Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
1.
Biotechnol J ; 19(2): e2300325, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38385504

ABSTRACT

Ultraviolet (UV) radiation from sunlight can damage DNA, inducing mutagenesis and eventually leading to skin cancer. Topical sunscreens are used to avoid the effect of UV irradiation, but the topical application of DNA repair enzymes, such as photolyase, can provide active photoprotection by DNA recovery. Here we produced a recombinant Thermus thermophilus photolyase expressed in Escherichia coli, evaluated the kinetic parameters of bacterial growth and the kinetics and stability of the enzyme. The maximum biomass (𝑋𝑚𝑎𝑥 ) of 2.0 g L-1 was reached after 5 h of cultivation, corresponding to 𝑃X  = 0.4 g L-1 h. The µð‘šð‘Žð‘¥ corresponded to 1.0 h-1 . Photolyase was purified by affinity chromatography and high amounts of pure enzyme were obtained (3.25 mg L-1 of cultivation). Two different methods demonstrated the enzyme activity on DNA samples and very low enzyme concentrations, such as 15 µg mL-1 , already resulted in 90% of CPD photodamage removal. We also determined photolyase kM of 9.5 nM, confirming the potential of the enzyme at very low concentrations, and demonstrated conservation of enzyme activity after freezing (-20°C) and lyophilization. Therefore, we demonstrate T. thermophilus photolyase capacity of CPD damage repair and its potential as an active ingredient to be incorporated in dermatological products.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , Thermus thermophilus , Ultraviolet Rays , DNA/chemistry , DNA Repair
2.
Nat Chem ; 16(4): 624-632, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225270

ABSTRACT

Charge-transfer reactions in proteins are important for life, such as in photolyases which repair DNA, but the role of structural dynamics remains unclear. Here, using femtosecond X-ray crystallography, we report the structural changes that take place while electrons transfer along a chain of four conserved tryptophans in the Drosophila melanogaster (6-4) photolyase. At femto- and picosecond delays, photoreduction of the flavin by the first tryptophan causes directed structural responses at a key asparagine, at a conserved salt bridge, and by rearrangements of nearby water molecules. We detect charge-induced structural changes close to the second tryptophan from 1 ps to 20 ps, identifying a nearby methionine as an active participant in the redox chain, and from 20 ps around the fourth tryptophan. The photolyase undergoes highly directed and carefully timed adaptations of its structure. This questions the validity of the linear solvent response approximation in Marcus theory and indicates that evolution has optimized fast protein fluctuations for optimal charge transfer.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Humans , Animals , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Tryptophan/chemistry , Electrons , Drosophila melanogaster/metabolism , Escherichia coli/genetics , Electron Transport , Crystallography, X-Ray
3.
J Mol Biol ; 436(5): 168408, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38123123

ABSTRACT

Cryptochromes are a ubiquitously occurring class of photoreceptors. Together with photolyases, they form the Photolyase Cryptochrome Superfamily (PCSf) by sharing a common protein architecture and binding mode of the FAD chromophore. Despite these similarities, PCSf members exert different functions. Photolyases repair UV-induced DNA damage by photocatalytically driven electron transfer between FADH¯ and the DNA lesion, whereas cryptochromes are light-dependent signaling molecules and trigger various biological processes by photoconversion of their FAD redox and charge states. Given that most cryptochromes possess a C-terminal extension (CTE) of varying length, the functions of their CTE have not yet been fully elucidated and are hence highly debated. In this study, the role of the CTE was investigated for a novel subclass of the PCSf, the CryP-like cryptochromes, by hydrogen/deuterium exchange and mass-spectrometric analysis. Striking differences in the relative deuterium uptake were observed in different redox states of CryP from the diatom Phaeodactylum tricornutum. Based on these measurements we propose a model for light-triggered conformational changes in CryP-like cryptochromes that differs from other known cryptochrome families like the insect or plant cryptochromes.


Subject(s)
Cryptochromes , Deoxyribodipyrimidine Photo-Lyase , Diatoms , Cryptochromes/chemistry , Cryptochromes/genetics , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deuterium , Diatoms/enzymology , Electron Transport , Protein Domains
4.
Science ; 382(6674): eadd7795, 2023 12.
Article in English | MEDLINE | ID: mdl-38033054

ABSTRACT

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.


Subject(s)
Archaeal Proteins , DNA Repair , Deoxyribodipyrimidine Photo-Lyase , Methanosarcina , Pyrimidine Dimers , Archaeal Proteins/chemistry , Catalysis , Crystallography/methods , Deoxyribodipyrimidine Photo-Lyase/chemistry , DNA/chemistry , DNA/radiation effects , Methanosarcina/enzymology , Protein Conformation , Pyrimidine Dimers/chemistry , Ultraviolet Rays
5.
Science ; 382(6674): 1015-1020, 2023 12.
Article in English | MEDLINE | ID: mdl-38033070

ABSTRACT

Photolyase is an enzyme that uses light to catalyze DNA repair. To capture the reaction intermediates involved in the enzyme's catalytic cycle, we conducted a time-resolved crystallography experiment. We found that photolyase traps the excited state of the active cofactor, flavin adenine dinucleotide (FAD), in a highly bent geometry. This excited state performs electron transfer to damaged DNA, inducing repair. We show that the repair reaction, which involves the lysis of two covalent bonds, occurs through a single-bond intermediate. The transformation of the substrate into product crowds the active site and disrupts hydrogen bonds with the enzyme, resulting in stepwise product release, with the 3' thymine ejected first, followed by the 5' base.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Crystallography , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , DNA Repair , DNA Damage , Electron Transport
6.
Science ; 382(6674): 996-997, 2023 12.
Article in English | MEDLINE | ID: mdl-38033077

ABSTRACT

Dissection of multistep catalysis by a photoenzyme could inspire green chemistry applications.


Subject(s)
DNA Damage , DNA Repair , Deoxyribodipyrimidine Photo-Lyase , Pyrimidine Dimers , Catalysis , Deoxyribodipyrimidine Photo-Lyase/chemistry , Pyrimidine Dimers/chemistry , DNA/chemistry , DNA/radiation effects , Ultraviolet Rays
7.
J Phys Chem Lett ; 14(29): 6672-6678, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37463310

ABSTRACT

The repair of the cyclobutane pyrimidine dimer (CPD) lesion in DNA by photolyase is determined by its initial recognition, and the catalytic efficiency depends on a series of intermolecular electron-transfer (ET) processes. Here, we investigated the repair of a CPD structural isomer, replacing the deoxyribose with a pyranose sugar on the 5' site, and found a loss in binding efficiency and repair quantum yield. Using femtosecond spectroscopy, we characterized all elementary repair steps and observed a systemic slowdown of the four intermolecular ET reactions and the second bond splitting. Our observations and molecular dynamics simulations suggest that the sugar replacement disrupts the lesion binding configuration, weakening the electronic coupling between the cofactor and lesion and altering the stability of lesion intermediates. These findings highlight how the CPD photolyases have utilized the structural features of the CPD lesion and optimized its interactions with the cofactor and key active-site residues to maximize repair yields.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Deoxyribodipyrimidine Photo-Lyase/chemistry , DNA Repair , Pyrimidine Dimers/chemistry , DNA Damage , Sugars
8.
Biophys Chem ; 296: 106992, 2023 05.
Article in English | MEDLINE | ID: mdl-36933500

ABSTRACT

In bacterial endospores, a cross-linked thymine dimer, 5-thyminyl-5,6-dihydrothymine, commonly referred to as the spore photoproduct (SP), is found as the dominant DNA photo lesion under UV radiation. During spore germination, SP is faithfully repaired by the spore photoproduct lyase (SPL) for normal DNA replication to resume. Despite this general mechanism, the exact way in which SP modifies the duplex DNA structure so that the damaged site can be recognized by SPL to initiate the repair process is still unclear. A previous X-ray crystallographic study, which used a reverse transcriptase as a DNA host template, captured a protein-bound duplex oligonucleotide containing two SP lesions; the study showed shortened hydrogen bonds between the AT base pairs involved in the lesions and widened minor grooves near the damaged sites. However, it remains to be determined whether the results accurately reflect the conformation of SP-containing DNA (SP-DNA) in its fully hydrated pre-repair form. To uncover the intrinsic changes in DNA conformation caused by SP lesions, we performed molecular dynamics (MD) simulations of SP-DNA duplexes in aqueous solution, using the nucleic acid portion of the previously determined crystal structure as a template. After MD relaxation, our simulated SP-DNAs showed weakened hydrogen bonds at the damaged sites compared to those in the undamaged DNA. Our analyses of the MD trajectories revealed a range of local and global structural distortions of DNA induced by SP. Specifically, the SP region displays a greater tendency to adopt an A-like-DNA conformation, and curvature analysis revealed an increase in the global bending compared to the canonical B-DNA. Although these SP-induced DNA conformational changes are relatively minor, they may provide a sufficient structural basis for SP to be recognized by SPL during the lesion repair process.


Subject(s)
DNA Repair , Deoxyribodipyrimidine Photo-Lyase , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Computer Simulation , DNA, Bacterial/genetics , DNA , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Ultraviolet Rays
9.
J Biol Chem ; 299(1): 102794, 2023 01.
Article in English | MEDLINE | ID: mdl-36528063

ABSTRACT

Photolyases (PLs) reverse UV-induced DNA damage using blue light as an energy source. Of these PLs, (6-4) PLs repair (6-4)-lesioned photoproducts. We recently identified a gene from Vibrio cholerae (Vc) encoding a (6-4) PL, but structural characterization is needed to elucidate specific interactions with the chromophore cofactors. Here, we determined the crystal structure of Vc (6-4) PL at 2.5 Å resolution. Our high-resolution structure revealed that the two well-known cofactors, flavin adenine dinucleotide and the photoantenna 6,7-dimethyl 8-ribityl-lumazin (DMRL), stably interact with an α-helical and an α/ß domain, respectively. Additionally, the structure has a third cofactor with distinct electron clouds corresponding to a [4Fe-4S] cluster. Moreover, we identified that Asp106 makes a hydrogen bond with water and DMRL, which indicates further stabilization of the photoantenna DMRL within Vc (6-4) PL. Further analysis of the Vc (6-4) PL structure revealed a possible region responsible for DNA binding. The region located between residues 478 to 484 may bind the lesioned DNA, with Arg483 potentially forming a salt bridge with DNA to stabilize further the interaction of Vc (6-4) PL with its substrate. Our comparative analysis revealed that the DNA lesion could not bind to the Vc (6-4) PL in a similar fashion to the Drosophila melanogaster (Dm, (6-4)) PL without a significant conformational change of the protein. The 23rd helix of the bacterial (6-4) PLs seems to have remarkable plasticity, and conformational changes facilitate DNA binding. In conclusion, our structure provides further insight into DNA repair by a (6-4) PL containing three cofactors.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Vibrio cholerae , Animals , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Drosophila melanogaster/metabolism , DNA Repair , DNA/chemistry , Flavin-Adenine Dinucleotide/metabolism
10.
Microbiol Spectr ; 10(6): e0221522, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36219103

ABSTRACT

Light quality is a significant factor for living organisms that have photosensory systems, such as rhodopsin, a seven alpha-helical transmembrane protein with the retinal chromophore. Here, we report, for the first time, the function of new rhodopsin, which is an inverted 7-transmembrane protein, isolated from Trichococcus flocculiformis. T. flocculiformis heliorhodopsin (TfHeR) works as a regulatory helper rhodopsin that binds with class 2 cyclobutane pyrimidine dimer (CPDII) photolyase to broaden the spectrum and upregulate DNA repair activity. We have confirmed their interaction through isothermal titration calorimetry (dissociation constant of 21.7 µM) and identified the charged residues for the interaction. Based on in vivo and in vitro experiments, we showed that the binding of heliorhodopsin with photolyase improved photolyase activity by about 3-fold to repair UV-caused DNA damage. Also, the DNA repair activity of TfHeR/T. flocculiformis photolyase (TfPHR) was observed in the presence of green light. Our results suggested that heliorhodopsin directly controls the activity of photolyase and coevolves to broaden the activity spectrum by protein-protein interaction. IMPORTANCE This study reports a function for Heliorhodopsin working as a regulatory helper rhodopsin that with CPDII photolyase to broaden the spectrum and upregulating the DNA repair activity. Our results suggested that heliorhodopsin directly controls photolyase activity and coevolves to broaden the DNA repair capacity by protein-protein interaction.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Rhodopsin/genetics , Pyrimidine Dimers/chemistry , Pyrimidine Dimers/metabolism , DNA Repair
11.
Angew Chem Int Ed Engl ; 61(50): e202209180, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36260429

ABSTRACT

Fatty acid photodecarboxylase is a newly discovered flavin photoenzyme that converts a carboxylic acid into a hydrocarbon and a carbon dioxide molecule through decarboxylation. The enzymatic reactions are poorly understood. In this study, we carefully characterized its dynamic evolution with femtosecond spectroscopy. We observed initial electron transfer from the substrate to the flavin cofactor in 347 ps with a stretched dynamic behavior and subsequently captured the critical carbonyloxy radical. The dominant process following this step was decarboxylation in 5.8 ns to form an alkyl radical and a carbon dioxide molecule. We further identified the absorption bands of two carbonyloxy and alkyl radical intermediates. The overall enzymatic quantum efficiency determined by our obtained timescales is 0.81, consistent with the steady-state value. The results are essential to the elucidation of the enzyme mechanism and catalytic photocycle, providing a molecular basis for potential design of flavin-based artificial photoenzymes.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Deoxyribodipyrimidine Photo-Lyase/chemistry , Fatty Acids , Carbon Dioxide , Flavins/chemistry , Catalysis
12.
Commun Biol ; 5(1): 1103, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36257983

ABSTRACT

Cryptochromes are blue light receptors that mediate circadian rhythm and magnetic sensing in various organisms. A typical cryptochrome consists of a conserved photolyase homology region domain and a varying carboxyl-terminal extension across species. The structure of the flexible carboxyl-terminal extension and how carboxyl-terminal extension participates in cryptochrome's signaling function remain mostly unknown. In this study, we uncover the potential missing link between carboxyl-terminal extension conformational changes and downstream signaling functions. Specifically, we discover that the blue-light induced opening of carboxyl-terminal extension in C. reinhardtii animal-like cryptochrome can structurally facilitate its interaction with Rhythm Of Chloroplast 15, a circadian-clock-related protein. Our finding is made possible by two technical advances. Using single-molecule Förster resonance energy transfer technique, we directly observe the displacement of carboxyl-terminal extension by about 15 Å upon blue light excitation. Combining structure prediction and solution X-ray scattering methods, we propose plausible structures of full-length cryptochrome under dark and lit conditions. The structures provide molecular basis for light active conformational changes of cryptochrome and downstream regulatory functions.


Subject(s)
Circadian Clocks , Deoxyribodipyrimidine Photo-Lyase , Animals , Cryptochromes/metabolism , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , Light , Circadian Rhythm
13.
J Biol Chem ; 298(8): 102188, 2022 08.
Article in English | MEDLINE | ID: mdl-35753350

ABSTRACT

The UV-induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4 photoproducts), can be directly photorepaired by CPD photolyases and 6-4 photolyases, respectively. The fully reduced flavin (hydroquinone, HQ) cofactor is required for the catalysis of both types of these photolyases. On the other hand, flavin cofactor in the semireduced state, semiquinone, can be utilized by photolyase homologs, the cryptochromes. However, the evolutionary process of the transition of the functional states of flavin cofactors in photolyases and cryptochromes remains mysterious. In this work, we investigated three representative photolyases (Escherichia coli CPD photolyase, Microcystis aeruginosa DASH, and Phaeodactylum tricornutum 6-4 photolyase). We show that the residue at a single site adjacent to the flavin cofactor (corresponding to Ala377 in E. coli CPD photolyase, hereafter referred to as site 377) can fine-tune the stability of the HQ cofactor. We found that, in the presence of a polar residue (such as Ser or Asn) at site 377, HQ was stabilized against oxidation. Furthermore, this polar residue enhanced the photorepair activity of these photolyases both in vitro and in vivo. In contrast, substitution of hydrophobic residues, such as Ile, at site 377 in these photolyases adversely affected the stability of HQ. We speculate that these differential residue preferences at site 377 in photolyase proteins might reflect an important evolutionary event that altered the stability of HQ on the timeline from expression of photolyases to that of cryptochromes.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Amino Acids/metabolism , Cryptochromes/genetics , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavins/metabolism , Pyrimidine Dimers/metabolism
14.
Nat Chem ; 14(6): 677-685, 2022 06.
Article in English | MEDLINE | ID: mdl-35393554

ABSTRACT

Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•- isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD•-. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Protons , Arginine/metabolism , Crystallography , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Electron Transport , Electrons , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Flavins , Oxidation-Reduction
15.
Chem Commun (Camb) ; 58(31): 4889-4892, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35352724

ABSTRACT

We present the structure of a photoactivated animal (6-4) photolyase in its radical pair state, captured by serial crystallography. We observe how a conserved asparigine moves towards the semiquinone FAD chromophore and stabilizes it by hydrogen bonding. Several amino acids around the final tryptophan radical rearrange, opening it up to the solvent. The structure explains how the protein environment stabilizes the radical pair state, which is crucial for function of (6-4) photolyases and cryptochromes.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Amino Acids , Animals , Cryptochromes/chemistry , Cryptochromes/metabolism , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , Flavin-Adenine Dinucleotide/chemistry , Tryptophan/chemistry
16.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1001-1009, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34342273

ABSTRACT

(6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 Šresolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 Šresolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.


Subject(s)
Flavoproteins/chemistry , Animals , Crystallography , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , Drosophila melanogaster , Flavoproteins/metabolism , Temperature
17.
Mol Biol Evol ; 38(10): 4505-4519, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34175934

ABSTRACT

UV irradiation induces the formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts in DNA. These two types of lesions can be directly photorepaired by CPD photolyases and 6-4 photolyases, respectively. Recently, a new class of 6-4 photolyases named iron-sulfur bacterial cryptochromes and photolyases (FeS-BCPs) were found, which were considered as the ancestors of all photolyases and their homologs-cryptochromes. However, a controversy exists regarding 6-4 photoproducts only constituting ∼10-30% of the total UV-induced lesions that primordial organisms would hardly survive without a CPD repair enzyme. By extensive phylogenetic analyses, we identified a novel class of proteins, all from eubacteria. They have relatively high similarity to class I/III CPD photolyases, especially in the putative substrate-binding and FAD-binding regions. However, these proteins are shorter, and they lack the "N-terminal α/ß domain" of normal photolyases. Therefore, we named them short photolyase-like. Nevertheless, similar to FeS-BCPs, some of short photolyase-likes also contain four conserved cysteines, which may also coordinate an iron-sulfur cluster as FeS-BCPs. A member from Rhodococcus fascians was cloned and expressed. It was demonstrated that the protein contains a FAD cofactor and an iron-sulfur cluster, and has CPD repair activity. It was speculated that this novel class of photolyases may be the real ancestors of the cryptochrome/photolyase family.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Cryptochromes/genetics , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Phylogeny , Pyrimidine Dimers/chemistry , Pyrimidine Dimers/metabolism , Ultraviolet Rays
18.
Photochem Photobiol Sci ; 20(7): 875-887, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34120300

ABSTRACT

Photolyases are flavoenzymes responsible for light-driven repair of carcinogenic crosslinks formed in DNA by UV exposure. They possess two non-covalently bound chromophores: flavin adenine dinucleotide (FAD) as a catalytic center and an auxiliary antenna chromophore that harvests photons and transfers solar energy to the catalytic center. Although the energy transfer reaction has been characterized by time-resolved spectroscopy, it is strikingly important to understand how well natural biological systems organize the chromophores for the efficient energy transfer. Here, we comprehensively characterized the binding of 8-hydroxy-7,8-didemethyl-5-deazariboflavin (8-HDF) to Xenopus (6-4) photolyase. In silico simulations indicated that a hydrophobic amino acid residue located at the entrance of the binding site dominates translocation of a loop upon binding of 8-HDF, and a mutation of this residue caused dysfunction of the efficient energy transfer in the DNA repair reaction. Mutational analyses of the protein combined with modification of the chromophore suggested that Coulombic interactions between positively charged residues in the protein and the phenoxide moiety in 8-HDF play a key role in accommodation of 8-HDF in the proper direction. This study provides a clear evidence that Xenopus (6-4) photolyase can utilize 8-HDF as the light-harvesting chromophore. The obtained new insights into binding of the natural antenna molecule will be helpful for the development of artificial light-harvesting chromophores and future characterization of the energy transfer in (6-4) photolyase by spectroscopic studies.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase/chemistry , Riboflavin/analogs & derivatives , Animals , Deoxyribodipyrimidine Photo-Lyase/metabolism , Energy Transfer , Riboflavin/chemistry , Riboflavin/metabolism , Xenopus laevis
19.
Photochem Photobiol Sci ; 20(6): 733-746, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33977513

ABSTRACT

NewPHL is a recently discovered subgroup of ancestral DNA photolyases. Its domain architecture displays pronounced differences from that of canonical photolyases, in particular at the level of the characteristic electron transfer chain, which is limited to merely two tryptophans, instead of the "classical" three or four. Using transient absorption spectroscopy, we show that the dynamics of photoreduction of the oxidized FAD cofactor in the NewPHL begins similarly as that in canonical photolyases, i.e., with a sub-ps primary reduction of the excited FAD cofactor by an adjacent tryptophan, followed by migration of the electron hole towards the second tryptophan in the tens of ps regime. However, the resulting tryptophanyl radical then undergoes an unprecedentedly fast deprotonation in less than 100 ps in the NewPHL. In spite of the stabilization effect of this deprotonation, almost complete charge recombination follows in two phases of ~ 950 ps and ~ 50 ns. Such a rapid recombination of the radical pair implies that the first FAD photoreduction step, i.e., conversion of the fully oxidized to the semi-quinone state, should be rather difficult in vivo. We hence suggest that the flavin chromophore likely switches only between its semi-reduced and fully reduced form in NewPHL under physiological conditions.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase/metabolism , Thermodynamics , Deoxyribodipyrimidine Photo-Lyase/chemistry , Electrons , Flavins/chemistry , Flavins/metabolism , Oxidation-Reduction , Photochemical Processes , Tryptophan/chemistry , Tryptophan/metabolism
20.
J Photochem Photobiol B ; 215: 112113, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33383556

ABSTRACT

Photolyases are enzymes that repair DNA damage caused by solar radiation. Due to their photorepair potential, photolyases added in topical creams and used in medical treatments has allowed to reverse skin damage and prevent the development of different diseases, including actinic keratosis, premature photoaging and cancer. For this reason, research has been oriented to the study of new photolyases performing in extreme environments, where high doses of UV radiation may be a key factor for these enzymes to have perfected their photorepair potential. Generally, the extracted enzymes are first encapsulated and then added to the topical creams to increase their stability. However, other well consolidated immobilization methods are interesting strategies to be studied that may improve the biocatalyst performance. This review aims to go through the different Antarctic organisms that have exhibited photoreactivation activity, explaining the main mechanisms of photolyase DNA photorepair. The challenges of immobilizing these enzymes on porous and nanostructured supports is also discussed. The comparison of the most reported immobilization methods with respect to the structure of photolyases show that both covalent and ionic immobilization methods produced an increase in their stability. Moreover, the use of nanosized materials as photolyase support would permit the incorporation of the biocatalyst into the target cell, which is a technological requirement that photolyase based biocatalysts must fulfill.


Subject(s)
DNA Repair , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Animals , Antarctic Regions , Enzyme Activation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...