rinse systems were used. Blood contamination adversely affected the bond strength at the interface between resin composite and dentine, and resin composite and resin-modified glass ionomer cement. Treating contaminated surfaces with water spray for 10-30 s followed by air drying could be effective in recovering bond strength following saliva and blood contamination. CLINICAL SIGNIFICANCE: This scoping review provides a valuable overview of the range of potential clinical contaminants that can influence the bond strength between different interfaces in direct adhesive restorative procedures. Additionally, it identifies potential decontamination protocols that can be followed to restore and enhance bond strength.


Subject(s)
Composite Resins , Dental Bonding , Humans , Composite Resins/chemistry , Dental Restoration, Permanent/methods , Saliva , Glass Ionomer Cements/chemistry , Dentin-Bonding Agents/chemistry , Materials Testing , Dentin , Dental Cements/chemistry , Dental Stress Analysis , Surface Properties , Resin Cements/chemistry
8.
BMC Oral Health ; 24(1): 423, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580948

ABSTRACT

BACKGROUND: To evaluate the physical properties of bioactive glass-modified universal multimode adhesive and its micro-tensile bond strength (µTBS) to artificially induced caries-affected dentin. METHODS: All bond universal adhesive was used in the study. Specimens were divided into 2 main groups: control unmodified adhesive and 5 wt% BAG modified adhesive. The degree of conversion, pH, bioactivity, and viscosity of the adhesives were tested with n = 5 for each test. Micro-tensile bond strength evaluation was done in etch & rinse (ER) and selective-etch (SE) modes, where 24 human molar teeth were used (n = 3), 12 teeth for immediate bond strength, and the other 12 were tested after 6 months of storage in simulated body fluid (SBF). RESULTS: No significant difference was found between the control and the 5wt% BAG groups regarding the degree of conversion (61.01 ± 0.43 and 60.44 ± 0.61 respectively) and the viscosity (109.77 ± 22.3 and 124.3 ± 9.92 respectively). The control group revealed significantly lower pH values than the 5wt% BAG group (3.16 ± 0.5 and 4.26 ± 0.09 respectively). Immediate bond strength results revealed that the 5wt% BAG in the ER mode had the highest bond strength followed by the control group in the ER mode (44.16 ± 7.53 and 44.00 ± 7.96 respectively). SE groups showed that the immediate strength of the 5wt% BAG group was higher than the control group (42.09 ± 6.02 and 39.29 ± 6.64 respectively). After 6 months of storage, bond strength results revealed a decrease in bond strength values for the control groups but not for the 5wt% BAG in both application modes. CONCLUSIONS: The incorporation of BAG (5wt%) improved the universal adhesive micro-tensile bond strength and bond durability for both adhesive application modes without affecting its degree of conversion or viscosity.


Subject(s)
Dental Bonding , Dental Caries , Humans , Dental Cements , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry , Dental Caries Susceptibility , Materials Testing , Tensile Strength , Dentin
9.
BMC Oral Health ; 24(1): 505, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684974

ABSTRACT

BACKGROUND: The stability of resin-dentin interfaces is still highly questionable. The aim of this study was to evaluate the effect of Salvadora persica on resin-dentin bond durability. MATERIALS AND METHODS: Extracted human third molars were used to provide mid-coronal dentin, which was treated with 20% Salvadora persica extract for 1 min after acid-etching. Microtensile bond strength and interfacial nanoleakage were evaluated after 24 h and 6 months. A three-point flexure test was used to measure the stiffness of completely demineralized dentin sticks before and after treatment with Salvadora persica extract. The hydroxyproline release test was also used to measure collagen degradation by endogenous dentin proteases. Statistical analysis was performed using two-way ANOVA followed by post hoc Bonferroni test and unpaired t-test. P-values < 0.05 were considered statistically significant. RESULTS: The use of Salvadora persica as an additional primer with etch-and-rinse adhesive did not affect the immediate bond strengths and nanoleakage (p > 0.05). After 6 months, the bond strength of the control group decreased (p = 0.007), and nanoleakage increased (p = 0.006), while Salvadora persica group showed no significant difference in bond strength and nanoleakage compared to their 24 h groups (p > 0.05). Salvadora persica increased dentin stiffness and decreased collagen degradation (p < 0.001) compared to their controls. CONCLUSION: Salvadora persica extract pretreatment of acid-etched dentin preserved resin-dentin bonded interface for 6 months. CLINICAL SIGNIFICANCE: Durability of resin-dentin bonded interfaces is still highly questionable. Endogenous dentinal matrix metalloproteinases play an important role in degradation of dentinal collagen within such interfaces. Salvadora persica may preserve resin-dentin interfaces for longer periods of time contributing to greater clinical success and longevity of resin composite restorations.


Subject(s)
Acid Etching, Dental , Dental Bonding , Dental Leakage , Dentin , Plant Extracts , Salvadoraceae , Tensile Strength , Humans , Dentin/drug effects , Plant Extracts/pharmacology , Dental Bonding/methods , Collagen , Dentin-Bonding Agents/chemistry , Materials Testing , Hydroxyproline , Dental Stress Analysis , Composite Resins/chemistry , Time Factors , Resin Cements/chemistry
10.
J Dent ; 144: 104918, 2024 May.
Article in English | MEDLINE | ID: mdl-38461887

ABSTRACT

OBJECTIVE: To determine the effect of airborne particle abrasion (APA) on micro-tensile bond strength (µTBS) to dentin using different air-abrasion/polishing powders. METHODS: The bonding effectiveness of G2 Bond Universal (G2B), used in etch-and-rinse (E&R) and self-etch mode (SE), was tested on bur-cut dentin and dentin air abraded/polished using six different powders (aluminum oxide 29 µm (AO29) and 53 µm (AO53), aluminum trihydroxide (AT), sodium bicarbonate (SB), sodium bicarbonate soft (SBsoft) and bioactive glass (BG); Velopex). Adhesive-composite resin specimens were immersed in distilled water at 37 °C for one week and cut into microspecimens. Half of the specimens were subjected to 50,000 thermocycles (aged). Immediate and aged µTBS to dentin were measured. Statistical analysis was performed using linear mixed-effects (LME) modeling (p < 0.05). RESULTS: Comparing the aged bond strengths to air-abraded/polished dentin with bur-cut dentin, pretreatment with SB and SBsoft in combination with G2B used in E&R mode, and BG air polishing in combination with both application modes (E&R, SE), resulted in a significantly higher bond strength. Dentin bond strength was only significantly lower when air abraded with AO29 and using G2B in SE mode. Aging did not significantly influence bond strength for both application modes (E&R, SE), except for AO29 and AT-treated dentin, where bond strengths decrea sed significantly using G2B in SE mode. In general, G2B reached significantly higher bond strengths on air-abraded/polished dentin in E&R mode than in SE mode. CONCLUSION: Air-abrasion/polishing did not impair dentin bond strength using G2B, except when dentin was air abraded with AO29 and using G2B in SE mode. Air polishing positively influenced the bond strength to dentin in specific groups. CLINICAL SIGNIFICANCE: APA is safe concerning bonding to dentin. The E&R application mode is preferred using G2B as adhesive on air-abraded/polished dentin. Air polishing with BG positively influenced dentin bond strength for both application methods.


Subject(s)
Air Abrasion, Dental , Composite Resins , Dental Bonding , Dentin-Bonding Agents , Dentin , Materials Testing , Resin Cements , Surface Properties , Tensile Strength , Dental Bonding/methods , Humans , Composite Resins/chemistry , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry , Dental Stress Analysis , Acid Etching, Dental/methods , Dental Polishing/methods , Stress, Mechanical , Dental Materials/chemistry , Powders
11.
Dent Mater ; 40(5): 777-788, 2024 May.
Article in English | MEDLINE | ID: mdl-38458917

ABSTRACT

OBJECTIVE: To evaluate the effects of an ammonia-based and a water-based silver-containing solutions on bonding performance and matrix-metalloproteinases (MMPs) activity of a universal adhesive to dentin after 1 year of artificial aging. METHODS: Mid-coronal dentin surfaces of 60 sound human molars were exposed and the following groups were formed according to the surface pre-treatment and etching mode of the universal adhesive (Zipbond Universal, SDI) (n = 10): G1) Zipbond in the self-etch mode (ZSE); G2) Riva Star (SDI) applied before ZSE; G3) Riva Star Aqua (SDI) applied before ZSE; G4) Zipbond in the etch-and-rinse mode (ZER); G5) Riva Star applied before ZER; G6) Riva Star Aqua applied before ZER. The specimens were sectioned and subjected to microtensile bond strength (µTBS) test at baseline (T0) and after 12 months (T12) of artificial storage. Scanning electron microscope (SEM) and energy dispersive spectroscopy analysis (EDS) were also conducted. Three additional molars per group were processed for the in situ zymography analysis at T0 and T12. Data were statistically analyzed (p < 0.05). RESULTS: Dentin pre-treatments and aging decreased bonding values, regardless of the etching mode (p < 0.05). No differences in µTBS were observed between the two silver-containing solutions, both at T0 and T12. Riva Star Aqua and etching significantly increased the MMPs activity, independent of the storage period (p < 0.05). SIGNIFICANCE: Dentin surface pre-treatment with silver-containing solutions negatively affects the bonding performances of resin composite restorations placed with a universal adhesive. However, the ammonia-based product Riva Star might show better stability in the long term, due to lower activation of MMPs.


Subject(s)
Ammonia , Dental Bonding , Dentin-Bonding Agents , Materials Testing , Microscopy, Electron, Scanning , Silver , Surface Properties , Tensile Strength , Water , Humans , Water/chemistry , Dentin-Bonding Agents/chemistry , Silver/chemistry , Ammonia/chemistry , Dentin/chemistry , In Vitro Techniques , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/chemistry , Resin Cements/chemistry , Molar , Acid Etching, Dental , Spectrometry, X-Ray Emission , Dental Stress Analysis
12.
Eur J Oral Sci ; 132(3): e12983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38497607

ABSTRACT

In this study, we evaluated the effect of four different strategies for bonding a CAD/CAM resin nanoceramic restoration (Lava Ultimate, 3M) to the dentin surface using a universal adhesive (Scotch Bond Universal, 3M) and adhesive resin cement (RelyX Ultimate, 3M) on the shear bond strength (SBS) and failure mode. The strategies comprised: (i) immediate sealing, immediate bonding; (ii) immediate sealing, bonding after 2 weeks with provisional restoration; (iii) immediate sealing with flowable resin composite reinforcement and bonding after 2 weeks with provisional restoration; and (iv) no immediate sealing, and bonding after 2 weeks with provisional restoration. After bonding, all the specimens were thermocycled, shear tests were performed using a universal testing machine, and failure modes were determined using stereomicroscope and scanning electron microscopy. The highest mean SBS was recorded with immediate sealing, immediate bonding strategy. Most adhesive failures with exposed dentinal tubules were noted in specimens exposed to bonding after 2 weeks with no immediate sealing, which was associated with the lowest SBS. Mixed failures predominated in all immediate dentin sealing groups. Immediate sealing with universal adhesives improves SBS, particularly in the single-visit approach, which has shown significantly better performance, whereas the provisional phase has a negative effect.


Subject(s)
Composite Resins , Dental Bonding , Dental Stress Analysis , Dentin-Bonding Agents , Resin Cements , Shear Strength , Composite Resins/chemistry , Dental Bonding/methods , Humans , Resin Cements/chemistry , Dentin-Bonding Agents/chemistry , Dentin , Microscopy, Electron, Scanning , Materials Testing , Dental Restoration, Permanent/methods , Ceramics/chemistry , Computer-Aided Design , Surface Properties , Dental Restoration Failure
13.
J Appl Oral Sci ; 32: e20230359, 2024.
Article in English | MEDLINE | ID: mdl-38537030

ABSTRACT

OBJECTIVE: This study aimed to analyze the longitudinal bond strength of a universal adhesive and chemically characterize the dentin substrate under different acid etching protocols. METHODOLOGY: Dentin samples were etched with polyacrylic acid 25% (PAA) for 10 seconds (n=3) and phosphoric acid 32% (PA) for 15 seconds (n=3) and analyzed by Fourier transform infrared spectroscopy - attenuated total reflectance (FTIR-ATR) before and after treatment. For collagen degradation, samples (n=12) were divided into 3 groups: PAA, PA, and Deionized water (control), and analyzed by the quantity of solubilized type I collagen C-terminal cross-linked telopeptides and solubilized C-terminal peptide in relation to total protein concentration (ICTPtp and CTXtp) and by their ultimate tensile strength (UTS). For the adhesive interface analysis, dentin samples (n=72) were divided into 3 groups: PAA, PA, and Self-etch (SE), and subdivided into 2 groups: 24 h (baseline) and 1 year. The following tests were performed: microtensile bond strength (µTBS) (n=48), scanning electron microscopy (SEM) (n=12), and nanoleakage (n=12). RESULTS: The FTIR of PAA showed lower reduction of the peaks in the phosphate group when compared to PA. For ICTPtp, PA showed a significantly higher value. For CTXtp, PA and PAA groups failed to statically differ from each other. UTS was significantly lower for PA. For µTBS, storage time significantly affected bond strength. The results were unaffected by the etching protocol. For SEM, after 1 year, PA had little evidence of degradation in the upper third of the adhesive interface in comparison to the other groups. Nanoleakage showed no considerable silver impregnation after 1 year in the SE group. CONCLUSION: The use of PAA prior to a universal adhesive (when compared to PA) represents a less aggressive type of etching to dentin. However, self-etching still seems to be the best option for universal adhesive systems that have functional monomers in their composition.


Subject(s)
Dental Bonding , Dental Cements , Dentin , Phosphoric Acids , Tensile Strength , Microscopy, Electron, Scanning , Dentin-Bonding Agents/chemistry , Materials Testing , Resin Cements/chemistry
14.
Arch Oral Biol ; 162: 105942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452415

ABSTRACT

OBJECTIVES: The aim of this scoping review was to evaluate the available scientific evidence regarding the use of flavonoids in the treatment of caries-affected dentin focusing on bonding to dentin. METHODS: A comprehensive literature search was performed in five databases from March 2022 and updated in April 2023: PubMed, EMBASE, Scopus, Web of Science, and Scielo. Additionally, the references of included studies were manually searched. Gray literature was excluded from the review. STUDY SELECTION: Inclusion criteria included in vitro, in situ, and in vivo studies (animal or human) published in English. Abstracts, reviews, case reports, book chapters, doctoral dissertations, guidelines, and studies using pure plant extracts were excluded. Data collected from the selected studies were summarized and subjected to narrative and descriptive analysis. Out of the 91 studies identified, only 16 studies met the inclusion criteria. RESULTS: The review analyzed eight different flavonoids (hesperidin, galardin, proanthocyanidin, genipin, quercetin, naringin, epigallocatechin-3-gallate, and other catechins subtypes) used as pretreatment or loaded into adhesive systems, primers, and phosphoric acid. The use of flavonoids improved the mechanical properties of the materials and modified the biological properties of the dentin, reducing collagen loss by the inhibition of proteolytic activity of matrix metalloproteinases (MMPs). CONCLUSIONS: Based on the findings of this scoping review, it can be concluded that the use of flavonoids as pretreatment or incorporation into dental materials preserves collagen in the hybrid layer, inhibiting the MMPs activities, modifying the collagen fibrils of the dentin matrix and improving the mechanical properties of the dental adhesive systems. Therefore, it represents a promising approach for promoting dentin biomodification. This can result in more stable bonding of adhesive restorations to caries-affected dentin.


Subject(s)
Dental Bonding , Dental Caries , Humans , Flavonoids/pharmacology , Dental Caries Susceptibility , Collagen , Dental Caries/drug therapy , Matrix Metalloproteinases , Dentin , Dentin-Bonding Agents , Materials Testing , Resin Cements , Tensile Strength
15.
J Esthet Restor Dent ; 36(6): 930-940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433719

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effects of different surface treatments on the repair bond strength between a fiber-reinforced dentin composite and a posterior composite. METHODS: Forty fiber-reinforced dentin composite resin blocks (4 mm × 4 mm × 4 mm) were separated into eight groups (n = 5) according to the surface preparation methods: (G1) negative control group, (G2) adhesive application, (G3) 50% dimethylsulfoxide (DMSO) application, (G4) 50% DMSO + adhesive application, (G5) 37% phosphoric acid etch + adhesive application, (G6) air abrasion + adhesive application, (G7) 37% phosphoric acid etch + 50% DMSO application + adhesive application, and (G8) air abrasion +50% DMSO application + adhesive application group. The composite surfaces were repaired in two layers with a posterior composite. Composite sticks were subjected to a micro tensile bond strength (µTBS) test. Fractured surfaces were evaluated using a stereomicroscope (×25). Short fiber-reinforced composite samples' surfaces were investigated by scanning electron microscope (SEM). Shapiro Wilk, one-way ANOVA, and Tukey HSD tests were used for statistical evaluation. RESULTS: The highest average (µTBS) values were observed in G8, whereas the lowest mean µTBS values were evident in the G1 group. Statistically significant µTBS values were found in all adhesive-applied groups when compared with the negative control group. Notably, the application of 50% DMSO without adhesive did not lead to a statistically significant increase in µTBS values. SEM images demonstrated that acid etching partially eliminated residues on the composite surface, while air abrasion had a detrimental effect on the integrity of fiber structures. CONCLUSION: In the repair of fiber-reinforced dentin composite with a posterior composite, adhesive application is an effective approach. The treatment of 50% DMSO without adhesive did not confer a statistically significant advantage, and the supplemental use of acid etch or air abrasion did not show an additional benefit compared to adhesive-only repairs. CLINICAL SIGNIFICANCE: Adhesive application emerges as a potent and effective strategy for the repair of bur-roughened fiber-reinforced dentin composites. With its limitations, the study highlights the efficacy of adhesive-only repairs without the necessity for additional surface treatments.


Subject(s)
Composite Resins , Dental Bonding , Surface Properties , Tensile Strength , Composite Resins/chemistry , Dental Bonding/methods , Humans , Dentin , Acid Etching, Dental , Materials Testing , Phosphoric Acids/chemistry , Dentin-Bonding Agents/chemistry , Dental Stress Analysis , Microscopy, Electron, Scanning
16.
J Esthet Restor Dent ; 36(6): 941-950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38475977

ABSTRACT

OBJECTIVES: To investigate the effect of cumulative doses of radiation on the pushout bond strength (BS) of a universal resin cement used in the self-etch (SE) and self-adhesive (SA) modes to the intraradicular dentin. MATERIALS AND METHODS: Forty-eight human teeth were distributed into three groups (n = 16) according to the radiation therapy dose (RT): NoRT (no-radiotherapy), 70RT (70 Gy), and 70 + 70RT (70 Gy + 70 Gy). The teeth were redistributed into two subgroups (n = 8), according to the adhesive mode: SE (NoRT-SE, 70RT-SE, and 70 + 70RT-SE) and SA (NoRT-SA, 70RT-SA, and 70 + 70RT-SA). Data were statistically compared after BS test (ANOVA, Tukey's post hoc test, and Fisher's exact test). RESULTS: In the SA mode, BS was significantly higher in nonirradiated teeth compared with 70RT and 70 + 70RT (p < 0.0001). There were no significant differences between SE and SA modes in nonirradiated teeth (p = 0.14). In the 70RT group, SE mode increased BS compared with SA mode (p < 0.0001). Most specimens had adhesive and mixed failures in SA and SE modes, respectively. CONCLUSIONS: The universal resin cement in the SE mode had greater BS to the irradiated dentin. When teeth were re-irradiated, the universal resin cement had similar performance in terms of BS, regardless of the adhesive approach. CLINICAL SIGNIFICANCE: There is no research establishing a correlation between radiotherapy and its impact on the BS of a universal resin cement used in SE and SA modes to intraradicular dentin.


Subject(s)
Dental Bonding , Resin Cements , Humans , Resin Cements/chemistry , Dental Bonding/methods , Dentin , Dental Stress Analysis , Materials Testing , Dentin-Bonding Agents/chemistry , Acid Etching, Dental
17.
Clin Oral Investig ; 28(3): 202, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38453707

ABSTRACT

OBJECTIVES: To evaluate the effects of Nd:YAG laser irradiation on the microstructures of dentin surfaces and the long-term bond strength of dentin under simulated pulpal pressure. MATERIALS AND METHODS: Under simulated pulp pressure, 30 freshly extracted caries-free third molars were cut into 2-mm-thick dentin samples and then divided into five groups: the control and laser groups (93.3 J/cm2; 124.4 J/cm2; 155.5 J/cm2; 186.6 J/cm2). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Vickers hardness were used to analyze the surface morphology, composition, and mechanical properties of the dentin before and after laser irradiation. Another 80 caries-free third molars were removed and treated as described above, and the resin was bonded to the dentin surface with Single Bond Universal (SBU) adhesive in self-etch mode to make stick specimens. Microtensile bond strength (µTBS), confocal laser scanning microscopy (CLSM), and interfacial silver nanoleakage tests before and after 10,000 times thermocycling were then performed to analyze the bonding properties and interfacial durability of each group. RESULTS: SEM observations revealed that the surfaces of all laser group specimens were rough with open dentin tubules. Laser irradiation altered the surface composition of dentin while removing some collagen fibers but did not affect its surface hardness or crystallographic characteristics. Furthermore, laser irradiation with an energy density of 124.4 J/cm2 significantly promoted the immediate and aging bond strengths and reduced nanoleakage compared to those of the control group. CONCLUSIONS: Under simulated pulp pressure, Nd:YAG laser pretreatment altered the chemical composition of dentin and improved the immediate and long-term bond strength. CLINICAL RELEVANCE: This study investigated the optimal parameters for Nd:YAG laser pretreatment of dentin, which has potential as a clinical method to strengthen bonding.


Subject(s)
Dental Bonding , Dental Caries , Lasers, Solid-State , Humans , Dentin/radiation effects , Lasers, Solid-State/therapeutic use , Dental Cements , Dental Pulp , Microscopy, Electron, Scanning , Tensile Strength , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry
18.
Sci Rep ; 14(1): 6315, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491076

ABSTRACT

The aim was to investigate the influence of endodontic irrigation solutions and protocols on the micro-tensile bond strength (µTBS) to dentin using an etch-and-rinse (ER) or self-etch (SE) adhesive approach. Eighty extracted human molars were ground to dentin. After pretreating for 27 min (21 min-3 min-3 min) with five different endodontic irrigation protocols (Group 1: NaOCl-EDTA-NaOCl; Group 2: NaOCl-NaOCl-EDTA; Group 3: NaOCl-NaCl-NaOCl; Group 4: Dual Rinse-Dual Rinse-Dual Rinse; Group 5: NaCl-NaCl-NaCl), an ER (Optibond FL, Kerr) or a SE (Clearfil SE Bond, Kuraray) adhesive system was applied. After light-curing, composite build-ups were made and cut into dentin-composite sticks. µTBS and failure modes were analyzed. Nonparametric statistical analyses (α = 0.05) were performed for comparison of the five groups within each type of adhesive as well as between the two adhesive systems used. The use of an ER instead of a SE adhesive system resulted in significantly higher µTBS for all irrigation protocols except for group 1 (NaOCl-EDTA-NaOCl) and 2 (NaOCl-NaOCl-EDTA). A statistical difference between the five different endodontic irrigation protocols was only found within the SE adhesive group, where group 1 (NaOCl-EDTA-NaOCl) achieved highest values. The use of an ER adhesive system cancels out the effect of the endodontic irrigation solution. The highest µTBS was achieved when using a NaOCl-EDTA-NaOCl-irrigation protocol in combination with Clearfil SE Bond, which shows that the selection of the endodontic irrigation should match the corresponding SE adhesive system.


Subject(s)
Sodium Chloride , Sodium Hypochlorite , Humans , Edetic Acid/pharmacology , Edetic Acid/chemistry , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Sodium Chloride/pharmacology , Dentin/chemistry , Dentin-Bonding Agents/chemistry , Materials Testing , Tensile Strength
19.
Am J Dent ; 37(1): 29-34, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458980

ABSTRACT

PURPOSE: To compare the in vitro effect of laser and bur preparation on marginal adaptation of Class V cavities restored with a 2-step self-etch and distinct universal one-component universal adhesives used in self-etching mode. METHODS: 96 Class V cavities were prepared with conventional burs or with an Er:YAG laser. Four universal self-etch (Unibond Extra Low Shrinkage, All Bond Universal, SKB-100 and Prime&Bond active) and a 2-step self-etch adhesive (Clearfil SE Bond) that served as control were used to restore the cavities with direct composite. The percentages of continuous margins were evaluated by quantitative SEM analysis before and after a fatigue test consisting of 240,000 occlusal loads and 600 warm/cold thermal cycles. RESULTS: The marginal adaptation of bur prepared restorations was statistically superior to laser-prepared ones. Class V cavities restored with Clearfil SE Bond and the one-component self-etching universal adhesives All Bond Universal and Prime&Bond active presented the highest and statistically similar percentages of continuous margins before and after loading under both bur and laser cavity preparation. The lowest percentages of continuous margins were observed in the groups restored with the low shrinking adhesive (Unibond ELS), with medians of 49 and 21 for bur and laser prepared cavities after loading. CLINICAL SIGNIFICANCE: Class V cavities presented smoother and higher percentages of continuous margins when prepared by bur rather than by laser. The 2-step self-etch adhesive Clearfil SE Bond and 1-step self-etch universal adhesives All Bond Universal and Prime&Bond active showed a comparable marginal performance.


Subject(s)
Dental Bonding , Dental Caries , Lasers, Solid-State , Humans , Composite Resins/chemistry , Dental Cements , Resin Cements/chemistry , Dental Caries/therapy , Dental Cavity Preparation , Dentin-Bonding Agents/chemistry , Adhesives
20.
Am J Dent ; 37(1): 24-28, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458979

ABSTRACT

PURPOSE: To assess and compare the effects of sonic and ultrasonic instrumentation on shear bond strength (SBS) and investigate the influence of adhesive system application modes (etch&rinse/self-etch) on SBS. METHODS: In this experimental study, 45 extracted sound human molars were selected. Mesial and distal surfaces of the teeth were abraded until 90 smooth enamel surfaces were obtained. Specimens were divided into two groups, with half (N= 45) conditioned in etch&rinse mode and the remaining (N= 45) in self-etch mode using Tetric N Bond Universal. Composite resin discs were produced on these surfaces by filling Teflon molds. All specimens were aged via thermocycling. Each group was further divided into three more groups (n= 15) according to the type of periodontal instrumentation (ultrasonic, sonic or none). SBS values were recorded and analyzed using two-way ANOVA. Fracture sites were examined under a stereomicroscope. RESULTS: The type of periodontal instrumentation had no significant effect on SBS values, whether sonic, ultrasonic or their absence (P= 0.945). The type of adhesive system mode had a significant influence on the shear bond strength values. Etch&rinse groups had significantly higher shear bond strength values than self-etch groups (P< 0.001). CLINICAL SIGNIFICANCE: This study reassures practitioners that sonic and ultrasonic instruments are safe for enamel bonding and highlights the importance of selecting adhesive techniques for optimal restorative outcomes.


Subject(s)
Dental Bonding , Dental Cements , Humans , Aged , Dental Cements/chemistry , Dentin-Bonding Agents/chemistry , Resin Cements , Dental Bonding/methods , Ultrasonics , Composite Resins/chemistry , Dental Enamel , Materials Testing , Shear Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...