Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125910

ABSTRACT

Adeno-associated viruses (AAVs) have emerged as promising tools for gene therapy due to their safety and efficacy in delivering therapeutic genes or gene editing sequences to various tissues and organs. AAV serotype 9 (AAV9), among AAV serotypes, stands out for its ability to efficiently target multiple tissues, thus holding significant potential for clinical applications. However, existing methods for purifying AAVs are cumbersome, expensive, and often yield inconsistent results. In this study, we explore a novel purification strategy utilizing Dynabeads™ CaptureSelect™ magnetic beads. The AAV9 magnetic beads capture AAV9 with high specificity and recovery between 70 and 90%, whereas the AAVX magnetic beads did not bind to the AAV9. Through continuous interaction with AAVs in solution, these beads offer enhanced clearance of genomic DNA and plasmids even in the absence of endonuclease. The beads could be regenerated at least eight times, and the used beads could be stored for up to six months and reused without a significant reduction in recovery. The potency of the AAV9-purified vectors in vivo was comparable to that of iodixanol purified vectors.


Subject(s)
Dependovirus , Genetic Vectors , Dependovirus/genetics , Dependovirus/isolation & purification , Humans , Genetic Vectors/genetics , Animals , HEK293 Cells , Mice , Genetic Therapy/methods
2.
Article in English | MEDLINE | ID: mdl-39089064

ABSTRACT

The recent FDA approval of several adeno-associated virus (AAV)-based gene therapies is driving demand for AAV production. One of the biggest AAV manufacturing challenges is removing "empty" capsids, which do not contain the gene of interest. Anion exchange chromatography has emerged as the leading solution for scalable full capsid enrichment. Here we develop a process for the baseline separation of empty and full AAV capsids using anion exchange membrane chromatography. This process development approach utilized AAV serotypes 8 and 9 and traverses initial screening of separation conditions up to manufacturing-scale processes. Process development of a two-step elution was performed via response surface DoE, exploring conductivity and the length of the first elution step. The results from response surfaces were used to construct statistical models of the process operating space. These models provide optimal conditions for recovery and purity, both of which can exceed 70 %. Model predictions were then validated at small scale prior to scale-up. We present the results from our scale-up purification and show that purity and yield are consistent with the results obtained from the response surface model.


Subject(s)
Dependovirus , Dependovirus/genetics , Dependovirus/isolation & purification , Chromatography, Ion Exchange/methods , Humans , Capsid/chemistry , Capsid Proteins/genetics , Capsid Proteins/chemistry , Capsid Proteins/isolation & purification , Capsid Proteins/analysis , HEK293 Cells
3.
Anal Biochem ; 694: 115617, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39019206

ABSTRACT

Data are presented demonstrating that absorbance detection can be used during high-speed sedimentation velocity analytical ultracentrifugation (hs-SV-AUC) experiments to characterize the size distribution of adeno-associated virus (AAV) drug products accurately. Advantages and limitations of being able to use this detector in this specific type of SV-AUC experiment are discussed.


Subject(s)
Dependovirus , Ultracentrifugation , Dependovirus/genetics , Dependovirus/isolation & purification , Ultracentrifugation/methods , Humans
4.
Methods Mol Biol ; 2829: 217-226, 2024.
Article in English | MEDLINE | ID: mdl-38951337

ABSTRACT

Purification of rAAV is a crucial unit operation of the AAV production process. It enables the capture of AAV and removal of contaminants such as host cell proteins, host cell DNA, and other cell culture-related impurities. Here we describe the purification of rAAV produced in insect cells Sf9/rBEV by immuno-affinity capture chromatography. The method is fully scale-amenable unlike other traditional purification methods based on ultracentrifugation. The method reported herein has two main steps: (1) the clarification of cell lysate by depth filtration and (2) the selective capture and single-step purification of AAV via immune-affinity chromatography. This purification method has been successfully implemented to purify the majority of wild-type AAV serotypes.


Subject(s)
Chromatography, Affinity , Dependovirus , Dependovirus/genetics , Dependovirus/isolation & purification , Animals , Chromatography, Affinity/methods , Sf9 Cells , Genetic Vectors/genetics , Humans , Spodoptera/virology
5.
Methods Mol Biol ; 2837: 207-218, 2024.
Article in English | MEDLINE | ID: mdl-39044087

ABSTRACT

Mice infected with a recombinant adeno-associated virus carrying a replication-competent hepatitis B virus genome (rAAV-HBV) via the intravenous route establish a persistent HBV replication in hepatocytes and develop immune tolerance. They serve as models to evaluate antiviral immunity and to assess potential therapeutic approaches for chronic HBV infection. Combining selected HBV variants and different mouse genotypes allows for addressing a broad spectrum of research questions. This chapter describes the basic principles of the rAAV-HBV mouse model, rAAV-HBV production and purification methods, and finally, the in vivo application.


Subject(s)
Dependovirus , Disease Models, Animal , Genetic Vectors , Hepatitis B virus , Virus Replication , Animals , Dependovirus/genetics , Dependovirus/isolation & purification , Hepatitis B virus/genetics , Mice , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Humans , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/immunology , Hepatitis B/virology , Hepatitis B/immunology
6.
Curr Protoc ; 4(6): e1068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837274

ABSTRACT

Adeno-associated virus (AAV) vectors can efficiently transduce exogenous genes into various tissues in vivo. Owing to their convenience, high efficiency, long-term stable gene expression, and minimal side effects, AAV vectors have become one of the gold standards for investigating gene functions in vivo, especially in non-clinical studies. However, challenges persist in efficiently preparing a substantial quantity of high-quality AAV vectors. Commercial AAV vectors are typically associated with high costs. Further, in-laboratory production is hindered by the lack of specific laboratory equipment, such as ultracentrifuges. Therefore, a simple, quick, and scalable preparation method for AAV vectors is needed for proof-of-concept experiments. Herein, we present an optimized method for producing and purifying high-quality AAV serotype 9 (AAV9) vectors using standard laboratory equipment and chromatography. Using ceramic hydroxyapatite as a mixed-mode chromatography medium can markedly increase the quality of purified AAV vectors. Basic Protocols and optional methods for evaluating purified AAV vectors are also described. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of AAV9 vectors in 293EB cells Basic Protocol 2: Concentration and buffer exchange of AAV9 vectors from 293EB cell culture supernatants using tangential flow filtration Basic Protocol 3: Purification of AAV9 vectors from TFF samples using ceramic hydroxyapatite chromatography Basic Protocol 4: Analysis of the purified AAV9 vectors.


Subject(s)
Ceramics , Dependovirus , Durapatite , Genetic Vectors , Serogroup , Dependovirus/genetics , Dependovirus/isolation & purification , Genetic Vectors/isolation & purification , Genetic Vectors/genetics , Humans , Ceramics/chemistry , Durapatite/chemistry , Chromatography/methods , HEK293 Cells
7.
Article in English | MEDLINE | ID: mdl-38908134

ABSTRACT

The field of recombinant adeno-associated virus (rAAV) gene therapy has attracted increasing attention over decades. Within the ongoing challenges of rAAV manufacturing, the co-production of impurities, such as empty and partial capsids containing no or truncated transgenes, poses a significant challenge. Due to their potential impact on drug efficacy and clinical safety, it is imperative to conduct comprehensive monitoring and characterization of these impurities prior to the release of the final gene therapy product. Nevertheless, existing analytical techniques encounter notable limitations, encompassing low throughput, long turnaround times, high sample consumption, and/or complicated data analysis. Chromatography-based analytical methods are recognized for their current Good Manufacturing Practice (cGMP) alignment, high repeatability, reproducibility, low limit of detection, and rapid turnaround times. Despite these advantages, current anion exchange high pressure liquid chromatography (AEX-HPLC) methods struggle with baseline separation of partial capsids from full and empty capsids, resulting in inaccurate full-to-empty capsid ratio, as partial capsids are obscured within peaks corresponding to empty and full capsids. In this study, we present a unique analytical AEX method designed to characterize not only empty and full capsids but also partial capsids. This method utilizes continuous N-Rich chromatography with recycling between two identical AEX columns for the accumulation and isolation of partial capsids. The development process is comprehensively discussed, covering the preparation of reference materials representing full (rAAV-LacZ), partial (rAAV-GFP), and empty (rAAV-empty) capsids, N-rich method development, fraction analysis, determination of fluorescence response factors between capsid variants, and validation through comparison with other comparative techniques.


Subject(s)
Capsid , Dependovirus , Dependovirus/genetics , Dependovirus/isolation & purification , Chromatography, Ion Exchange/methods , Capsid/chemistry , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
8.
Methods Mol Biol ; 2810: 55-74, 2024.
Article in English | MEDLINE | ID: mdl-38926272

ABSTRACT

Here, we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium using orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI)-mediated transfection of a three-plasmid system and is specified for production in milliliter-to-liter scales. After PEI and plasmid DNA (pDNA) complex formation, the diluted cell culture is transfected without a prior concentration step or medium exchange. Following a 7-day batch process, cell cultures are further processed using a set of methods for cell lysis and vector recovery. Methods for the purification of viral particles are described, including immunoaffinity and anion-exchange chromatography, ultrafiltration, as well as digital PCR to quantify the concentration of vector particles.


Subject(s)
Dependovirus , Genetic Vectors , Transfection , Humans , Dependovirus/genetics , Dependovirus/isolation & purification , HEK293 Cells , Genetic Vectors/genetics , Genetic Vectors/isolation & purification , Transfection/methods , Plasmids/genetics , Plasmids/isolation & purification , Polyethyleneimine/chemistry , Bioreactors , Chromatography, Ion Exchange/methods , Virion/genetics , Virion/isolation & purification
9.
Bioprocess Biosyst Eng ; 47(6): 877-890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703202

ABSTRACT

Ultracentrifugation is an attractive method for separating full and empty capsids, exploiting their density difference. Changes of the serotype/capsid, density of loading material, or the genetic information contained in the adeno-associated viruses (AAVs) require the adaptation of the harvesting parameters and the density gradient loaded onto the centrifuge. To streamline these adaptations, a mathematical model could support the design and testing of operating conditions.Here, hybrid models, which combine empirical functions with artificial neural networks, are proposed to describe the separation of full and empty capsids as a function of material and operational parameters, i.e., the harvest model. In addition, critical quality attributes are estimated by a quality model which is operating on top of the harvest model. The performance of these models was evaluated using test data and two additional blind runs. Also, a "what-if" analysis was conducted to investigate whether the models' predictions align with expectations.It is concluded that the models are sufficiently accurate to support the design of operating conditions, though the accuracy and applicability of the models can further be increased by training them on more specific data with higher variability.


Subject(s)
Dependovirus , Ultracentrifugation , Dependovirus/genetics , Dependovirus/isolation & purification , Ultracentrifugation/methods , Virion/isolation & purification , Virion/chemistry , Neural Networks, Computer
10.
J Vis Exp ; (206)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38647283

ABSTRACT

Adeno-associated virus (AAV) has become an increasingly valuable vector for in vivo gene delivery and is currently undergoing human clinical trials. However, the commonly used methods to purify AAVs make use of cesium chloride or iodixanol density gradient ultracentrifugation. Despite their advantages, these methods are time-consuming, have limited scalability, and often result in vectors with low purity. To overcome these constraints, researchers are turning their attention to chromatography techniques. Here, we present an optimized heparin-based affinity chromatography protocol that serves as a universal capture step for the purification of AAVs. This method relies on the intrinsic affinity of AAV serotype 2 (AAV2) for heparan sulfate proteoglycans. Specifically, the protocol entails the co-transfection of plasmids encoding the desired AAV capsid proteins with those of AAV2, yielding mosaic AAV vectors that combine the properties of both parental serotypes. Briefly, after the lysis of producer cells, a mixture containing AAV particles is directly purified following an optimized single-step heparin affinity chromatography protocol using a standard fast protein liquid chromatography (FPLC) system. Purified AAV particles are subsequently concentrated and subjected to comprehensive characterization in terms of purity and biological activity. This protocol offers a simplified and scalable approach that can be performed without the need for ultracentrifugation and gradients, yielding clean and high viral titers.


Subject(s)
Chromatography, Affinity , Dependovirus , Genetic Vectors , Heparin , Dependovirus/genetics , Dependovirus/isolation & purification , Dependovirus/chemistry , Chromatography, Affinity/methods , Heparin/chemistry , Genetic Vectors/chemistry , Genetic Vectors/genetics , Humans , HEK293 Cells
11.
Nature ; 617(7961): 574-580, 2023 May.
Article in English | MEDLINE | ID: mdl-36996871

ABSTRACT

As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.


Subject(s)
Adenovirus Infections, Human , Coinfection , Dependovirus , Hepatitis , Child , Humans , Acute Disease , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/genetics , Dependovirus/isolation & purification , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Infections/virology , Hepatitis/epidemiology , Hepatitis/virology , Herpesvirus 4, Human/isolation & purification , Herpesvirus 6, Human/isolation & purification , Enterovirus A, Human/isolation & purification , Helper Viruses/isolation & purification
12.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: mdl-36996873

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
13.
Science ; 377(6605): 454-455, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35901143
14.
J Ocul Pharmacol Ther ; 37(3): 181-190, 2021 04.
Article in English | MEDLINE | ID: mdl-33835848

ABSTRACT

Inhibition of vascular endothelial growth factor is the mode of action for several approved therapies, including aflibercept, for the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME). Lack of compliance due to the frequent intravitreal dosing requirements may result in inadequately treated disease, leading to irreversible vision impairment. To date, the majority of gene therapy clinical trials providing sustained anti-VEGF levels in the retina have been limited to subretinal injections requiring a vitrectomy. A single intravitreal injection of a gene therapy product could drastically reduce the treatment burden and improve visual outcomes. ADVM-022, an adeno-associated virus vector encoding aflibercept, has been optimized for intravitreal delivery and strong protein expression. Long-term expression and efficacy of ADVM-022-derived aflibercept were evaluated in a laser-induced choroidal neovascularization (CNV) model in non-human primates. Ocular safety was evaluated following long-term suppression of VEGF by clinical scoring (inflammatory parameters) as well as optical coherence tomography (OCT) and electroretinography (ERG). Intravitreal administration of ADVM-022 was well tolerated and resulted in sustained aflibercept levels in ocular tissues. In addition, ADVM-022 administration 13 months before laser-induced CNV prevented the occurrence of clinically relevant CNV lesions, to the same degree as a bolus of aflibercept delivered at the time of laser. These results demonstrate that a single intravitreal administration of ADVM-022 may provide a safe and effective long-term treatment option for nAMD and DME, and may ultimately improve patients' visual outcomes. Clinical trials are currently underway, evaluating safety and efficacy following a single intravitreal injection of ADVM-022.


Subject(s)
Choroidal Neovascularization/therapy , Dependovirus/genetics , Diabetes Mellitus/therapy , Genetic Therapy , Macular Degeneration/therapy , Macular Edema/therapy , Dependovirus/isolation & purification , Vascular Endothelial Growth Factors/genetics
15.
Biotechnol J ; 16(1): e2000015, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33002276

ABSTRACT

The development of recombinant adeno-associated virus (rAAV) gene therapies is becoming an increasing priority in the biotherapeutic landscape. One of the challenges associated with the production of rAAV is the formation of empty AAV particles that do not contain a therapeutic gene. The concerns about the impact of empty particles on clinical safety and rAAV-mediated gene expression have necessitated the development of purification processes to remove these species. The development of a robust and scalable purification process to separate empty and full AAV particles at large scale remains a challenge. In this study, a novel anion exchange chromatography process based on isocratic wash and elution steps to enrich full rAAV2 particles is presented. An operating design space is identified to ensure the robustness of the process. The isocratic chromatography provides several advantages over the traditional shallow linear gradient elution, including lower buffer consumption, smaller intermediate pool volumes, and more robust manufacturing.


Subject(s)
Dependovirus , Genetic Vectors , Virion , Anions , Chromatography, Ion Exchange , Dependovirus/genetics , Dependovirus/isolation & purification , Genetic Vectors/genetics , Genetic Vectors/isolation & purification , Recombination, Genetic , Virion/genetics , Virion/isolation & purification
16.
Sci Rep ; 10(1): 21532, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33299011

ABSTRACT

Adeno Associated Virus (AAV)-mediated gene expression in the brain is widely applied in the preclinical setting to investigate the therapeutic potential of specific molecular targets, characterize various cellular functions, and model central nervous system (CNS) diseases. In therapeutic applications in the clinical setting, gene therapy offers several advantages over traditional pharmacological based therapies, including the ability to directly manipulate disease mechanisms, selectively target disease-afflicted regions, and achieve long-term therapeutic protein expression in the absence of repeated administration of pharmacological agents. Next to the gold-standard iodixanol-based AAV vector production, we recently published a protocol for AAV production based on chloroform-precipitation, which allows for fast in-house production of small quantities of AAV vector without the need for specialized equipment. To validate our recent protocol, we present here a direct side-by-side comparison between vectors produced with either method in a series of in vitro and in vivo assays with a focus on transgene expression, cell loss, and neuroinflammatory responses in the brain. We do not find differences in transduction efficiency nor in any other parameter in our in vivo and in vitro panel of assessment. These results suggest that our novel protocol enables most standardly equipped laboratories to produce small batches of high quality and high titer AAV vectors for their experimental needs.


Subject(s)
Dependovirus/growth & development , Dependovirus/isolation & purification , Genetic Therapy/methods , Cell Culture Techniques/methods , Chloroform/chemistry , Dependovirus/genetics , Gene Expression , Gene Transfer Techniques , Genetic Vectors , Transgenes , Triiodobenzoic Acids/chemistry
17.
Curr Mol Med ; 20(10): 814-820, 2020.
Article in English | MEDLINE | ID: mdl-32933458

ABSTRACT

Adeno-associated virus (AAV) is one of the most promising gene transfer vector types featuring long-term gene expression and low toxicity. The lack of pathogenicity and the availability of many serotypes augmented the applicability of AAV virions in gene therapy applications. The recombinant AAV capsid includes the therapeutic protein-coding transgene as well as a promoter to initiate translation and a poly A sequence portion for stabilization. Current AAV manufacturing technologies, however, cannot guarantee the generation of only full capsids, i.e., including the entire required genome. Partially filled and empty capsids are also part of the product, decreasing in this way the efficacy and safety upon clinical translation. Therefore, rapid, accurate and QC friendly analysis of the full and empty capsid ratio is of high importance during AAV vector manufacturing and release testing. In this paper, an automated capillary isoelectric focusing technique is introduced, readily applicable in the biopharmaceutical industry for fast and efficient determination of the full and empty capsid ratio. The method also reveals information about the proportion of partially filled capsids. For higher resolution (<0.1 pI unit), mixtures of wide and narrow range ampholytes were utilized. The isoelectric point and peak area percentage reproducibility (RSD) of the mixed ampholyte assay were as low as 1.67% and 2.45 %, respectively, requiring only 65 nL of sample volume per injection.


Subject(s)
Capsid/metabolism , Dependovirus/genetics , Electrophoresis, Capillary/methods , Genetic Vectors/genetics , Isoelectric Focusing/methods , Dependovirus/isolation & purification , Humans
18.
Cold Spring Harb Protoc ; 2020(8): 095604, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747580

ABSTRACT

Centrifugation to equilibrium in cesium chloride gradients has been used for more than 40 yr to purify viruses. The application of high G-forces for a long period of time to a solution of CsCl generates a density gradient that allows separation of empty, partially packaged, and fully packaged viral particles from cellular debris, proteins, and nucleic acids in the crude viral lysate on the basis of their buoyant densities. This protocol describes the use of CsCl gradients to purify AAV vectors from crude viral lysates.


Subject(s)
Centrifugation, Density Gradient/methods , Cesium/chemistry , Chlorides/chemistry , Dependovirus/isolation & purification , Suspensions , Transfection
19.
J Virol Methods ; 281: 113863, 2020 07.
Article in English | MEDLINE | ID: mdl-32371233

ABSTRACT

Recombinant adeno-associated viruses (rAAVs) are robust and versatile tools for in vivo gene delivery. Natural and designer capsid variations in rAAVs allow for targeted gene delivery to specific cell types. Low immunogenicity and lack of pathogenesis also add to the popularity of this virus as an innocuous gene delivery vector for gene therapy. rAAVs are routinely used to express recombinases, sensors, detectors, CRISPR-Cas9 components, or to simply overexpress a gene of interest for functional studies. High production demand has given rise to multiple platforms for the production and purification of rAAVs. However, most platforms rely heavily on large amounts of starting material and multiple purification steps to produce highly purified viral particles. Often, researchers require several small-scale purified rAAVs. Here, we describe a simple and efficient technique for purification of recombinant rAAVs from small amounts of starting material in a two-step purification method. In this method, rAAVs are released into the packaging cell medium using high salt concentration, pelleted by ultracentrifugation to remove soluble impurities. Then, the resuspended pellet is purified using a protein spin-concentrator. In this protocol, we modify the conventional rAAV purification methods to eliminate the need for fraction collection and the labor-intensive steps for evaluating the titer and purity of individual fractions. The resulting rAAV preparations are comparable in titer and purity to commercially available samples. This simplified process can be used to generate highly purified rAAV particles on a small scale, thereby saving resources, generating less waste, and reducing a laboratory's environmental footprint.


Subject(s)
Dependovirus/isolation & purification , Virology/methods , Animals , Genetic Vectors , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Ultracentrifugation
20.
Nat Commun ; 11(1): 2102, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355221

ABSTRACT

Adeno-associated viruses (AAVs) are typically single-stranded deoxyribonucleic acid (ssDNA) encapsulated within 25-nm protein capsids. Recently, tissue-specific AAV capsids (e.g. PHP.eB) have been shown to enhance brain delivery in rodents via the LY6A receptor on brain endothelial cells. Here, we create a non-invasive positron emission tomography (PET) methodology to track viruses. To provide the sensitivity required to track AAVs injected at picomolar levels, a unique multichelator construct labeled with a positron emitter (Cu-64, t1/2 = 12.7 h) is coupled to the viral capsid. We find that brain accumulation of the PHP.eB capsid 1) exceeds that reported in any previous PET study of brain uptake of targeted therapies and 2) is correlated with optical reporter gene transduction of the brain. The PHP.eB capsid brain endothelial receptor affinity is nearly 20-fold greater than that of AAV9. The results suggest that novel PET imaging techniques can be applied to inform and optimize capsid design.


Subject(s)
Brain/diagnostic imaging , Dependovirus/isolation & purification , Positron-Emission Tomography , Animals , Capsid , Chelating Agents/pharmacokinetics , Copper Radioisotopes/pharmacokinetics , Female , Genetic Vectors , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL