Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.518
Filter
1.
ACS Infect Dis ; 10(5): 1536-1544, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626307

ABSTRACT

Cilagicin is a dual polyprenyl phosphate binding lipodepsipeptide antibiotic with strong activity against clinically relevant Gram-positive pathogens while evading antibiotic resistance. Cilagicin showed high serum binding that reduced its in vivo efficacy. Cilagicin-BP, which contains a biphenyl moiety in place of the N-terminal myristic acid found on cilagicin, showed reduced serum binding and increased in vivo efficacy but decreased potency against some pathogens. Here, we manipulated the acyl tail and the peptide core of cilagicin to identify an optimized collection of structural features that maintain potent antibiotic activity against a wide range of pathogens in the presence of serum. This led to the identification of the optimized antibiotic dodecacilagicin, which contains an N-terminal dodecanoic acid. Dodecacilagicin exhibits low MICs against clinically relevant pathogens in the presence of serum, retains polyprenyl phosphate binding, and evades resistance development even after long-term antibiotic exposure, making dodecacilagicin an appealing candidate for further therapeutic development.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Drug Resistance, Bacterial/drug effects , Depsipeptides/pharmacology , Depsipeptides/chemistry , Gram-Positive Bacteria/drug effects
2.
Mar Drugs ; 22(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38667782

ABSTRACT

(-)-Doliculide, a marine cyclodepsipeptide derived from the Japanese sea hare, Dolabella auricularia, exhibits potent cytotoxic properties, sparking interest in the field of synthetic chemistry. It is comprised of a peptide segment and a polyketide moiety, rendering it amenable to Matteson's homologation methodology. This technique facilitates the diversification of the distinctive polyketide side chain, thereby permitting the introduction of functional groups in late stages for modifications of the derived compounds and studies on structure-activity relationships.


Subject(s)
Depsipeptides , Depsipeptides/chemistry , Depsipeptides/chemical synthesis , Depsipeptides/pharmacology , Structure-Activity Relationship , Animals , Polyketides/chemistry , Polyketides/pharmacology , Humans , Molecular Structure
3.
Chem Biol Interact ; 394: 110989, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38574836

ABSTRACT

Although few resistance mechanisms for histone deacetylase inhibitors (HDACis) have been described, we recently demonstrated that TMT1A (formerly METTL7A) and TMT1B (formerly METTL7B) can mediate resistance to HDACis with a thiol as the zinc-binding group by methylating and inactivating the drug. TMT1A and TMT1B are poorly characterized, and their normal physiological role has yet to be determined. As animal model systems are often used to determine the physiological function of proteins, we investigated whether the ability of these methyltransferases to methylate thiol-based HDACis is conserved across different species. We found that TMT1A was conserved across rats, mice, chickens, and zebrafish, displaying 85.7%, 84.8%, 60.7%, and 51.0% amino acid sequence identity, respectively, with human TMT1A. Because TMT1B was not found in the chicken or zebrafish, we focused our studies on the TMT1A homologs. HEK-293 cells were transfected to express mouse, rat, chicken, or zebrafish homologs of TMT1A and all conferred resistance to the thiol-based HDACIs NCH-51, KD-5170, and romidepsin compared to empty vector-transfected cells. Additionally, all homologs blunted the downstream effects of HDACi treatment such as increased p21 expression, increased acetylated histone H3, and cell cycle arrest. Increased levels of dimethylated romidepsin were also found in the culture medium of cells transfected to express any of the TMT1A homologs after a 24 h incubation with romidepsin compared to empty-vector transfected cells. Our results indicate that the ability of TMT1A to methylate molecules is conserved across species. Animal models may therefore be useful in elucidating the role of these enzymes in humans.


Subject(s)
Chickens , Histone Deacetylase Inhibitors , Methyltransferases , Zebrafish , Animals , Humans , Mice , Methyltransferases/metabolism , Methyltransferases/genetics , HEK293 Cells , Zebrafish/metabolism , Rats , Histone Deacetylase Inhibitors/pharmacology , Amino Acid Sequence , Sulfhydryl Compounds/metabolism , Depsipeptides/pharmacology , Methylation , Species Specificity , Conserved Sequence
4.
Antimicrob Agents Chemother ; 68(5): e0136823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38572959

ABSTRACT

Leishmaniasis is a neglected tropical disease infecting the world's poorest populations. Miltefosine (ML) remains the primary oral drug against the cutaneous form of leishmaniasis. The ATP-binding cassette (ABC) transporters are key players in the xenobiotic efflux, and their inhibition could enhance the therapeutic index. In this study, the ability of beauvericin (BEA) to overcome ABC transporter-mediated resistance of Leishmania tropica to ML was assessed. In addition, the transcription profile of genes involved in resistance acquisition to ML was inspected. Finally, we explored the efflux mechanism of the drug and inhibitor. The efficacy of ML against all developmental stages of L. tropica in the presence or absence of BEA was evaluated using an absolute quantification assay. The expression of resistance genes was evaluated, comparing susceptible and resistant strains. Finally, the mechanisms governing the interaction between the ABC transporter and its ligands were elucidated using molecular docking and dynamic simulation. Relative quantification showed that the expression of the ABCG sub-family is mostly modulated by ML. In this study, we used BEA to impede resistance of Leishmania tropica. The IC50 values, following BEA treatment, were significantly reduced from 30.83, 48.17, and 16.83 µM using ML to 8.14, 11.1, and 7.18 µM when using a combinatorial treatment (ML + BEA) against promastigotes, axenic amastigotes, and intracellular amastigotes, respectively. We also demonstrated a favorable BEA-binding enthalpy to L. tropica ABC transporter compared to ML. Our study revealed that BEA partially reverses the resistance development of L. tropica to ML by blocking the alternate ATP hydrolysis cycle.


Subject(s)
ATP-Binding Cassette Transporters , Antiprotozoal Agents , Depsipeptides , Drug Resistance , Leishmania tropica , Molecular Docking Simulation , Phosphorylcholine , Phosphorylcholine/analogs & derivatives , Leishmania tropica/drug effects , Leishmania tropica/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/antagonists & inhibitors , Depsipeptides/pharmacology , Antiprotozoal Agents/pharmacology , Phosphorylcholine/pharmacology , Humans , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/antagonists & inhibitors
5.
J Physiol ; 602(9): 2047-2060, 2024 May.
Article in English | MEDLINE | ID: mdl-38500302

ABSTRACT

Adverse experiences in early life can induce maladaptive responses to acute stress in later life. Chronic social isolation during adolescence is an early life adversity that can precipitate stress-related psychiatric disorders. We found that male mice after 8 weeks of adolescent social isolation (SI) have markedly increased aggression after being exposed to 2 h of restraint stress (RS), which was accompanied by a significant increase of AMPA receptor- and NMDA receptor-mediated synaptic transmission in prefrontal cortex (PFC) pyramidal neurons of SIRS males. Compared to group-housed counterparts, SIRS males exhibited a significantly decreased level of histone H3 acetylation in PFC. Systemic administration of class I histone deacetylase inhibitors, romidepsin or MS-275, ameliorated the aggressive behaviour, as well as general social interaction deficits, of SIRS males. Electrophysiological recordings also found normalization of PFC glutamatergic currents by romidepsin treatment of SIRS male mice. These results revealed an epigenetic mechanism and intervention avenue for aggression induced by chronic social isolation. KEY POINTS: Adolescent chronic social isolation can precipitate stress-related psychiatric disorders. A significant increase of glutamatergic transmission is found in the prefrontal cortex (PFC) of socially isolated male mice exposed to an acute stress (SIRS). Treatment with class I histone deacetylase (HDAC) inhibitors ameliorates the aggressive behaviour and social interaction deficits of SIRS males, and normalizes glutamatergic currents in PFC neurons. It provides an epigenetic mechanism and intervention avenue for aberrant stress responses induced by chronic social isolation.


Subject(s)
Aggression , Histone Deacetylase Inhibitors , Mice, Inbred C57BL , Prefrontal Cortex , Social Isolation , Stress, Psychological , Animals , Male , Histone Deacetylase Inhibitors/pharmacology , Social Isolation/psychology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Aggression/drug effects , Mice , Depsipeptides/pharmacology , Pyridines/pharmacology , Benzamides/pharmacology , Restraint, Physical , Synaptic Transmission/drug effects , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Pyramidal Cells/metabolism
6.
J Nat Prod ; 87(4): 976-983, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38438310

ABSTRACT

Three unique linear oligomeric depsipeptides, designated as cavomycins A-C (1-3), were identified from Streptomyces cavourensis, a gut bacterium associated with the annelid Paraleonnates uschakovi. The structures of these depsipeptides were determined through a combination of spectroscopic methods and chemical derivatization techniques, including methanolysis, the modified Mosher's method, advanced Marfey's methods, and phenylglycine methyl ester derivatization. The unique dipeptidyl residue arrangements in compounds 1-3 indicate that they are not degradation products of valinomycin. Compound 2 and its methylation derivative 2a exhibited antiproliferative activity against PANC-1 pancreatic cancer cells with IC50 values of 1.2 and 1.7 µM, respectively.


Subject(s)
Depsipeptides , Streptomyces , Streptomyces/chemistry , Depsipeptides/pharmacology , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Humans , Molecular Structure , Animals , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
7.
Pest Manag Sci ; 80(6): 2991-2999, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38312069

ABSTRACT

BACKGROUND: Fusarium species are responsible for Fusarium head blight (FHB) in wheat, resulting in yield losses and mycotoxin contamination. Deoxynivalenol (DON) and enniatins (ENNs) are common mycotoxins produced by Fusarium, affecting plant, animal and human health. Although DON's effects have been widely studied, limited research has explored the impact of ENNs on insects. This study examines the influence of DON and enniatin B (ENB), both singularly and in combination, on the wheat aphid Sitobion avenae and one of its predators, the lacewing Chrysoperla carnea. RESULTS: When exposed to DON (100 mg L-1) or DON + ENB (100 mg L-1), S. avenae exhibited significantly increased mortality compared to the negative control. ENB (100 mg L-1) had no significant effect on aphid mortality. DON-treated aphids showed increasing mortality from 48 to 96 h. A dose-response relationship with DON revealed significant cumulative mortality starting at 25 mg L-1. By contrast, C. carnea larvae exposed to mycotoxins via cuticular application did not show significant differences in mortality when mycotoxins were dissolved in water but exhibited increased mortality with acetone-solubilized DON + ENB (100 mg L-1). Feeding C. carnea with aphids exposed to mycotoxins (indirect exposure) did not impact their survival or predatory activity. Additionally, the impact of mycotoxins on C. carnea was observed only with acetone-solubilized DON + ENB. CONCLUSIONS: These findings shed light on the complex interactions involving mycotoxins, aphids and their predators, offering valuable insights for integrated pest management strategies. Further research should explore broader ecological consequences of mycotoxin contamination in agroecosystems. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , Depsipeptides , Trichothecenes , Animals , Aphids/drug effects , Aphids/growth & development , Trichothecenes/toxicity , Depsipeptides/pharmacology , Predatory Behavior/drug effects , Larva/growth & development , Larva/drug effects , Triticum , Insecta/drug effects , Food Chain , Fusarium/drug effects
8.
J Steroid Biochem Mol Biol ; 239: 106483, 2024 May.
Article in English | MEDLINE | ID: mdl-38369033

ABSTRACT

Beauvericin (BEA) is a cyclic depsipeptide secondary metabolite of Fusarium species. It causes chemical hazards in food products and exists in an environment containing soil and various food types. On the other hand, the purified BEA has various biological activities and is regarded as a potential candidate for pharmaceutical research. This study was performed to assess the anti-proliferation activity of BEA against human breast cancer cells by regulating the estrogen receptor-alpha (ERα)/p38 pathway. TA and BA assays verified that BEA is a completed ER antagonist. Additionally, BEA suppressed cell proliferation in the anti-proliferation assay involving ER-positive human breast cancer cells co-treated with BPA and BEA. In respect to an anti-proliferation activity, the BPA-induced phosphorylation of p38 protein was inhibited in the presence of BEA. These results suggested that BEA exerts inhibitory potentials on endocrine disrupting effect and possibly acts as a natural therapeutic material for human estrogen hormonal health.


Subject(s)
Benzhydryl Compounds , Breast Neoplasms , Depsipeptides , Fusarium , Phenols , Humans , Female , Estrogen Receptor alpha/metabolism , Fusarium/metabolism , Breast Neoplasms/drug therapy , Depsipeptides/pharmacology , Depsipeptides/metabolism , Cell Proliferation , Cell Line , Cell Line, Tumor
9.
J Nat Prod ; 87(4): 764-773, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38423998

ABSTRACT

The brevicidines represent a novel class of nonribosomal antimicrobial peptides that possess remarkable potency and selectivity toward highly problematic and resistant Gram-negative pathogenic bacteria. A recently discovered member of the brevicidine family, coined brevicidine B (2), comprises a single amino acid substitution (from d-Tyr2 to d-Phe2) in the amino acid sequence of the linear moiety of brevicidine (1) and was reported to exhibit broader antimicrobial activity against both Gram-negative (MIC = 2-4 µgmL-1) and Gram-positive (MIC = 2-8 µgmL-1) pathogens. Encouraged by this, we herein report the first total synthesis of the proposed structure of brevicidine B (2), building on our previously reported synthetic strategy to access brevicidine (1). In agreement with the original isolation paper, pleasingly, synthetic 2 demonstrated antimicrobial activity toward Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae (MIC = 4-8 µgmL-1). Interestingly, however, synthetic 2 was inactive toward all of the tested Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus strains. Substitution of d-Phe2 with its enantiomer, and other hydrophobic residues, yields analogues that were either inactive or only exhibited activity toward Gram-negative strains. The striking difference in the biological activity of our synthetic 2 compared to the reported natural compound warrants the re-evaluation of the original natural product for purity or possible differences in relative configuration. Finally, the evaluation of synthetic 1 and 2 in a human kidney organoid model of nephrotoxicity revealed substantial toxicity of both compounds, although 1 was less toxic than 2 and polymyxin B. These results indicate that modification to position 2 may afford a strategy to mitigate the nephrotoxicity of brevicidine.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Molecular Structure , Pseudomonas aeruginosa/drug effects , Humans , Depsipeptides/pharmacology , Depsipeptides/chemistry , Depsipeptides/chemical synthesis , Klebsiella pneumoniae/drug effects , Escherichia coli/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry
10.
Org Lett ; 26(7): 1321-1325, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38330916

ABSTRACT

Dolastatin 10, a potent tubulin-targeting marine anticancer natural product, provided the basis for the development of six FDA-approved antibody-drug conjugates. Through the screening of cyanobacterial Caldora penicillata environmental DNA libraries and metagenome sequencing, we identified its biosynthetic gene cluster. Functional prediction of 10 enzymes encoded in the 39 kb cluster supports the dolastatin 10 biosynthesis. The nonheme diiron monooxygenase DolJ was biochemically characterized to mediate the terminal thiazole formation in dolastatin 10.


Subject(s)
Antineoplastic Agents , Cyanobacteria , Depsipeptides , Neoplasms , Oligopeptides/chemistry , Depsipeptides/pharmacology , Depsipeptides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cyanobacteria/chemistry
11.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Article in English | MEDLINE | ID: mdl-38326625

ABSTRACT

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Colorectal Neoplasms , Depsipeptides , Macrocyclic Compounds , Proto-Oncogene Proteins c-akt , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Depsipeptides/chemistry , Depsipeptides/chemical synthesis , Drug Discovery , Drug Screening Assays, Antitumor , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Structure-Activity Relationship , Xenograft Model Antitumor Assays
12.
Angew Chem Int Ed Engl ; 63(12): e202318784, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38291557

ABSTRACT

Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75 mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.


Subject(s)
Antineoplastic Agents , Depsipeptides , Peptides, Cyclic/pharmacology , Peptides, Cyclic/metabolism , Depsipeptides/pharmacology , Antineoplastic Agents/pharmacology , Structure-Activity Relationship
13.
J Med Microbiol ; 73(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38214499

ABSTRACT

Neisseria gonorrhoeae is a bacterial pathogen that causes gonorrhoea, a sexually transmitted infection. Increasing antimicrobial resistance in N. gonorrhoeae is providing motivation to develop new treatment options. In this study, we investigated the effectiveness of the antibiotic ramoplanin as a treatment for N. gonorrhoeae infection. We tested the effectiveness of ramoplanin in vitro against 14 World Health Organization (WHO) reference strains of N. gonorrhoeae and found that it was active against all 14 strains tested. Furthermore, in a Galleria mellonella infection model of N. gonorrhoeae WHO P, we demonstrated that ramoplanin was active in vivo without any evidence of toxicity. This suggests that ramoplanin might be a new promising antibiotic treatment for gonorrhoea.


Subject(s)
Depsipeptides , Gonorrhea , Humans , Gonorrhea/drug therapy , Gonorrhea/microbiology , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Depsipeptides/pharmacology , Neisseria gonorrhoeae , Microbial Sensitivity Tests
14.
Ecotoxicol Environ Saf ; 269: 115786, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38061083

ABSTRACT

Beauvericin (BEA), a naturally occurring cyclic peptide with good pharmacological activity, has been widely explored in anticancer research. Although BEA is toxic, studies have demonstrated its antioxidant activity. However, to date, the antioxidant mechanisms of BEA remain unclear. Herein, we conducted a comprehensive and detailed study of the antioxidant mechanism of BEA using an untargeted metabolomics approach, subsequently validating the results. BEA concentrations of 0.5 and 1 µM significantly inhibited H2O2-induced oxidative stress (OS), decreased reactive oxygen species levels in PC-12 cells, and restored the mitochondrial membrane potential. Untargeted metabolomics indicated that BEA was primarily involved in lipid-related metabolism, suggesting its role in resisting OS in PC-12 cells by participating in lipid metabolism. BEA combated OS damage by increasing phosphatidylcholine, phosphatidylethanolamine, and sphingolipid levels. In the current study, BEA upregulated proteins related to the PI3K/AKT/mTOR pathway, thereby promoting cell survival. These findings support the antioxidant activity of BEA at low concentrations, warranting further research into its pharmacological effects.


Subject(s)
Antioxidants , Apoptosis , Depsipeptides , Lipid Metabolism , Antioxidants/pharmacology , Cell Survival , Depsipeptides/pharmacology , Hydrogen Peroxide/toxicity , Lipid Metabolism/drug effects , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , PC12 Cells/drug effects , PC12 Cells/metabolism , Animals , Rats
15.
Int J Food Microbiol ; 411: 110517, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38096676

ABSTRACT

This study aims to investigate the potential role of lactose on cereulide biosynthesis by emetic Bacillus cereus in dairy matrices. The cereulide yields in whole milk and lactose-free milk were investigated using the emetic reference strain F4810/72. To eliminate the influence of complex food substrates, the LB medium model was further used to characterize the effect of lactose on cereulide produced by F4810/72 and five other emetic B. cereus strains. Results showed that the lactose-free milk displayed a 13-fold higher amount of cereulide than whole milk, but the cereulide level could be reduced by 91 % when the lactose content was restored. The significant inhibition of lactose on cereulide yields of all tested B. cereus strains was observed in LB medium, showing a dose-dependent manner with inhibition rates ranging of 89-98 %. The growth curves and lactose utilization patterns of all strains demonstrated that B. cereus cannot utilize lactose as a carbon source and lactose might act as a signal molecule to regulate cereulide production. Moreover, lactose strongly repressed the expression of cereulide synthetase genes (ces), possibly by inhibiting the key regulator Spo0A at the transcriptional level. Our findings highlight the potential of lactose as an effective strategy to control cereulide production in food.


Subject(s)
Bacillus cereus , Depsipeptides , Animals , Bacillus cereus/genetics , Emetics/metabolism , Lactose/metabolism , Milk/metabolism , Depsipeptides/pharmacology
16.
J Invertebr Pathol ; 201: 108003, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37838064

ABSTRACT

In this study, silkworms were treated by injection of the bioactive depsipeptide beauvericin (BEA) to explore its effect on the cellular immunity of larvae of the silkworm Bombyx mori. The results showed that: The LC50 of BEA for silkworms on the 3rd day of the 4th instar was 362.36 µM. The total count of circulating hemocytes in the silkworms decreased at 12 h after injection with 350 µM BEA, and reached the minimum value at 72 h post-treatment; at 48 h post-treatment, a large number of nodules formed by the aggregation of blood cells of the silkworms were observed under the light microscope. The survival rate of hemocytes in the larvae treated with BEA was significantly reduced in a dose-dependent manner in vivo and in vitro. The encapsulation of Q-Sepharose Fast Flow (QFF) gel particles by hemocytes in the treatment group was significantly higher than that in the control group at 1.5 h and 3 h post-treatment (P < 0.05). Moreover, the melanization ratio of QFF gel particles kept increasing with treatment time. The melanization rate at 24 h after treatment was significantly higher than that at other times (P < 0.05), reaching 55.33 %. Under the scanning electron microscope, BEA-treated larvae showed protrusions on the surface of their blood cells in vivo. Under the transmission electron microscope, it was observed that silkworm hemocytes were vacuolated. This study demonstrated that BEA had an effect on the blood cells of silkworms, and has thrown some light on the inhibitory effect and mechanism of BEA on insect cellular immunity.


Subject(s)
Bombyx , Depsipeptides , Animals , Hemocytes , Depsipeptides/pharmacology , Larva , Insect Proteins
17.
J Chem Ecol ; 49(9-10): 549-569, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37453001

ABSTRACT

The cyclic depsipeptide FR900359 (FR) is derived from the soil bacterium Chromobacterium vaccinii and known to bind Gq proteins of mammals and insects, thereby abolishing the signal transduction of their Gq protein-coupled receptors, a process that leads to severe physiological consequences. Due to their highly conserved structure, Gq family of proteins are a superior ecological target for FR producing organisms, resulting in a defense towards a broad range of harmful organisms. Here, we focus on the question whether bacteria like C. vaccinii are important factors in soil in that their secondary metabolites impair, e.g., plant harming organisms like nematodes. We prove that the Gq inhibitor FR is produced under soil-like conditions. Furthermore, FR inhibits heterologously expressed Gαq proteins of the nematodes Caenorhabditis elegans and Heterodera schachtii in the micromolar range. Additionally, in vivo experiments with C. elegans and the plant parasitic cyst nematode H. schachtii demonstrated that FR reduces locomotion of C. elegans and H. schachtii. Finally, egg-laying of C. elegans and hatching of juvenile stage 2 of H. schachtii from its cysts is inhibited by FR, suggesting that FR might reduce nematode dispersion and proliferation. This study supports the idea that C. vaccinii and its excreted metabolome in the soil might contribute to an ecological equilibrium, maintaining and establishing the successful growth of plants.


Subject(s)
Depsipeptides , Nematoda , Animals , Soil , Caenorhabditis elegans , Depsipeptides/pharmacology , Bacteria , Signal Transduction , Mammals
18.
Angew Chem Int Ed Engl ; 62(32): e202305445, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37256588

ABSTRACT

We present the first total synthesis of the thiamyxins A-C and the now fully characterized thiamyxin E, an interesting class of thiazole- and thiazoline-rich depsipeptides with diverse antiviral activity. The synthesis features a parallel closing of two methyl thiazoline units, with low epimerization of the very labile adjacent stereocenter. It also includes the three-step synthesis of an uncommon hydroxy acid and the oxidation-free elimination of a phenylselenide to form a dehydroalanine moiety. The exploitation of the acid-labile stereocenter at the isoleucine moiety and the reopening of the macrolactones gave access to the four thiamyxins with good yields and diastereomeric purities from a single precursor. The modular total synthesis allows further testing of the biological activity and gives opportunities to explore the pharmacophore and antiviral target through derivatization.


Subject(s)
Depsipeptides , Depsipeptides/pharmacology , Thiazoles , Hydroxy Acids , RNA
19.
Biomed Pharmacother ; 164: 114774, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37224749

ABSTRACT

Romidepsin, also known as NSC630176, FR901228, FK-228, FR-901228, depsipeptide, or Istodax®, is a natural molecule produced by the Chromobacterium violaceum bacterium that has been approved for its anti-cancer effect. This compound is a selective histone deacetylase (HDAC) inhibitor, which modifies histones and epigenetic pathways. An imbalance between HDAC and histone acetyltransferase can lead to the down-regulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by romidepsin indirectly contributes to the anticancer therapeutic effect by causing the accumulation of acetylated histones, restoring normal gene expression in cancer cells, and promoting alternative pathways, including the immune response, p53/p21 signaling cascades, cleaved caspases, poly (ADP-ribose) polymerase (PARP), and other events. Secondary pathways mediate the therapeutic action of romidepsin by disrupting the endoplasmic reticulum and proteasome and/or aggresome, arresting the cell cycle, inducing intrinsic and extrinsic apoptosis, inhibiting angiogenesis, and modifying the tumor microenvironment. This review aimed to highlight the specific molecular mechanisms responsible for HDAC inhibition by romidepsin. A more detailed understanding of these mechanisms can significantly improve the understanding of cancer cell disorders and pave the way for new therapeutic approaches using targeted therapy.


Subject(s)
Depsipeptides , Neoplasms , Humans , Histones/metabolism , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Apoptosis , Neoplasms/drug therapy , Histone Deacetylases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Cell Line, Tumor , Tumor Microenvironment
20.
BMC Microbiol ; 23(1): 96, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37016280

ABSTRACT

Destruxin A (DA) is a cyclo-hexadepsipeptidic insecticidal mycotoxin isolated from the entomopathogenic fungi, Metarhizium spp. However, its mode of action is unknown. In this study, we isolated 149 candidate DA-binding proteins by drug affinity response target stability, and determined the interactions of 80 canditates with DA in vitro by surface plasmon resonance. The affinity coefficients (KD) ranged from 24 to 469 µM. Binding proteins were functionally diverse and included cytoskeletal components and cell motility, protein transcription and translation pathways, ubiquitin dependent protein metabolic processes, nucleus pore entry and exit, and endoplasmic reticulum vesicle transport and etc. Electron microscopy revealed that DA damaged the cytoskeleton and multiple organelles, disrupted cell adhesion and motility, and led to cell death. DA appeared to have a multi-targeted approach to cellular structures and multiple life processes, leading to cell death. The results of this study could provide molecular evidence for the analysis of the insecticidal toxicology of DA and further improve the study of the pathogenic insect mechanism of Metarhizium.


Subject(s)
Depsipeptides , Insecticides , Metarhizium , Animals , Carrier Proteins , Depsipeptides/pharmacology , Depsipeptides/chemistry , Depsipeptides/metabolism , Insecta/metabolism , Insecticides/pharmacology , Insect Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...