Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
Biochem Biophys Res Commun ; 628: 57-63, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36081279

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by type 2 immune responses. Interleukin-25 (IL-25) is produced predominantly by epithelial cells. It can activate Th2 cells to produce type 2 cytokines such as IL-4, IL-5 and IL-13, contributing to host defense against nematodes. However, excessive/inappropriate production of IL-25 is considered to be involved in development of type 2 cytokine-associated allergic disorders such as asthma. On the other hand, the contribution of IL-25 to the pathogenesis of AD remains poorly understood. In the present study, we found that expression of Il25 mRNA was significantly increased in the skin of mice during oxazolone-induced chronic contact hypersensitivity (CHS), which is a mouse model of human AD. In addition, development of oxazolone-induced chronic CHS was significantly reduced in IL-25-deficient (Il25-/-) mice compared with wild-type mice on the C57BL/6, but not BALB/c, background, although IL-25 was not essential for IL-4 production by hapten-specific T cells. Therefore, IL-25 is crucial for development of chronic CHS, although that is partly dependent on the genetic background of the mice.


Subject(s)
Dermatitis, Atopic , Dermatitis, Contact , Interleukin-17 , Animals , Cytokines/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/genetics , Dermatitis, Contact/genetics , Haptens , Interleukin-13 , Interleukin-17/genetics , Interleukin-4/genetics , Interleukin-5 , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oxazolone , RNA, Messenger , Skin/metabolism
2.
BMB Rep ; 54(10): 534-539, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34488930

ABSTRACT

IL-10+ regulatory B (Breg) cells play a vital role in regulating the immune responses in experimental autoimmune encephalomyelitis, colitis, and contact hypersensitivity (CHS). Several stimulants such as lipopolysaccharide (LPS), CD40 ligand, and IL-21 spur the activation and maturation of IL-10+ Breg cells, while the epigenetic mechanism for the IL-10 expression remains largely unknown. It is well accepted that the histone acetylation/ deacetylation is an important mechanism that regulates the expression of IL-10. We found that entinostat, an HDAC inhibitor, stimulated the induction of IL-10+ Breg cells by LPS in vitro and the formation of IL-10+ Breg cells to suppress CHS in vivo. We further demonstrated that entinostat inhibited HDAC1 from binding to the proximal region of the IL-10 expression promoter in splenic B cells, followed by an increase in the binding of NF-κB p65, eventually enhancing the expression of IL-10 in Breg cells. [BMB Reports 2021; 54(10): 534-539].


Subject(s)
B-Lymphocytes, Regulatory/metabolism , Benzamides/pharmacology , Dermatitis, Contact/drug therapy , Pyridines/pharmacology , Acetylation , Animals , B-Lymphocytes, Regulatory/drug effects , Benzamides/metabolism , Cells, Cultured , Colitis/metabolism , Dermatitis, Contact/genetics , Dermatitis, Contact/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Histone Deacetylase 1/drug effects , Histone Deacetylase 1/metabolism , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/pharmacology , Immunity/immunology , Immunity/physiology , Interleukin-10/immunology , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Pyridines/metabolism , Transcription Factor RelA/metabolism
3.
J Allergy Clin Immunol ; 148(2): 563-573.e7, 2021 08.
Article in English | MEDLINE | ID: mdl-33581199

ABSTRACT

BACKGROUND: The programmed cell death-1 (PD-1)/programmed death ligand 1 (PD-L1) pathway is known to inhibit the activation of effector CD8+ T cells. However, just how this regulatory pathway is involved in the pathophysiology of CD8+ T-cell-mediated inflammatory skin diseases remains unclear. OBJECTIVE: Our aim was to elucidate the mechanisms by which the PD-1/PD-L1 pathway exerts its regulatory roles in CD8+ T-cell-mediated cutaneous immune responses. METHODS: PD-L1-deficient (Pdl1-/-) mice were used for the murine contact hypersensitivity model. Inflammatory responses such as IFN-γ production from CD8+ T cells in the skin was evaluated by flow cytometry. RESULTS: Compared with wild-type mice, Pdl1-/- mice exhibited exacerbated ear swelling and increased numbers of IFN-γ+ CD8+ T cells in the skin. Adoptive T-cell transfer experiments revealed the involvement of the PD-1/PD-L1 pathway in the elicitation phase of contact hypersensitivity. Bone marrow chimera experiments showed that PD-L1 on radioresistant cells was responsible for this regulatory pathway. Flow cytometric analysis revealed that among the radioresistant cells in the skin, PD-L1 was most highly expressed on mast cells (MCs) before and after elicitation. Administration of anti-PD-L1 blocking antibody during the elicitation phase significantly enhanced ear swelling responses and increased the number of IFN-γ+CD8+ T cells in the skin of wild-type mice, whereas no significant effects were observed in MC-deficient (WBB6F1/J-KitW/KitW-v/J and C57BL/6-KitW-sh/W-sh) mice. The high level of expression of PD-L1 on human skin MCs was confirmed by database analysis and immunohistochemical analysis. CONCLUSION: PD-L1 on MCs negatively regulates CD8+ T-cell activation in the skin.


Subject(s)
B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Dermatitis, Contact/immunology , Lymphocyte Activation , Skin/immunology , Animals , B7-H1 Antigen/genetics , CD8-Positive T-Lymphocytes/pathology , Dermatitis, Contact/genetics , Dermatitis, Contact/pathology , Mice , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Skin/pathology
4.
Biochem Biophys Res Commun ; 546: 124-129, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33582554

ABSTRACT

Microsomal prostaglandin (PG) E synthase-1 (mPGES-1) and prostacyclin (PGI2) synthase (PGIS) are PG terminal synthases that work downstream of cyclooxygenase and synthesize PGE2 and PGI2, respectively. Although the involvement of PG receptors in acquired cutaneous immune responses was recently shown, the roles of these PG terminal synthases remain unclear. To identify the pathophysiological roles of mPGES-1 and PGIS in cutaneous immune systems, we applied contact hypersensitivity (CHS) to mPGES-1 and PGIS knockout (KO) mice as a model of acquired immune responses. Mice were treated with 1-fluoro-2,4-dinitrobenzene (DNFB) and evaluated for ear thickness and histopathological features. The results showed that the severity of ear swelling in both gene-deficient mice was much lower than that in wild-type (WT) mice. Histological examination of DNFB-treated ears showed that inflammatory cell infiltration and edema in the dermis were also less apparent in both genotypic mice. LC-MS analysis further showed that the increment in PGE2 levels in DNFB-treated ear tissue was reduced in mPGES-1 KO mice, and that 6-keto PGF1α (a stable metabolite of PGI2) was not detected in PGIS KO mice. Furthermore, we made bone marrow (BM) chimera and found that transplantation of WT mouse-derived BM cells restored the impaired CHS response in mPGES-1 KO mice but did not restore the response in PGIS KO mice. These results indicated that mPGES-1 in BM-derived cells and PGIS in non-BM-derived cells might play critical roles in DNFB-induced CHS. mPGES-1-derived PGE2 and PGIS-derived PGI2 might coordinately promote acquired cutaneous immune responses.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Dermatitis, Contact/enzymology , Intramolecular Oxidoreductases/metabolism , Prostaglandin-E Synthases/metabolism , Adoptive Transfer , Animals , Bone Marrow Cells , Cytochrome P-450 Enzyme System/deficiency , Cytochrome P-450 Enzyme System/genetics , Dermatitis, Contact/etiology , Dermatitis, Contact/genetics , Dinitrofluorobenzene/adverse effects , Ear/pathology , Female , Interferon-gamma/metabolism , Interleukins/metabolism , Intramolecular Oxidoreductases/deficiency , Intramolecular Oxidoreductases/genetics , Mice , Mice, Knockout , Prostaglandin-E Synthases/deficiency , Prostaglandin-E Synthases/genetics , Prostaglandins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-22
5.
J Allergy Clin Immunol ; 148(3): 858-866, 2021 09.
Article in English | MEDLINE | ID: mdl-33609627

ABSTRACT

BACKGROUND: Sensory nerves regulate cutaneous local inflammation indirectly through induction of pruritus and directly by acting on local immune cells. The underlying mechanisms for how sensory nerves influence cutaneous acquired immune responses remain to be clarified. OBJECTIVE: This study aimed to explore the effect of peripheral nerves on cutaneous immune cells in cutaneous acquired immune responses. METHODS: We analyzed contact hypersensitivity (CHS) responses as a murine model of delayed-type hypersensitivity in absence or presence of resiniferatoxin-induced sensory nerve denervation. We conducted ear thickness measurements, flow cytometric analyses, and mRNA expression analyses in CHS. RESULTS: CHS responses were attenuated in mice that were denervated during the sensitization phase of CHS. By screening neuropeptides, we found that pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA expression was decreased in the dorsal root ganglia after denervation. Administration of PACAP restored attenuated CHS response in resiniferatoxin-treated mice, and pharmacological inhibition of PACAP suppressed CHS. Flow cytometric analysis of skin-draining lymph nodes showed that cutaneous dendritic cell migration and maturation were reduced in both denervated mice and PACAP antagonist-treated mice. The expression of chemokine receptors CCR7 and CXCR4 of dendritic cell s was enhanced by addition of PACAP in vitro. CONCLUSION: These findings indicate that a neuropeptide PACAP promotes the development of CHS responses by inducing cutaneous dendritic cell functions during the sensitization phase.


Subject(s)
Dermatitis, Contact/immunology , Langerhans Cells/immunology , Pituitary Adenylate Cyclase-Activating Polypeptide/immunology , Animals , Denervation , Dermatitis, Contact/genetics , Diterpenes/administration & dosage , Female , Ganglia, Spinal/physiology , Haptens/administration & dosage , Lymph Nodes/immunology , Mice, Inbred BALB C , Mice, Transgenic , Neurotoxins/administration & dosage , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, CCR7/immunology , Receptors, CXCR4/immunology , TRPV Cation Channels
6.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431694

ABSTRACT

Plasmacytoid dendritic cells (pDCs) specialize in the production of type I IFN (IFN-I). pDCs can be depleted in vivo by injecting diphtheria toxin (DT) in a mouse in which pDCs express a diphtheria toxin receptor (DTR) transgene driven by the human CLEC4C promoter. This promoter is enriched for binding sites for TCF4, a transcription factor that promotes pDC differentiation and expression of pDC markers, including CLEC4C. Here, we found that injection of DT in CLEC4C-DTR+ mice markedly augmented Th2-dependent skin inflammation in a model of contact hypersensitivity (CHS) induced by the hapten fluorescein isothiocyanate. Unexpectedly, this biased Th2 response was independent of reduced IFN-I accompanying pDC depletion. In fact, DT treatment altered the representation of conventional dendritic cells (cDCs) in the skin-draining lymph nodes during the sensitization phase of CHS; there were fewer Th1-priming CD326+ CD103+ cDC1 and more Th2-priming CD11b+ cDC2. Single-cell RNA-sequencing of CLEC4C-DTR+ cDCs revealed that CD326+ DCs, like pDCs, expressed DTR and were depleted together with pDCs by DT treatment. Since CD326+ DCs did not express Tcf4, DTR expression might be driven by yet-undefined transcription factors activating the CLEC4C promoter. These results demonstrate that altered DC representation in the skin-draining lymph nodes during sensitization to allergens can cause Th2-driven CHS.


Subject(s)
Dendritic Cells/immunology , Dermatitis, Contact/immunology , Interferon Type I/genetics , Lectins, C-Type/genetics , Receptors, Immunologic/genetics , Skin/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Dermatitis, Contact/genetics , Dermatitis, Contact/pathology , Diphtheria Toxin/genetics , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/immunology , Humans , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Th2 Cells/immunology , Transcription Factor 4/genetics , Transcription Factor 4/immunology
7.
Allergy ; 76(6): 1776-1788, 2021 06.
Article in English | MEDLINE | ID: mdl-33090507

ABSTRACT

BACKGROUND: Fatty acid-binding protein 3 (FABP3) is a cytosolic carrier protein of polyunsaturated fatty acids (PUFAs) and regulates cellular metabolism. However, the physiological functions of FABP3 in immune cells and how FABP3 regulates inflammatory responses remain unclear. METHODS: Contact hypersensitivity (CHS) induced by 2,4-dinitrofluorobenzene (DNFB) and fluorescein isothiocyanate was applied to the skin wild-type and Fabp3-/- mice. Skin inflammation was assessed using FACS, histological, and qPCR analyses. The development of γ/δ T cells was evaluated by a co-culture system with OP9/Dll1 cells in the presence or absence of transgene of FABP3. RESULTS: Fabp3-deficient mice exhibit a more severe phenotype of contact hypersensitivity (CHS) accompanied by infiltration of IL-17-producing Vγ4+ γ/δ T cells that critically control skin inflammation. In Fabp3-/- mice, we found a larger proportion of Vγ4+ γ/δ T cells in the skin, even though the percentage of total γ/δ T cells did not change at steady state. Similarly, juvenile Fabp3-/- mice also contained a higher amount of Vγ4+ γ/δ T cells not only in the skin but in the thymus when compared with wild-type mice. Furthermore, thymic double-negative (DN) cells expressed FABP3, and FABP3 negatively regulates the development of Vγ4+ γ/δ T cells in the thymus. CONCLUSIONS: These findings suggest that FABP3 functions as a negative regulator of skin inflammation through limiting pathogenic Vγ4+ γ/δ T-cell generation in the thymus.


Subject(s)
Dermatitis, Contact , T-Lymphocytes , Animals , Dermatitis, Contact/genetics , Disease Models, Animal , Fatty Acid Binding Protein 3 , Fatty Acid-Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/metabolism
8.
Sci Immunol ; 5(52)2020 10 16.
Article in English | MEDLINE | ID: mdl-33067380

ABSTRACT

Adaptive features of natural killer (NK) cells have been reported in various species with different underlying mechanisms. It is unclear, however, which NK cell populations are capable of mounting antigen-specific recall responses and how such functions are regulated at the molecular level. Here, we identify and characterize a discrete population of CD49a+CD16- NK cells in the human liver that displays increased epigenetic potential to elicit memory responses and has the functional properties to exert antigen-specific immunity in the skin as an effector site. Integrated chromatin-based epigenetic and transcriptomic profiling revealed unique characteristics of hepatic CD49a+CD16- NK cells when compared with conventional CD49a-CD16+ NK cells, thereby defining active genomic regions and molecules underpinning distinct NK cell reactivity. In contrast to conventional NK cells, our results suggest that adaptive CD49a+CD16- NK cells are able to bypass the KIR receptor-ligand system upon antigen-specific stimulation. Furthermore, these cells were highly migratory toward chemokine gradients expressed in epicutaneous patch test lesions as an effector site of adaptive immune responses in the skin. These results define pathways operative in human antigen-specific adaptive NK cells and provide a roadmap for harnessing this NK cell subset for specific therapeutic or prophylactic vaccine strategies.


Subject(s)
Adaptive Immunity/genetics , Dermatitis, Contact/immunology , Epigenesis, Genetic/immunology , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Adult , Aged , Aged, 80 and over , Biopsy , Cell Line, Tumor , Cell Separation , Dermatitis, Contact/genetics , Dermatitis, Contact/pathology , Female , Flow Cytometry , Humans , Integrin alpha1/metabolism , Killer Cells, Natural/metabolism , Liver/cytology , Lymphocyte Subsets/metabolism , Male , Middle Aged , Nickel/administration & dosage , Nickel/immunology , Patch Tests , Primary Cell Culture , RNA-Seq , Single-Cell Analysis , Skin/cytology , Skin/immunology , Skin/pathology
9.
Int J Mol Sci ; 21(18)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967214

ABSTRACT

The hair cycle consists of three different phases: anagen (growth), catagen (regression), and telogen (resting). During the anagen phase, hair follicle stem cells (HFSCs) in the bulge and the secondary hair germ proliferate and generate the outer and inner root sheath cells and the hair shafts. We previously identified NG2-immunoreactive (NG2+) cells as HFSCs in both regions of the hair follicles. Recently, the interaction between the hair cycle and the cutaneous immune system has been re-examined under physiological and pathological conditions. However, the roles of NG2+ HFSCs in the skin's immune system remain completely elucidated. In the present study, we investigated whether the elimination of NG2+ HFSCs affects the induction of allergic contact dermatitis, using a herpes simplex virus thymidine kinase (HSVtk)/ganciclovir (GCV) suicide gene system. When the GCV solution was applied to the skin of NG2-HSVtk transgenic (Tg) rats during the depilation-induced anagen phase, NG2+ HFSCs in the Tg rat skin induced apoptotic cell death. Under exposure of a hapten, the selective ablation of NG2+ HFSCs during the anagen phase aggravated the sensitization phase of allergic contact dermatitis. These findings suggest that NG2+ HFSCs and their progeny have immunosuppressive abilities during the anagen phase.


Subject(s)
Antigens/biosynthesis , Dermatitis, Contact/metabolism , Gene Expression Regulation , Hair Follicle/metabolism , Proteoglycans/biosynthesis , Stem Cells/metabolism , Animals , Antigens/genetics , Dermatitis, Contact/genetics , Dermatitis, Contact/pathology , Disease Models, Animal , Hair Follicle/pathology , Proteoglycans/genetics , Rats , Rats, Transgenic , Stem Cells/pathology
10.
EBioMedicine ; 55: 102774, 2020 May.
Article in English | MEDLINE | ID: mdl-32403085

ABSTRACT

BACKGROUND: Since numerous pathological conditions are evoked by unwanted dendritic cell (DC) activity, therapeutic agents modulating DC functions are of great medical interest. In regenerative medicine, cellular secretomes have gained increasing attention and valuable immunomodulatory properties have been attributed to the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCs). Potential effects of the PBMC secretome (PBMCsec) on key DC functions have not been elucidated so far. METHODS: We used a hapten-mediated murine model of contact hypersensitivity (CH) to study the effects of PBMCsec on DCs in vivo. Effects of PBMCsec on human DCs were investigated in monocyte-derived DCs (MoDC) and ex vivo skin cultures. DCs were phenotypically characterised by transcriptomics analyses and flow cytometry. DC function was evaluated by cytokine secretion, antigen uptake, PBMC proliferation and T-cell priming. FINDINGS: PBMCsec significantly alleviated tissue inflammation and cellular infiltration in hapten-sensitized mice. We found that PBMCsec abrogated differentiation of MoDCs, indicated by lower expression of classical DC markers CD1a, CD11c and MHC class II molecules. Furthermore, PBMCsec reduced DC maturation, antigen uptake, lipopolysaccharides-induced cytokine secretion, and DC-mediated immune cell proliferation. Moreover, MoDCs differentiated with PBMCsec displayed diminished ability to prime naïve CD4+T-cells into TH1 and TH2 cells. Furthermore, PBMCsec modulated the phenotype of DCs present in the skin in situ. Mechanistically, we identified lipids as the main biomolecule accountable for the observed immunomodulatory effects. INTERPRETATION: Together, our data describe DC-modulatory actions of lipids secreted by stressed PBMCs and suggest PBMCsec as a therapeutic option for treatment of DC-mediated inflammatory skin conditions. FUNDING: This research project was supported by the Austrian Research Promotion Agency (Vienna, Austria; grant "APOSEC" 862068; 2015-2019) and the Vienna Business Agency (Vienna, Austria; grant "APOSEC to clinic" 2343727).


Subject(s)
Culture Media, Conditioned/chemistry , Dendritic Cells/radiation effects , Dermatitis, Contact/therapy , Immunologic Factors/pharmacology , Lipids/pharmacology , Skin/radiation effects , Adult , Animals , Antigens, CD1/genetics , Antigens, CD1/immunology , Biomarkers/analysis , CD11c Antigen/genetics , CD11c Antigen/immunology , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Dermatitis, Contact/etiology , Dermatitis, Contact/genetics , Dermatitis, Contact/immunology , Dinitrofluorobenzene/administration & dosage , Female , Gamma Rays , Gene Expression , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Immunologic Factors/isolation & purification , Lipids/isolation & purification , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Monocytes/radiation effects , Primary Cell Culture , Skin/immunology , Skin/pathology , Th1 Cells/cytology , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/cytology , Th2 Cells/drug effects , Th2 Cells/immunology , Tissue Culture Techniques
11.
Sci Rep ; 10(1): 734, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959814

ABSTRACT

Loss-of-function mutations in IL36RN cause generalized pustular psoriasis (GPP), which is characterized by neutrophil-infiltrated lesions. Neutrophils are important during contact hypersensitivity in mice. However, it has never been determined whether interleukin-36 receptor antagonist (IL-36Ra) deficiency is an exacerbating factor in contact dermatitis. We examined whether a loss-of-function IL36RN mutation exacerbates contact dermatitis and evaluated the changes in contact dermatitis-related cytokines. Wild-type and Il36rn-/- mice were treated with 1-fluoro-2,4-dinitorobenzene (DNFB) and evaluated for ear thickness, histopathological features, numbers of infiltrated neutrophils, and numbers of CD4 + and CD8 + T cells. Furthermore, mRNA levels of contact dermatitis-related cytokines were measured by real-time polymerase chain reaction, and effects of TAK-242, a toll-like receptor 4 (TLR4) inhibitor, on the contact hypersensitivity (CHS) response were evaluated. We found that the ear thickness, cytokine expression, and neutrophil infiltration significantly increased in Il36rn-/- mice compared with that in wild-type mice. TAK-242 alleviated CHS and prevented neutrophil infiltration, cytokine expression, and ear thickening in Il36rn-/- mice. These data indicate that Il36rn-/- mutations are an exacerbating factor for CHS and that TAK-242 can reduce the inflammatory responses that are associated with the CHS response.


Subject(s)
Dermatitis, Contact/drug therapy , Dermatitis, Contact/genetics , Interleukins/deficiency , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Animals , CD4-CD8 Ratio , Cytokines/metabolism , Dermatitis, Contact/etiology , Dermatitis, Contact/immunology , Dinitrofluorobenzene/adverse effects , Loss of Function Mutation , Mice, Transgenic , Neutrophil Infiltration/drug effects , Toll-Like Receptor 4/antagonists & inhibitors
12.
J Invest Dermatol ; 140(1): 132-142.e3, 2020 01.
Article in English | MEDLINE | ID: mdl-31260672

ABSTRACT

The cell adhesion molecule E-cadherin is a major component of adherens junctions and marks Langerhans cells (LC), the only dendritic cell (DC) population of the epidermis. LC form a dense network and attach themselves to the surrounding keratinocytes via homophilic E-cadherin binding. LC activation, mobilization, and migration require a reduction in LC E-cadherin expression. To determine whether E-cadherin plays a role in regulating LC homeostasis and function, we generated CD11c-specific E-cadherin knockout mice (CD11c-Ecaddel). In the absence of E-cadherin-mediated cell adhesion, LC numbers remained stable and similar as in control mice, even in aged animals. Intriguingly, E-cadherin-deficient LC displayed a dramatically changed morphology characterized by a more rounded cell body and fewer dendrites than wild-type cells. Nevertheless, maturation and migration of LC lacking E-cadherin was not altered, neither under steady-state nor inflammatory conditions. Accordingly, CD11c-Ecaddel and control mice developed comparable contact hypersensitivity reactions and imiquimod-triggered psoriatic skin inflammation, indicating that E-cadherin on LC does not influence their ability to orchestrate T cell-mediated immunity. In conclusion, our data demonstrate that E-cadherin is dispensable to maintain LC in the epidermis and does not regulate LC maturation, migration, and function.


Subject(s)
Cadherins/metabolism , Dermatitis, Contact/immunology , Epidermis/physiology , Langerhans Cells/physiology , Psoriasis/immunology , Animals , CD11c Antigen/genetics , CD11c Antigen/metabolism , Cadherins/genetics , Cell Differentiation , Cell Movement , Cell Shape , Cells, Cultured , Dermatitis, Contact/genetics , Disease Models, Animal , Homeostasis , Humans , Imiquimod , Mice , Mice, Knockout , Psoriasis/genetics
13.
Eur J Immunol ; 49(11): 2095-2102, 2019 11.
Article in English | MEDLINE | ID: mdl-31334839

ABSTRACT

There is increasing evidence of the relevant connection and regulation between the gut and skin immune axis. In fact, oral administration of lipoteichoic acid (LTA) from Lactobacillus rhamnosus GG (LGG) prevents the development of UV-induced skin tumors in chronically exposed mice. Here we aim to evaluate whether this LTA is able to revert UV-induced immunosuppression as a mechanism involved in its anti-tumor effect and whether it has an immunotherapeutic effect against cutaneous squamous cell carcinoma. Using a mouse model of contact hypersensitivity, we demonstrate that LTA overcomes UV-induced skin immunosuppression. This effect was in part achieved by modulating the phenotype of lymph node resident dendritic cells (DC) and the homing of skin migratory DC. Importantly, oral LTA reduced significantly the growth of established skin tumors once UV radiation was discontinued, demonstrating that it has a therapeutic, besides the already demonstrated preventive antitumor effect. The data presented here strongly indicates that oral administration of LTA represents a promising immunotherapeutic approach for different conditions in which the skin immune system is compromised.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Lacticaseibacillus rhamnosus/chemistry , Lipopolysaccharides/pharmacology , Skin Neoplasms/drug therapy , Teichoic Acids/pharmacology , Ultraviolet Rays/adverse effects , Administration, Oral , Animals , Antineoplastic Agents/isolation & purification , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Cell Movement/drug effects , Cell Movement/immunology , Cell Movement/radiation effects , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/radiation effects , Dermatitis, Contact/genetics , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/immunology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/radiation effects , Lipopolysaccharides/isolation & purification , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymph Nodes/radiation effects , Mice , Mice, Inbred C57BL , Skin/drug effects , Skin/immunology , Skin/pathology , Skin/radiation effects , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Teichoic Acids/isolation & purification
14.
Cell Immunol ; 341: 103923, 2019 07.
Article in English | MEDLINE | ID: mdl-31076078

ABSTRACT

The traditional mast cell (MC) degranulation pathway is mediated by crossing-linking of high-affinity IgE receptor (FcεRI), whereas a non-traditional, but analogous, pseudo-allergic way was recently reported to occur via Mas-Related G Protein-Coupled Receptor X2 (MRGPRX2). Severe contact hypersensitivity to metallic gold, typically considered non-sensitizing, has been reported. However, whether gold induces IgE-independent allergy remains unclear. Therefore, this study assessed the effects of gold chloride (CA) on MC activation and its relation to MRGPRX2. Our data show that CA acted on MRGPRX2 to increase cellular calcium levels and induced the release of inflammatory mediators in vitro. Compared to Mrgprb2-knockout (KO) mice, CA dose-dependently induced passive cutaneous anaphylaxis (PCA) in wild-type (WT) mice. Furthermore, peritoneal mast cells (MPMCs) were extracted from WT and Mrgprb2-KO mice and stimulated by CA, but only MPMCs from WT mice could be activated. Our results suggest that CA-induced pseudo-allergic responses are MRGPRX2 dependent.


Subject(s)
Cell Degranulation/immunology , Dermatitis, Contact/genetics , Gold Compounds/administration & dosage , Mast Cells/immunology , Nerve Tissue Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/genetics , Animals , Cell Degranulation/genetics , Cells, Cultured , Dermatitis, Contact/etiology , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Gene Expression , HEK293 Cells , Humans , Male , Mast Cells/drug effects , Mast Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/immunology , Passive Cutaneous Anaphylaxis , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/immunology , Receptors, Neuropeptide/immunology
15.
Contact Dermatitis ; 81(3): 184-193, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31006867

ABSTRACT

BACKGROUND: Retinoic acid (RA)-induced dermatitis is the most frequent side-effect limiting its widespread use. However, the exact mechanisms triggering dermatitis are not fully understood, including the role of skin mast cells. The newly discovered Mas-related G-protein-coupled receptor-X2 (MRGPRX2) in mast cells mediates pseudoallergic drug reactions in several types of dermatitis. A possible contribution of MRGPRX2 to contact dermatitis induced by RA has hitherto not been examined. OBJECTIVES: To investigate whether all-trans-RA (ATRA) activates mast cells via MRGPRX2/MrgprB2 (the mouse orthologue), contributing to the pathogenesis of retinoid-induced dermatitis. METHODS: Wild-type (WT) and MrgprB2-/- mice were treated with topical ATRA to observe local inflammation and mast cell degranulation in vivo by the use of haematoxylin and eosin and immunofluorescence staining. Release of histamine and release of ß-hexosaminidase were measured and calcium influx was detected in Laboratory of Allergic Disease 2 (LAD2) cells with specific knockdown targeting MRGPRX2 by small interfering RNA (siRNA) and in primary cells from MrgprB2-/- mice. RESULTS: As compared with WT mice, MrgprB2-/- mice showed resistance to ATRA-triggered contact dermatitis and local inflammatory reactions in the paws. ATRA activated mast cells via the MrgprB2 pathway in murine cells, and via the MRGPRX2 pathway in human mast cells. CONCLUSIONS: ATRA-induced dermatitis could be achieved by activating mast cells via MRGPRX2/MrgprB2, which may provide a potential therapy target to reduce the side-effect.


Subject(s)
Cell Degranulation/drug effects , Dermatitis, Contact/etiology , Mast Cells/physiology , Receptors, G-Protein-Coupled/genetics , Tretinoin/pharmacology , Animals , Calcium/metabolism , Cell Line , Dermatitis , Dermatitis, Contact/genetics , Gene Knockdown Techniques , Histamine/metabolism , Humans , Male , Mast Cells/metabolism , Mice , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Tretinoin/toxicity , beta-N-Acetylhexosaminidases/metabolism
16.
J Immunol ; 202(8): 2189-2194, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30850475

ABSTRACT

Neutrophils are essential during contact hypersensitivity (CHS), a common skin allergic disease. NF-E2-related factor-2 (Nrf2) is a key regulator of redox balance and skin homeostasis playing a protective role in CHS. In this study, we investigated Nrf2 role in neutrophil recruitment during the sensitization phase of CHS. Comparing wild-type and Nrf2 knockout mice, we demonstrated that Nrf2 regulated dinitrochlorobenzene-induced xenoinflammation, notably neutrophil recruitment to sensitized skin. Nrf2 protective role was associated with high expression of antioxidant genes (ho-1, gclc, nqo1…) and decreased chemokine production (CCL2, CCL4, CCL11). Interestingly, skin sensitization induced CD36 upregulation in skin-resident macrophages. In vitro results confirmed that the transcription of cd36 gene in macrophages was dependent on Nrf2 and led to an improved capacity to phagocyte-damaged neutrophils by efferocytosis. Nrf2 emerges as a critical target in the sensitization phase of CHS regulating neutrophil recruitment and accumulation in the skin through antioxidant-dependent and -independent mechanisms.


Subject(s)
Dermatitis, Contact/immunology , Gene Expression Regulation/immunology , NF-E2-Related Factor 2/immunology , Neutrophil Infiltration , Neutrophils/immunology , Skin/immunology , Animals , Antioxidants , Chemokines/genetics , Chemokines/immunology , Dermatitis, Contact/genetics , Dermatitis, Contact/pathology , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , Neutrophils/pathology , Skin/pathology
17.
Sci Rep ; 9(1): 1348, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718736

ABSTRACT

Contact dermatitis and psoriasis are skin disorders caused by immune dysregulation, yet much remains unknown about their underlying mechanisms. Ghrelin, a recently discovered novel peptide and potential endogenous anti-inflammatory factor expressed in the epidermis, is involved in skin repair and disease. In this study, we investigated the expression pattern and therapeutic effect of ghrelin in both contact dermatitis and psoriasis mouse models induced by oxazolone (OXA) and imiquimod (IMQ), respectively, and in TNF-α-stimulated RAW264.7 macrophages, NHEKs and skin fibroblasts. Ghrelin expression was reduced in both the OXA-induced contact dermatitis and IMQ-induced psoriasis mouse models. Furthermore, treatment with ghrelin attenuated skin inflammation in both the contact dermatitis and psoriasis mouse models. Mice administered PBS after OXA- or IMQ-induced model generation exhibited typical skin inflammation, whereas ghrelin treatment in these mouse models substantially decreased the dermatitis phenotype. In addition, exogenous ghrelin attenuated the inflammatory reaction induced by TNF-α in RAW264.7 cells. Moreover, ghrelin administration limited activation of NF-κB signaling. In summary, ghrelin may represent a potential molecular target for the prevention and treatment of inflammatory skin diseases, including contact dermatitis and psoriasis.


Subject(s)
Dermatitis, Contact/genetics , Ghrelin/genetics , Immune System Diseases/genetics , Inflammation/genetics , Psoriasis/genetics , Animals , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Imiquimod/toxicity , Immune System Diseases/chemically induced , Immune System Diseases/immunology , Immune System Diseases/pathology , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology , Mice , NF-kappa B/genetics , Oxazolone/toxicity , Psoriasis/chemically induced , Psoriasis/immunology , Psoriasis/pathology , RAW 264.7 Cells , Signal Transduction , Skin/immunology , Skin/pathology , Tumor Necrosis Factor-alpha/genetics
18.
Biochem Biophys Res Commun ; 511(2): 330-335, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30791982

ABSTRACT

Irritant contact dermatitis (ICD) is one of the most common inflammatory skin diseases caused by exposure to chemical irritants. Since chemical irritants primarily damage keratinocytes, these cells play a pivotal role in ICD. One of the phosphoinositide-metabolizing enzymes, phospholipase C (PLC) δ1, is abundantly expressed in keratinocytes. However, the role of PLCδ1 in ICD remains to be clarified. Here, we found that croton oil (CrO)-induced ear swelling, a feature of ICD, was attenuated in keratinocyte-specific PLCδ1 knockout mice (PLCδ1 cKO mice). Dendritic epidermal T cells (DETCs), which have a protective role against ICD, were activated in the epidermis of the PLCδ1 cKO mice. In addition, the skin of CrO-treated PLCδ1 cKO mice showed increased infiltration of Gr1+CD11b+ myeloid cells. Of note, elimination of Gr1+CD11b+ myeloid cells restored CrO-induced ear swelling in PLCδ1 cKO mice to a similar level as that in control mice. Taken together, our results strongly suggest that epidermal loss of PLCδ1 protects mice from ICD through induction of Gr1+CD11b+ myeloid cells and activation of DETCs.


Subject(s)
Dermatitis, Contact/genetics , Phospholipase C delta/genetics , Animals , Dermatitis, Contact/immunology , Disease Models, Animal , Epidermis/immunology , Epidermis/metabolism , Male , Mice, Knockout , Myeloid Cells/immunology , Phospholipase C delta/immunology , T-Lymphocytes/immunology
19.
J Invest Dermatol ; 139(5): 1098-1109, 2019 05.
Article in English | MEDLINE | ID: mdl-30503244

ABSTRACT

Epithelial-derived thymic stromal lymphopoietin (TSLP) plays an important role in pathogenesis in several types of dermatitis. Recently, the anti-inflammatory effects of aryl hydrocarbon receptor (AhR) have been reported in inflamed skin. In this study, keratinocytes were stimulated with tumor necrosis factor-α or flagellin in combination with AhR ligands or antagonist. TSLP gene expression and recruitment of transcriptional regulator to TSLP gene promoter were determined. The effects of AhR activation were also studied in DNFB-induced dermatitis model. We found that AhR activation suppressed upregulation of TSLP expression in keratinocytes treated with tumor necrosis factor-α or flagellin. In addition, AhR activation induced protein kinase Cδ-mediated phosphorylation of p300 at serine 89, leading to decreased acetylation and DNA binding activity of NF-κB p65 to the TSLP gene promoter. We also found that AhR activation alleviates dermatitis induced by DNFB treatment. Protein kinase Cδ depletion by small interfering RNA abolished the beneficial effect of AhR activation on dermatitis. Our study suggests that AhR activation may help to reduce inflammation in the dermatitis via downregulation of TSLP expression.


Subject(s)
Cytokines/genetics , Dermatitis, Atopic/genetics , Dermatitis, Contact/genetics , Down-Regulation , Indoles/pharmacology , Receptors, Aryl Hydrocarbon/genetics , Thiazoles/pharmacology , Animals , Cells, Cultured , Dermatitis, Atopic/pathology , Dermatitis, Contact/pathology , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Keratinocytes , Mice, Inbred BALB C , Protein Kinase C-delta/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transcriptional Activation , Thymic Stromal Lymphopoietin
20.
Proc Natl Acad Sci U S A ; 115(45): 11579-11584, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30249666

ABSTRACT

Adaptive natural killer (NK) cell memory represents a new frontier in immunology. Work over the last decade has discovered and confirmed the existence of NK cells with antigen-specific memories, which had previously been considered a unique property of T and B cells. These findings have shown that antigen-specific NK cells gain their specificity without the use of RAG proteins, representing a novel mechanism for generating antigen specificity, but the details of this mechanism have remained a mystery. We have discovered that members of the Ly49 family of surface receptors are critically involved in both the sensitization and the challenge phases of an NK cell memory response, as is antigen presentation from their binding partner, the class I MHC. Moreover, we demonstrate that the Ly49-interacting component of a presented antigen dictates the specificity of the NK cell memory response, implicating Ly49 receptors themselves in antigen-specific recognition. Finally, we demonstrate that adaptive NK cell memories can protect against an otherwise lethal melanoma without T cell or B cell support. These findings offer insight into the mechanism behind NK cell antigen specificity and demonstrate the clinical potential of this adaptive immune cell.


Subject(s)
Dermatitis, Contact/prevention & control , Immunologic Memory , Killer Cells, Natural/immunology , Melanoma, Experimental/therapy , NK Cell Lectin-Like Receptor Subfamily A/genetics , Peptides/immunology , Adaptive Immunity/drug effects , Amino Acid Sequence , Animals , Antigen Presentation , Cancer Vaccines/administration & dosage , Dermatitis, Contact/genetics , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Dinitrofluorobenzene/administration & dosage , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , NK Cell Lectin-Like Receptor Subfamily A/immunology , Oxazoles/administration & dosage , Peptides/administration & dosage , Peptides/chemical synthesis , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...