Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.146
Filter
1.
Nucleic Acids Res ; 52(9): 5392-5405, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38634780

ABSTRACT

N6-(2-deoxy-α,ß-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase ß (Pol ß), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol ß incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.


Subject(s)
DNA Polymerase beta , DNA Replication , DNA Polymerase beta/metabolism , DNA Polymerase beta/chemistry , Humans , Pyrimidines/chemistry , Pyrimidines/metabolism , Models, Molecular , DNA/chemistry , DNA/metabolism , Kinetics , Deoxyguanosine/chemistry , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Crystallography, X-Ray , 8-Hydroxy-2'-Deoxyguanosine/metabolism , 8-Hydroxy-2'-Deoxyguanosine/chemistry
2.
Chem Res Toxicol ; 37(5): 814-823, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38652696

ABSTRACT

The major product of DNA-methylating agents, N7-methyl-2'-deoxyguanosine (MdG), is a persistent lesion in vivo, but it is not believed to have a large direct physiological impact. However, MdG reacts with histone proteins to form reversible DNA-protein cross-links (DPCMdG), a family of DNA lesions that can significantly threaten cell survival. In this paper, we developed a tandem mass spectrometry method for quantifying the amounts of MdG and DPCMdG in nuclear DNA by taking advantage of their chemical lability and the concurrent release of N7-methylguanine. Using this method, we determined that DPCMdG is formed in less than 1% yield based upon the levels of MdG in methyl methanesulfonate (MMS)-treated HeLa cells. Despite its low chemical yield, DPCMdG contributes to MMS cytotoxicity. Consequently, cells that lack efficient DPC repair by the DPC protease SPRTN are hypersensitive to MMS. This investigation shows that the downstream chemical and biochemical effects of initially formed DNA damage can have significant biological consequences. With respect to MdG formation, the initial DNA lesion is only the beginning.


Subject(s)
DNA , Deoxyguanosine , Methyl Methanesulfonate , Humans , HeLa Cells , DNA/metabolism , DNA/chemistry , DNA/drug effects , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Deoxyguanosine/chemistry , Methyl Methanesulfonate/chemistry , Methyl Methanesulfonate/pharmacology , Tandem Mass Spectrometry , Cell Survival/drug effects , DNA Damage/drug effects , Cross-Linking Reagents/chemistry , DNA-Binding Proteins
3.
Nucleic Acids Res ; 51(22): 12043-12053, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37953358

ABSTRACT

Sequence context influences structural characteristics and repair of DNA adducts, but there is limited information on how epigenetic modulation affects conformational heterogeneity and bypass of DNA lesions. Lesions derived from the environmental pollutant 2-nitrofluorene have been extensively studied as chemical carcinogenesis models; they adopt a sequence-dependent mix of two significant conformers: major groove binding (B) and base-displaced stacked (S). We report a conformation-dependent bypass of the N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (dG-FAF) lesion in epigenetic sequence contexts (d[5'-CTTCTC#G*NCCTCATTC-3'], where C# is C or 5-methylcytosine (5mC), G* is G or G-FAF, and N is A, T, C or G). FAF-modified sequences with a 3' flanking pyrimidine were better bypassed when the 5' base was 5mC, whereas sequences with a 3' purine exhibited the opposite effect. The conformational basis behind these variations differed; for -CG*C- and -CG*T-, bypass appeared to be inversely correlated with population of the duplex-destabilizing S conformer. On the other hand, the connection between conformation and a decrease in bypass for flanking purines in the 5mC sequences relative to C was more complex. It could be related to the emergence of a disruptive non-S/B conformation. The present work provides novel conformational insight into how 5mC influences the bypass efficiency of bulky DNA damage.


Subject(s)
DNA Adducts , Fluorenes , Base Sequence , Nucleic Acid Conformation , Fluorenes/chemistry , DNA Adducts/genetics , Epigenesis, Genetic , Deoxyguanosine/chemistry
4.
Chem Res Toxicol ; 36(12): 1947-1960, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37989274

ABSTRACT

The genotoxic 3-(2-deoxy-ß-D-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) DNA lesion arises from endogenous exposures to base propenals generated by oxidative damage and from exposures to malondialdehyde (MDA), produced by lipid peroxidation. Once formed, M1dG may oxidize, in vivo, to 3-(2-deoxy-ß-D-erythropentofuranosyl)-pyrimido[1,2-f]purine-6,10(3H,5H)-dione (6-oxo-M1dG). The latter blocks DNA replication and is a substrate for error-prone mutagenic bypass by the Y-family DNA polymerase hpol η. To examine structural consequences of 6-oxo-M1dG damage in DNA, we conducted NMR studies of 6-oxo-M1dG incorporated site-specifically into 5' -d(C1A2T3X4A5T6G7A8C9G10C11T12)-3':5'-d(A13G14C15G16T17C18A19T20C21A22T23G24)-3' (X = 6-oxo-M1dG). NMR spectra afforded detailed resonance assignments. Chemical shift analyses revealed that nucleobase C21, complementary to 6-oxo-M1dG, was deshielded compared with the unmodified duplex. Sequential NOEs between 6-oxo-M1dG and A5 were disrupted, as well as NOEs between T20 and C21 in the complementary strand. The structure of the 6-oxo-M1dG modified DNA duplex was refined by using molecular dynamics (rMD) calculations restrained by NOE data. It revealed that 6-oxo-M1dG intercalated into the duplex and remained in the anti-conformation about the glycosyl bond. The complementary cytosine C21 extruded into the major groove, accommodating the intercalated 6-oxo-M1dG. The 6-oxo-M1dG H7 and H8 protons faced toward the major groove, while the 6-oxo-M1dG imidazole proton H2 faced into the major groove. Structural perturbations to dsDNA were limited to the 6-oxo-M1dG damaged base pair and the flanking T3:A22 and A5:T20 base pairs. Both neighboring base pairs remained within the Watson-Crick hydrogen bonding contact. The 6-oxo-M1dG did not stack well with the 5'-neighboring base pair T3:A22 but showed improved stacking with the 3'-neighboring base pair A5:T20. Overall, the base-displaced intercalated structure was consistent with thermal destabilization of the 6-oxo-M1dG damaged DNA duplex; thermal melting temperature data showed a 15 °C decrease in Tm compared to the unmodified duplex. The structural consequences of 6-oxo-M1dG formation in DNA are evaluated in the context of the chemical biology of this lesion.


Subject(s)
DNA Adducts , DNA , DNA/chemistry , Purines/chemistry , DNA Damage , Molecular Conformation , Protons , Nucleic Acid Conformation , Deoxyguanosine/chemistry
5.
Med. oral patol. oral cir. bucal (Internet) ; 28(6): e530-e538, nov. 2023. ilus, tab, graf
Article in English | IBECS | ID: ibc-227371

ABSTRACT

Background: The development and establishment of oral squamous cell carcinoma are confined to carcinogenesis, which involves oxidative stress via oxygen-free radical production as a hydroxyl radical (HO•), considered the most important cause of oxidative damage to basic biomolecules since it targets DNA strands. 8-Hydroxy-2´- deoxyguanosine (8-OHdG) is considered a free radical with a promutagenic capacity due to its ability to pair with adenosine instead of cytosine during replication. Material and Methods: We collected 30 paraffin-embedded tissue samples of OSCC from patients treated between 2013 and 2018. We recorded risk habits, disease stage, disease free survival and death with at least 3 years of followup. 8-Hydroxyguanosine was evaluated by immunohistochemistry and subsequently classified as weak-moderate or strong positive expression. Additionally, we noted whether it was expressed in the cytoplasm and/or nucleus. Results: Most of the cases expressed 8-OHdG with a strong intensity (80%). All neoplastic cells were preferentially stained in only the cytoplasm (70.0%), but nuclear positivity was found in 30%, independent of the intensity. Based on the location in the cytoplasm and/or nucleus, tumors >4 cm showed a high frequency (95.5%) of 8-OHdG expression in only the cytoplasm, with a significant difference (p value ≤ 0.001). Additionally, overall survival was affected when immunoexpression was present in the cytoplasm and nucleus because all deaths were in this group were statistically significant (p value = 0.001). Conclusions: All tumors showed DNA oxidative damage, and 8-OHdG was preferentially expressed in the cytoplasm. This finding was associated with tumor size and, when present in the nucleus, might also be related to death. (AU)


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Carcinoma, Squamous Cell , Mouth Neoplasms , Oxidative Stress , /metabolism , DNA Damage , Deoxyguanosine/chemistry , Deoxyguanosine/metabolism , Free Radicals , Cross-Sectional Studies
6.
Proc Natl Acad Sci U S A ; 120(40): e2307854120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37748066

ABSTRACT

Riboswitches rely on structured aptamer domains to selectively sense their target ligands and regulate gene expression. However, some riboswitch aptamers in bacteria carry mutations in their otherwise strictly conserved binding pockets that change ligand specificities. The aptamer domain of a riboswitch class originally found to selectively sense guanine forms a three-stem junction that has since been observed to exploit numerous alterations in its ligand-binding pocket. These rare variants have modified their ligand specificities to sense other purines or purine derivatives, including adenine, 2'-deoxyguanosine (three classes), and xanthine. Herein, we report the characteristics of a rare variant that is narrowly distributed in the Paenibacillaceae family of bacteria. Known representatives are always associated with genes encoding 8-oxoguanine deaminase. As predicted from this gene association, these variant riboswitches tightly bind 8-oxoguanine (8-oxoG), strongly discriminate against other purine derivatives, and function as genetic "ON" switches. Following exposure of cells to certain oxidative stresses, a representative 8-oxoG riboswitch activates gene expression, likely caused by the accumulation of 8-oxoG due to oxidative damage to G nucleobases in DNA, RNA, and the nucleotide pool. Furthermore, an engineered version of the variant aptamer was prepared that exhibits specificity for 8-oxoadenine, further demonstrating that RNA aptamers can acquire mutations that expand their ability to detect and respond to oxidative damage.


Subject(s)
Aptamers, Nucleotide , Riboswitch , Riboswitch/genetics , Ligands , Nucleic Acid Conformation , Guanine/chemistry , Xanthine , Deoxyguanosine/chemistry , Bacteria/metabolism , Oxidative Stress/genetics , Aptamers, Nucleotide/chemistry
7.
Med Oral Patol Oral Cir Bucal ; 28(6): e530-e538, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37471300

ABSTRACT

BACKGROUND: The development and establishment of oral squamous cell carcinoma are confined to carcinogenesis, which involves oxidative stress via oxygen-free radical production as a hydroxyl radical (HO•), considered the most important cause of oxidative damage to basic biomolecules since it targets DNA strands. 8-Hydroxy-2´-deoxyguanosine (8-OHdG) is considered a free radical with a promutagenic capacity due to its ability to pair with adenosine instead of cytosine during replication. MATERIAL AND METHODS: We collected 30 paraffin-embedded tissue samples of OSCC from patients treated between 2013 and 2018. We recorded risk habits, disease stage, disease free survival and death with at least 3 years of follow-up. 8-Hydroxyguanosine was evaluated by immunohistochemistry and subsequently classified as weak-moderate or strong positive expression. Additionally, we noted whether it was expressed in the cytoplasm and/or nucleus. RESULTS: Most of the cases expressed 8-OHdG with a strong intensity (80%). All neoplastic cells were preferentially stained in only the cytoplasm (70.0%), but nuclear positivity was found in 30%, independent of the intensity. Based on the location in the cytoplasm and/or nucleus, tumors >4 cm showed a high frequency (95.5%) of 8-OHdG expression in only the cytoplasm, with a significant difference (p value 0.001). Additionally, overall survival was affected when immunoexpression was present in the cytoplasm and nucleus because all deaths were in this group were statistically significant (p value = 0.001). CONCLUSIONS: All tumors showed DNA oxidative damage, and 8-OHdG was preferentially expressed in the cytoplasm. This finding was associated with tumor size and, when present in the nucleus, might also be related to death.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Deoxyguanosine/chemistry , Deoxyguanosine/metabolism , DNA Damage , Oxidative Stress , Free Radicals
8.
Molecules ; 28(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36903425

ABSTRACT

Genetic information is continuously exposed to harmful factors, both intra- and extracellular. Their activity can lead to the formation of different types of DNA damage. Clustered lesions (CDL) are problematic for DNA repair systems. In this study, the short ds-oligos with a CDL containing (R) or (S) 2Ih and OXOG in their structure were chosen as the most frequent in vitro lesions. In the condensed phase, the spatial structure was optimized at the M062x/D95**:M026x/sto-3G level of theory, while the electronic properties were optimized at the M062x/6-31++G** level. The influence of equilibrated and non-equilibrated solvent-solute interactions was then discussed. It was found that the presence of (R)2Ih in the ds-oligo structure causes a greater increase in structure sensitivity towards charge adoption than (S)2Ih, while OXOG shows high stability. Moreover, the analysis of charge and spin distribution reveals the different effects of 2Ih diastereomers. Additionally, the adiabatic ionization potential was found as follows for (R)-2Ih and (S)-2Ih in eV: 7.02 and 6.94. This was in good agreement with the AIP of the investigated ds-oligos. It was found that the presence of (R)-2Ih has a negative influence on excess electron migration through ds-DNA. Finally, according to the Marcus theory, the charge transfer constant was calculated. The results presented in the article show that both diastereomers of 5-carboxamido-5-formamido-2-iminohydantoin should play a significant role in the CDL recognition process via electron transfer. Moreover, it should be pointed out that even though the cellular level of (R and S)-2Ih has been obscured, their mutagenic potential should be at the same level as other similar guanine lesions found in different cancer cells.


Subject(s)
DNA Damage , DNA , Oxidation-Reduction , DNA/chemistry , DNA Repair , Models, Theoretical , Deoxyguanosine/chemistry
9.
Biomolecules ; 13(3)2023 03 11.
Article in English | MEDLINE | ID: mdl-36979452

ABSTRACT

Every 24 h, roughly 3 × 1017 incidences of DNA damage are generated in the human body as a result of intra- or extra-cellular factors. The structure of the formed lesions is identical to that formed during radio- or chemotherapy. Increases in the clustered DNA damage (CDL) level during anticancer treatment have been observed compared to those found in untreated normal tissues. 7,8-dihydro-8-oxo-2'-deoxyguanosine (OXOG) has been recognized as the most common lesion. In these studies, the influence of OXOG, as an isolated (oligo-OG) or clustered DNA lesion (oligo-OGOG), on charge transfer has been analyzed in comparison to native oligo-G. DNA lesion repair depends on the damage recognition step, probably via charge transfer. Here the electronic properties of short ds-oligonucleotides were calculated and analyzed at the M062x/6-31++G** level of theory in a non-equilibrated and equilibrated solvent state. The rate constant of hole and electron transfer according to Marcus' theory was also discussed. These studies elucidated that OXOG constitutes the sink for migrated radical cations. However, in the case of oligo-OGOG containing a 5'-OXOGAXOXG-3' sequence, the 3'-End OXOG becomes predisposed to electron-hole accumulation contrary to the undamaged GAG fragment. Moreover, it was found that the 5'-End OXOG present in an OXOGAOXOG fragment adopts a higher adiabatic ionization potential than the 2'-deoxyguanosine of an undamaged analog if both ds-oligos are present in a cationic form. Because increases in CDL formation have been observed during radio- or chemotherapy, understanding their role in the above processes can be crucial for the efficiency and safety of medical cancer treatment.


Subject(s)
DNA Damage , DNA , Humans , DNA/chemistry , DNA Repair , Deoxyguanosine/chemistry , 8-Hydroxy-2'-Deoxyguanosine
10.
Sci Total Environ ; 866: 161373, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36621472

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPDQ), one of the oxidation products of rubber antioxidant 6PPD, has been identified as a novel toxicant to many organisms. However, an understanding of its underlying toxicity mechanisms remained elusive. In this study, we reported that 6PPDQ could react with deoxyguanosine to form one isomer of 3-hydroxy-1, N2-6PPD-etheno-2'-deoxyguanosine (6PPDQ-dG). Next, by employing an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method, we found that 6PPDQ-dG could be detected in genomic DNA from 6PPDQ-treated mammalian cells and Chlamydomonas reinhardtii. We observed positive correlations between concentrations of exogenous 6PPDQ and the amounts of 6PPDQ-dG, and a recovery period after removal of 6PPDQ also led to decreased levels of the adduct in both organisms, which suggested potential repair pathways for this adduct in mammalian cells and unicellular algae. Additionally, we extracted the genomic DNA from tissues of frozen capelin and observed substantial amounts of the adduct in roe and gills, as well as livers at a relatively lower level. These results provided insights into the target organs and tissues that 6PPDQ might accumulate or harm fish. Overall, our study provides a new understanding of the mechanisms of toxicity of 6PPDQ in mammalian cells and aqueous organisms.


Subject(s)
Antioxidants , Benzoquinones , Chlamydomonas reinhardtii , DNA Adducts , Phenylenediamines , Chromatography, High Pressure Liquid , Deoxyguanosine/chemistry , DNA Adducts/metabolism , Quinones , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Phenylenediamines/chemistry , Phenylenediamines/metabolism , Phenylenediamines/toxicity , Benzoquinones/chemistry , Benzoquinones/metabolism , Benzoquinones/toxicity , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/toxicity , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Humans , A549 Cells
11.
ACS Chem Biol ; 17(11): 3238-3250, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36318733

ABSTRACT

Primase-DNA polymerase (PrimPol) is involved in reinitiating DNA synthesis at stalled replication forks. PrimPol also possesses DNA translesion (TLS) activity and bypasses several endogenous nonbulky DNA lesions in vitro. Little is known about the TLS activity of PrimPol across bulky carcinogenic adducts. We analyzed the DNA polymerase activity of human PrimPol on DNA templates with seven N2-dG lesions of different steric bulkiness. In the presence of Mg2+ ions, bulky N2-isobutyl-dG, N2-benzyl-dG, N2-methyl(1-naphthyl)-dG, N2-methyl(9-anthracenyl)-dG, N2-methyl(1-pyrenyl)-dG, and N2-methyl(1,3-dimethoxyanthraquinone)-dG adducts fully blocked PrimPol activity. At the same time, PrimPol incorporated complementary deoxycytidine monophosphate (dCMP) opposite N2-ethyl-dG with moderate efficiency but did not extend DNA beyond the lesion. We also demonstrated that mutation of the Arg288 residue abrogated dCMP incorporation opposite the lesion in the presence of Mn2+ ions. When Mn2+ replaced Mg2+, PrimPol carried out DNA synthesis on all DNA templates with N2-dG adducts in standing start reactions with low efficiency and accuracy, possibly utilizing a lesion "skipping" mechanism. The TLS activity of PrimPol opposite N2-ethyl-dG but not bulkier adducts was stimulated by accessory proteins, polymerase delta-interacting protein 2 (PolDIP2), and replication protein A (RPA). Molecular dynamics studies demonstrated the absence of stable interactions with deoxycytidine triphosphate (dCTP), large reactions, and C1'-C1' distances for the N2-isobutyl-dG and N2-benzyl-dG PrimPol complexes, suggesting that the size of the adduct is a limiting factor for efficient TLS across minor groove adducts by PrimPol.


Subject(s)
DNA Damage , Deoxycytidine Monophosphate , Humans , Deoxyguanosine/chemistry , DNA Replication , DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , DNA Adducts , Nuclear Proteins/metabolism , DNA Primase/metabolism , Multifunctional Enzymes/metabolism
12.
Chem Res Toxicol ; 35(9): 1519-1532, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36066083

ABSTRACT

Epidemiological and mechanistic studies suggest that processed and red meat consumption and tobacco smoking are associated with colorectal cancer (CRC) risk. Several classes of carcinogens, including N-nitroso compounds (NOCs) in processed meats and heterocyclic aromatic amines (HAAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled meats and tobacco smoke, undergo metabolism to reactive intermediates that may form mutation-inducing DNA adducts in the colorectum. Heme iron in red meat may contribute to oxidative DNA damage and endogenous NOC formation. However, the chemicals involved in colorectal DNA damage and the paradigms of CRC etiology remain unproven. There is a critical need to establish physicochemical methods for identifying and quantitating DNA damage induced by genotoxicants in the human colorectum. We established robust nano-liquid chromatography/high-resolution accurate mass Orbitrap tandem mass spectrometry (LC/HRAMS2) methods to measure DNA adducts of nine meat and tobacco-associated carcinogens and lipid peroxidation products in the liver, colon, and rectum of carcinogen-treated rats employing fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissues. Some NOCs form O6-carboxymethyl-2'-deoxyguanosine, O6-methyl-2'-deoxyguanosine, and unstable quaternary N-linked purine/pyrimidine adducts, which generate apurinic/apyrimidinic (AP) sites. AP sites were quantitated following derivatization with O-(pyridin-3-yl-methyl)hydroxylamine. DNA adduct quantitation was conducted with stable isotope-labeled internal standards, and method performance was validated for accuracy and reproducibility. Limits of quantitation ranged from 0.1 to 1.1 adducts per 108 bases using 3 µg of DNA. Adduct formation in animals ranged from ∼1 in 108 to ∼1 in 105 bases, occurring at comparable levels in fresh-frozen and FFPE specimens for most adducts. AP sites increased by 25- to 75-fold in the colorectum and liver, respectively. Endogenous lipid peroxide-derived 3-(2-deoxy-ß-d-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) and 6-oxo-M1dG adduct levels were not increased by carcinogen dosing but increased in FFPE tissues. Human biomonitoring studies can implement LC/HRAMS2 assays for DNA adducts and AP sites outlined in this work to advance our understanding of CRC etiology.


Subject(s)
Colorectal Neoplasms , Polycyclic Aromatic Hydrocarbons , Tobacco Smoke Pollution , Amines , Animals , Biological Monitoring , Carcinogens/chemistry , Chromatography, Liquid/methods , Colorectal Neoplasms/chemically induced , DNA/chemistry , DNA Adducts , DNA Damage , Deoxyguanosine/chemistry , Formaldehyde/chemistry , Heme , Humans , Hydroxylamines/analysis , Iron , Lipid Peroxides , Nitroso Compounds , Polycyclic Aromatic Hydrocarbons/analysis , Purines/analysis , Pyrimidines/analysis , Rats , Reproducibility of Results , Tandem Mass Spectrometry/methods , Nicotiana/chemistry , Tobacco Smoke Pollution/analysis
13.
Biochemistry ; 61(20): 2221-2228, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36136907

ABSTRACT

Positively charged N-terminal histone tails play important roles in maintaining the nucleosome (and chromatin) structure and function. Charge alteration, including those imposed by post-translational modifications, impacts chromatin dynamics, protein binding, and the fate of DNA damage. There is evidence that N-terminal histone tails affect the local ionic environment within a nucleosome core particle (NCP), but this phenomenon is not well understood. Determining the modulation of the local ionic environment within an NCP by histone tails could help uncover the underlying mechanisms of their functions and effects. Utilizing bottom-up syntheses of NCPs containing wild-type or mutated histones and a fluorescent probe that is sensitive to the local ionic environment, we show that interaction with positively charged N-terminal tails increases the local ionic strength near nucleosomal DNA. The effect is diminished by replacing positively charged residues with neutral ones or deleting a tail in its entirety. Replacing the fluorescent probe with the major DNA methylation product, N7-methyl-2'-deoxyguanosine (MdG), revealed changes in the depurination rate constant varying inversely with local ionic strength. These data indicate that the MdG hydrolysis rates depend on and also inform on local ionic strength in an NCP. Overall, histone tail charge contributes to the complexity of the NCP structure and function by modulating the local ionic strength.


Subject(s)
Histones , Nucleosomes , Chromatin , DNA/chemistry , Deoxyguanosine/chemistry , Fluorescent Dyes , Histones/metabolism , Osmolar Concentration
14.
Bioorg Chem ; 127: 106029, 2022 10.
Article in English | MEDLINE | ID: mdl-35858520

ABSTRACT

Oxidative lesions, such as 8-oxo-dG and 8-oxo-dA, are continuously generated from exposure to reactive oxygen species. While 8-oxo-dG has been extensively studied, 8-oxo-dA has not received as much attention until recently. Herein, we report the synthesis of duplex DNAs incorporating dA, 8-oxo-dA, 7-deaza-dA, 8-Br-dA, and 8-Br-7-deaza-dA, which have different substitutions at 7- and 8-position, for the investigation into the implications of N7-hydrogen and C8-keto on the base pairing preference, mutagenic potential and repair of 8-oxo-dA. Base pairing study suggested that the polar N7-hydrogen and C8-keto of 8-oxo-dA, rather than the syn-preference, might be essential for 8-oxo-dA to form a stable base pair with dG. Insertion and extension studies using KF-exo- and human DNA polymerase ß indicated that the efficient dGTP insertion opposite 8-oxo-dA and extension past 8-oxo-dA:dG are contingent upon not only the stable base pair with dG, but also the flexibility of the active site in polymerase. The N7-hydrogen in 8-oxo-dA or C7-hydrogen in 7-deaza-dA and 8-Br-7-deaza-dA was suggested to be important for the recognition by hOGG1, although the excision efficiencies of 7-deaza-dA and 8-Br-7-deaza-dA were much lower than 8-oxo-dA. This study provides an insight into the structure-function relationship of 8-oxo-dA by nucleotide analogues.


Subject(s)
Deoxyguanosine , Mutagens , 8-Hydroxy-2'-Deoxyguanosine , Adenosine , Base Pairing , Deoxyguanosine/chemistry , Humans , Hydrogen , Mutagens/chemistry
15.
Chem Res Toxicol ; 34(12): 2567-2578, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34860508

ABSTRACT

The lipid peroxidation product malondialdehyde and the DNA peroxidation product base-propenal react with dG to generate the exocyclic adduct, M1dG. This mutagenic lesion has been found in human genomic and mitochondrial DNA. M1dG in genomic DNA is enzymatically oxidized to 6-oxo-M1dG, a lesion of currently unknown mutagenic potential. Here, we report the synthesis of an oligonucleotide containing 6-oxo-M1dG and the results of extension experiments aimed at determining the effect of the 6-oxo-M1dG lesion on the activity of human polymerase iota (hPol ι). For this purpose, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed to obtain reliable quantitative data on the utilization of poorly incorporated nucleotides. Results demonstrate that hPol ι primarily incorporates deoxycytidine triphosphate (dCTP) and thymidine triphosphate (dTTP) across from 6-oxo-M1dG with approximately equal efficiency, whereas deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP) are poor substrates. Following the incorporation of a single nucleotide opposite the lesion, 6-oxo-M1dG blocks further replication by the enzyme.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Deoxyguanosine/metabolism , Oligonucleotides/metabolism , Chromatography, Liquid , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/chemistry , Humans , Molecular Structure , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Tandem Mass Spectrometry , DNA Polymerase iota
16.
Chem Pharm Bull (Tokyo) ; 69(11): 1067-1074, 2021.
Article in English | MEDLINE | ID: mdl-34719588

ABSTRACT

DNA reacts directly with UV light with a wavelength shorter than 300 nm. Although ground surface sunlight includes little of this short-wavelength UV light due to its almost complete absorption by the atmosphere, sunlight is the primary cause of skin cancer. Photosensitization by endogenous substances must therefore be involved in skin cancer development mechanisms. Uric acid is the final metabolic product of purines in humans, and is present at relatively high concentrations in cells and fluids. When a neutral mixed solution of 2'-deoxycytidine, 2'-deoxyguanosine, thymidine, and 2'-deoxyadenosine was irradiated with UV light with a wavelength longer than 300 nm in the presence of uric acid, all the nucleosides were consumed in a uric acid dose-dependent manner. These reactions were inhibited by the addition of radical scavengers, ethanol and sodium azide. Two products from 2'-deoxycytidine were isolated and identified as N4-hydroxy-2'-deoxycytidine and N4,5-cyclic amide-2'-deoxycytidine, formed by cycloaddition of an amide group from uric acid. A 15N-labeled uric acid, uric acid-1,3-15N2, having two 14N and two 15N atoms per molecule, produced N4,5-cyclic amide-2'-deoxycytidine containing both 14N and 15N atoms from uric acid-1,3-15N2. Singlet oxygen, hydroxyl radical, peroxynitrous acid, hypochlorous acid, and hypobromous acid generated neither N4-hydroxy-2'-deoxycytidine nor N4,5-cyclic amide-2'-deoxycytidine in the presence of uric acid. These results indicate that uric acid is a photosensitizer for the reaction of nucleosides by UV light with a wavelength longer than 300 nm, and that an unidentified radical derived from uric acid with a delocalized unpaired electron may be generated.


Subject(s)
DNA/chemistry , Deoxyadenosines/chemistry , Deoxyribonucleosides/chemistry , Photosensitizing Agents/chemistry , Uric Acid/chemistry , Bromates/chemistry , Deoxycytidine/chemistry , Deoxyguanosine/chemistry , Ethanol/chemistry , Free Radical Scavengers/chemistry , Hypochlorous Acid/chemistry , Kinetics , Peroxynitrous Acid/chemistry , Photochemical Processes , Singlet Oxygen/chemistry , Sodium Azide/chemistry , Thymidine/chemistry , Ultraviolet Rays
17.
Biomolecules ; 11(9)2021 09 09.
Article in English | MEDLINE | ID: mdl-34572544

ABSTRACT

Recent advances in G-quadruplex (GQ) studies have provided evidence for their important role in key biological processes (replication, transcription, genome stability, and epigenetics). These findings imply highly specific interactions between GQ structures and cellular proteins. The details of the interaction between GQs and cellular proteins remain unknown. It is now accepted that GQ loop elements play a major role in protein recognition. It remains unclear whether and to what extent the GQ core contributes to maintaining the recognition interface. In the current paper, we used the thrombin binding aptamer as a model to study the effect of modification in the quadruplex core on the ability of aptamer to interact with thrombin. We used alpha-2'-deoxyguanosine and 8-bromo-2'-deoxyguanosine to reconfigure the core or to affect syn-anti preferences of selected dG-residues. Our data suggest that core guanines not only support a particular type of GQ architecture, but also set structural parameters that make GQ protein recognition sensitive to quadruplex topology.


Subject(s)
Aptamers, Nucleotide/chemistry , G-Quadruplexes , Thrombin/metabolism , Circular Dichroism , Deoxyguanosine/chemistry , Humans , Protein Binding
18.
J Am Chem Soc ; 143(39): 16197-16205, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34555898

ABSTRACT

To cope with unrepaired DNA lesions, cells are equipped with DNA damage tolerance mechanisms, including translesion synthesis (TLS). While TLS polymerases are well documented in facilitating replication across damaged DNA templates, it remains unknown whether TLS polymerases participate in transcriptional bypass of DNA lesions in cells. Herein, we employed the competitive transcription and adduct bypass assay to examine the efficiencies and fidelities of transcription across N2-alkyl-2'-deoxyguanosine (N2-alkyl-dG, alkyl = methyl, ethyl, n-propyl, or n-butyl) lesions in HEK293T cells. We found that N2-alkyl-dG lesions strongly blocked transcription and elicited CC → AA tandem mutations in nascent transcripts, where adenosines were misincorporated opposite the lesions and their adjacent 5' nucleoside. Additionally, genetic ablation of Pol η, but not Pol κ, Pol ι, or Pol ζ, conferred marked diminutions in the transcriptional bypass efficiencies of the N2-alkyl-dG lesions, which is exacerbated by codepletion of Rev1 in Pol η-deficient background. We also observed that the repair of N2-nBu-dG was not pronouncedly affected by genetic depletion of Pol η or Rev1. Hence, our results provided insights into transcriptional perturbations induced by N2-alkyl-dG lesions and expanded the biological functions of TLS DNA polymerases.


Subject(s)
DNA Adducts , DNA-Directed DNA Polymerase/metabolism , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Transcription, Genetic , DNA-Directed DNA Polymerase/genetics , Deoxyguanosine/chemistry , Deoxyguanosine/genetics , HEK293 Cells , Humans , Molecular Structure
19.
J Am Chem Soc ; 143(36): 14738-14747, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34467764

ABSTRACT

Oxidative stress produces a variety of radicals in DNA, including pyrimidine nucleobase radicals. The nitrogen-centered DNA radical 2'-deoxycytidin-N4-yl radical (dC·) plays a role in DNA damage mediated by one electron oxidants, such as HOCl and ionizing radiation. However, the reactivity of dC· is not well understood. To reduce this knowledge gap, we photochemically generated dC· from a nitrophenyl oxime nucleoside and within chemically synthesized oligonucleotides from the same precursor. dC· formation is confirmed by transient UV-absorption spectroscopy in laser flash photolysis (LFP) experiments. LFP and duplex DNA cleavage experiments indicate that dC· oxidizes dG. Transient formation of the dG radical cation (dG+•) is observed in LFP experiments. Oxidation of the opposing dG in DNA results in hole transfer when the opposing dG is part of a dGGG sequence. The sequence dependence is attributed to a competition between rapid proton transfer from dG+• to the opposing dC anion formed and hole transfer. Enhanced hole transfer when less acidic O6-methyl-2'-deoxyguanosine is opposite dC· supports this proposal. dC· produces tandem lesions in sequences containing thymidine at the 5'-position by abstracting a hydrogen atom from the thymine methyl group. The corresponding thymidine peroxyl radical completes tandem lesion formation by reacting with the 5'-adjacent nucleotide. As dC· is reduced to dC, its role in the process is traceless and is only detectable because of the ability to independently generate it from a stable precursor. These experiments reveal that dC· oxidizes neighboring nucleotides, resulting in deleterious tandem lesions and hole transfer in appropriate sequences.


Subject(s)
DNA Damage/drug effects , DNA/drug effects , Deoxycytidine/chemistry , Free Radicals/chemistry , DNA/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/radiation effects , Deoxyguanosine/chemistry , Oximes/chemistry , Oximes/radiation effects , Photolysis , Ultraviolet Rays
20.
Chem Res Toxicol ; 34(6): 1518-1529, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34061515

ABSTRACT

The O6-alkylguanosine adduct O6-carboxymethyldeoxyguanosine (O6-CMdG) has been detected at elevated levels in blood and tissue samples from colorectal cancer patients and from healthy volunteers after consuming red meat. The diazo compound l-azaserine leads to the formation of O6-CMdG as well as the corresponding methyl adduct O6-methyldeoxyguanosine (O6-MedG) in cells and is therefore in wide use as a chemical probe in cellular studies concerning DNA damage and mutation. However, there remain knowledge gaps concerning the chemical basis of DNA adduct formation by l-azaserine. To characterize O6-CMdG formation by l-azaserine, we carried out a combination of chemical and enzymatic stability and reactivity studies supported by liquid chromatography tandem mass spectrometry for the simultaneous quantification of O6-CMdG and O6-MedG. We found that l-azaserine is stable under physiological and alkaline conditions as well as in active biological matrices but undergoes acid-catalyzed hydrolysis. We show, for the first time, that l-azaserine reacts directly with guanosine (dG) and oligonucleotides to form an O6-serine-CMdG (O6-Ser-CMdG) adduct. Moreover, by characterizing the reaction of dG with l-azaserine, we demonstrate that O6-Ser-CMdG forms as an intermediate that spontaneously decomposes to form O6-CMdG. Finally, we quantified levels of O6-CMdG and O6-MedG in a human cell line exposed to l-azaserine and found maximal adduct levels after 48 h. The findings of this work elucidate the chemical basis of how l-azaserine reacts with deoxyguanosine and support its use as a chemical probe for N-nitroso compound exposure in carcinogenesis research, particularly concerning the identification of pathways and factors that promote adduct formation.


Subject(s)
Azaserine/chemistry , Deoxyguanosine/chemical synthesis , Alkylation , Animals , Cells, Cultured , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/chemistry , Humans , Hydrogen-Ion Concentration , Molecular Structure , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...