Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.152
Filter
1.
Food Res Int ; 186: 114396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729738

ABSTRACT

Cell culture meat is based on the scaled-up expansion of seed cells. The biological differences between seed cells from large yellow croakers in the two-dimensional (2D) and three-dimensional (3D) culture systems have not been explored. Here, satellite cells (SCs) from large yellow croakers (Larimichthys crocea) were grown on cell climbing slices, hydrogels, and microcarriers for five days to analyze the biological differences of SCs on different cell scaffolds. The results exhibited that SCs had different cell morphologies in 2D and 3D cultures. Cell adhesion receptors (Itgb1andsdc4) and adhesion spot markervclof the 3D cultures were markedly expressed. Furthermore, myogenic decision markers (Pax7andmyod) were significantly enhanced. However, the expression of myogenic differentiation marker (desmin) was significantly increased in the microcarrier group. Combined with the transcriptome data, this suggests that cell adhesion of SCs in 3D culture was related to the integrin signaling pathway. In contrast, the slight spontaneous differentiation of SCs on microcarriers was associated with rapid cell proliferation. This study is the first to report the biological differences between SCs in 2D and 3D cultures, providing new perspectives for the rapid expansion of cell culture meat-seeded cells and the development of customized scaffolds.


Subject(s)
Cell Adhesion , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Hydrogels , Satellite Cells, Skeletal Muscle , Tissue Scaffolds , Animals , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Cell Culture Techniques, Three Dimensional/methods , Cells, Cultured , Desmin/metabolism , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Muscle Development
2.
Eur J Med Res ; 29(1): 216, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566246

ABSTRACT

BACKGROUND: Desmin is a major cytoskeletal protein considered ubiquitous in mature muscle fibers. However, we earlier reported that a subgroup of muscle fibers in the soft palate of healthy subjects and obstructive sleep apnea patients (OSA) lacked immunoexpression for desmin. This raised the question of whether these fibers also lack messenger ribonucleic acid (mRNA) for desmin and can be considered a novel fiber phenotype. Moreover, some fibers in the OSA patients had an abnormal distribution and aggregates of desmin. Thus, the aim of the study was to investigate if these desmin protein abnormalities are also reflected in the expression of desmin mRNA in an upper airway muscle of healthy subjects and OSA patients. METHODS: Muscle biopsies from the musculus uvulae in the soft palate were obtained from ten healthy male subjects and six male patients with OSA. Overnight sleep apnea registrations were done for all participants. Immunohistochemistry, in-situ hybridization, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) techniques were used to evaluate the presence of desmin protein and its mRNA. RESULTS: Our findings demonstrated that a group of muscle fibers lacked expression for desmin mRNA and desmin protein in healthy individuals and OSA patients (12.0 ± 5.6% vs. 23.1 ± 10.8%, p = 0.03). A subpopulation of these fibers displayed a weak subsarcolemmal rim of desmin accompanied by a few scattered mRNA dots in the cytoplasm. The muscles of OSA patients also differed from healthy subjects by exhibiting muscle fibers with reorganized or accumulated aggregates of desmin protein (14.5 ± 6.5%). In these abnormal fibers, the density of mRNA was generally low or concentrated in specific regions. The overall quantification of desmin mRNA by RT-qPCR was significantly upregulated in OSA patients compared to healthy subjects (p = 0.01). CONCLUSIONS: Our study shows evidence that muscle fibers in the human soft palate lack both mRNA and protein for desmin. This indicates a novel cytoskeletal structure and challenges the ubiquity of desmin in muscle fibers. Moreover, the observation of reorganized or accumulated aggregates of desmin mRNA and desmin protein in OSA patients suggests a disturbance in the transcription and translation process in the fibers of the patients.


Subject(s)
Sleep Apnea Syndromes , Sleep Apnea, Obstructive , Humans , Male , Desmin/genetics , Sleep Apnea, Obstructive/genetics , RNA, Messenger/genetics , Gene Expression
3.
Cells ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38607042

ABSTRACT

Understanding the structure and function of intermediate filaments (IFs) is necessary in order to explain why more than 70 related IF genes have evolved in vertebrates while maintaining such dramatically tissue-specific expression. Desmin is a member of the large multigene family of IF proteins and is specifically expressed in myocytes. In an effort to elucidate its muscle-specific behavior, we have used a yeast two-hybrid system in order to identify desmin's head binding partners. We described a mitochondrial and a lysosomal protein, NADH ubiquinone oxidoreductase core subunit S2 (NDUFS2), and saposin D, respectively, as direct desmin binding partners. In silico analysis indicated that both interactions at the atomic level occur in a very similar way, by the formation of a three-helix bundle with hydrophobic interactions in the interdomain space and hydrogen bonds at R16 and S32 of the desmin head domain. The interactions, confirmed also by GST pull-down assays, indicating the necessity of the desmin head domain and, furthermore, point out its role in function of mitochondria and lysosomes, organelles which are disrupted in myopathies due to desmin head domain mutations.


Subject(s)
Desmin , Animals , Desmin/chemistry , Desmin/metabolism , Intermediate Filaments/metabolism , Muscles/metabolism , Muscular Diseases/genetics , Muscular Diseases/metabolism , Mutation , Humans
4.
Physiol Rep ; 12(8): e16020, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658362

ABSTRACT

Desminopathy R350P is a human myopathy that is characterized by the progressive loss of muscle fiber organization. This results in the loss of muscle size, mobility, and strength. In desminopathy, inflammation affects muscle homeostasis and repair, and contributes to progressive muscle deterioration. Mitochondria morphology was also suggested to affect desminopathy progression. Epicatechin (Epi)-a natural compound found in cacao-has been proposed to regulate inflammatory signaling and mitochondria morphology in human and animal models. Hence, we hypothesize chronic Epi consumption to improve inflammatory pathway and mitochondria morphology in the peripheral blood mononuclear cells (PBMCs) of a desminopathy R350P patient. We found that 12 weeks of Epi consumption partially restored TRL4 signaling, indicative of inflammatory signaling and mitochondria morphology in the desminopathy patient. Moreover, Epi consumption improved blood health parameters, including reduced HOMA-IR and IL-6 levels in the desminopathy patient. This indicates that Epi consumption could be a useful tool to slow disease progression in desminopathy patients.


Subject(s)
Catechin , Leukocytes, Mononuclear , Mitochondria , Humans , Catechin/pharmacology , Catechin/administration & dosage , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Male , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophies/drug therapy , Muscular Dystrophies/genetics , Adult , Female , Inflammation/metabolism , Inflammation/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/drug therapy , Desmin/metabolism , Desmin/genetics
5.
J Cell Physiol ; 239(5): e31254, 2024 May.
Article in English | MEDLINE | ID: mdl-38501553

ABSTRACT

Desmin, the most abundant intermediate filament in cardiomyocytes, plays a key role in maintaining cardiomyocyte structure by interconnecting intracellular organelles, and facilitating cardiomyocyte interactions with the extracellular matrix and neighboring cardiomyocytes. As a consequence, mutations in the desmin gene (DES) can lead to desminopathies, a group of diseases characterized by variable and often severe cardiomyopathies along with skeletal muscle disorders. The basic desmin intermediate filament structure is composed of four segments separated by linkers that further assemble into dimers, tetramers and eventually unit-length filaments that compact radially to give the final form of the filament. Each step in this process is critical for proper filament formation and allow specific interactions within the cell. Mutations within the desmin gene can disrupt filament formation, as seen by aggregate formation, and thus have severe cardiac and skeletal outcomes, depending on the locus of the mutation. The focus of this review is to outline the cardiac molecular consequences of mutations located in the C-terminal part of segment 2B. This region is crucial for ensuring proper desmin filament formation and is a known hotspot for mutations that significantly impact cardiac function.


Subject(s)
Cardiomyopathies , Desmin , Mutation , Desmin/genetics , Desmin/metabolism , Humans , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Mutation/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Animals
6.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474073

ABSTRACT

Alpha-B-crystallin, a member of the small heat shock family of proteins, has been implicated in a variety of cardiomyopathies and in normal cardiac homeostasis. It is known to function as a molecular chaperone, particularly for desmin, but also interacts with a wide variety of additional proteins. The molecular chaperone function is also enhanced by signal-dependent phosphorylation at specific residues under stress conditions. Naturally occurring mutations in CRYAB, the gene that encodes alpha-B-crystallin, have been suggested to alter ionic intermolecular interactions that affect dimerization and chaperone function. These mutations have been associated with myofibrillar myopathy, restrictive cardiomyopathy, and hypertrophic cardiomyopathy and promote pathological hypertrophy through different mechanisms such as desmin aggregation, increased reductive stress, or activation of calcineurin-NFAT signaling. This review will discuss the known mechanisms by which alpha-B-crystallin functions in cardiac homeostasis and the pathogenesis of cardiomyopathies and provide insight into potential future areas of exploration.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Restrictive , Humans , Desmin/genetics , Cardiomyopathies/pathology , Mutation , Cardiomyopathy, Restrictive/complications , Molecular Chaperones/genetics
7.
Am J Surg Pathol ; 48(5): 562-569, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38407279

ABSTRACT

Primary pulmonary myxoid sarcoma (PPMS) and thoracic angiomatoid fibrous histiocytoma (AFH) are rare neoplasms with EWSR1 fusions and overlapping morphology. Both tumor types often show epithelial membrane antigen expression, but AFH characteristically co-expresses desmin. We encountered a case of PPMS with the unexpected finding of patchy, strong anaplastic lymphoma kinase (ALK) (previously reported in AFH) and synaptophysin expression. We evaluated a cohort of PPMS and thoracic AFH with systematic morphologic comparison and surveyed for aberrant expression of ALK and synaptophysin. Medical records and slides were reviewed for 16 molecularly confirmed cases of PPMS (n=5) and thoracic AFH (n=11). Each case was scored for morphologic characteristics typical of PPMS and/or AFH. ALK, synaptophysin, chromogranin, desmin, and epithelial membrane antigen immunostains were performed on cases with available tissue. AFH and PPMS cases showed similar age at presentation and long-term tumor behavior. Almost all cases of PPMS and AFH had a fibrous pseudocapsule and lymphoid rim. All PPMS had myxoid stroma and reticular growth pattern, but these features were also present in a subset of AFH. Synaptophysin expression was present in 6 of 11 AFH and 1 of 5 PPMS; all tested cases were negative for chromogranin (n=15). One case of AFH and 1 case of PPMS showed focally strong coexpression of synaptophysin and ALK. AFH and PPMS show considerable clinicopathologic overlap. When supportive, the immunohistochemical findings described may aid in diagnosis before molecular confirmation. PPMS and AFH may be morphologic variants of the same clinicopathologic entity, which can show more immunophenotypic variability than previously reported.


Subject(s)
Histiocytoma, Benign Fibrous , Histiocytoma, Malignant Fibrous , Humans , Synaptophysin , Mucin-1 , Desmin , Chromogranins , Histiocytoma, Malignant Fibrous/genetics , Histiocytoma, Malignant Fibrous/surgery , Histiocytoma, Malignant Fibrous/diagnosis , Receptor Protein-Tyrosine Kinases
8.
Thorax ; 79(4): 359-362, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38346871

ABSTRACT

The mechanism of action of bronchial thermoplasty (BT) treatment for patients with severe asthma is incompletely understood. This study investigated the 2.5-year impact of BT on airway smooth muscle (ASM) mass and clinical parameters by paired data analysis in 22 patients. Our findings demonstrate the persistence of ASM mass reduction of >50% after 2.5 years. Furthermore, sustained improvement in asthma control, quality of life and exacerbation rates was found, which is in line with previous reports. An association was found between the remaining ASM and both the exacerbation rate (r=0.61, p=0.04 for desmin, r=0.85, p<0.01 for alpha smooth muscle actin (SMA)) and post-bronchodilator forced expiratory volume in 1 s predicted percentage (r=-0.69, p=0.03 for desmin, r=-0.58, p=0.08 for alpha SMA). This study provides new insight into the long-term impact of BT.


Subject(s)
Asthma , Bronchial Thermoplasty , Humans , Bronchi/surgery , Quality of Life , Desmin/therapeutic use , Asthma/drug therapy , Treatment Outcome , Muscle, Smooth
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 96-100, 2024 Jan 10.
Article in Chinese | MEDLINE | ID: mdl-38171567

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic variant of a patient with desminopathy manifesting with atypical symptoms. METHODS: A patient who was admitted to the Department of Neurology of Jing'an District Central Hospital on February 24, 2021 was selected as the study subject. Clinical data, laboratory tests, muscle pathology, muscle magnetic resonance imaging (MRI) and genetic testing of the patient were retrospectively analyzed. RESULTS: The patient had developed myalgia after lower limb activity, and gradually developed asymmetrical muscle weakness and atrophy of the lower limbs. Cardiac examination revealed atrioventricular block and decreased left ventricular diastolic function. Muscle MRI showed that semitendinosus, sartorius, gracilis, fibula, gastronemius and supinator muscles were selectively involved at the early stage. Muscle biopsy confirmed pathological changes of desmin positive myofibrils. Genetic testing revealed that the patient has harbored a c.1024A>G (p.n342d) missense variant in exon 6 of the DES gene. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was rated as likely pathogenic (PS4_moderate+PM2_supporting+PP3_moderate+PP1). CONCLUSION: Desmin disease has a great clinical heterogeneity. Postexercise myalgia of lower limbs is a rare clinical phenotype. For patients harboring the c.1024A>G (p.n342d) variant of the DES gene, in addition to semitendinosus and fibula, Cardiac involvement is relatively insidious and easy to be ignored in clinic. Timely muscle MRI, muscle biopsy and gene detection will help the early diagnosis of the disease.


Subject(s)
Muscle, Skeletal , Myalgia , Humans , Myalgia/genetics , Desmin/genetics , Retrospective Studies , Lower Extremity , Mutation
10.
Anat Histol Embryol ; 53(1): e13013, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38230836

ABSTRACT

Intermediate filaments constitute the most heterogeneous class among the major classes of cytoskeletal proteins of mammalian cells. The 40 or more intermediate filament proteins have been classified into five types which show very specific rules of expression in specialized cell types. This study aimed to investigate the immunohistochemical distribution of cytokeratins (CKs) 8, 18, and 19 as well as the intermediate filaments vimentin, laminin, and desmin in bovine and ovine tongues. Immunohistochemical staining was performed for CKs 8, 18, 19, vimentin, laminin, and desmin. Our results revealed similar immunostaining intensity and distribution among various CKs, contrasting with distinct patterns for vimentin, laminin, and desmin. Immunoreactions were primarily localized in serous acini and ductal epithelium for cytokeratins, while vimentin and laminin were evident in connective tissue, endothelium, serous acini, and desmin in striated and smooth muscles. This study highlighted the absence of CKs 8, 18, 19, vimentin, and desmin in the lingual epithelium of bovine and ovine tongues. These findings enabled the classification of epithelial cells based on their specific cytokeratin patterns. Furthermore, vimentin was identified in mesodermal tissues and organs, desmin in muscle tissue, and laminin played crucial roles in basement membrane formation, nerve tissue regeneration, innervation of epithelial taste buds, and tissue separation and connection. Our findings provide essential insights into intermediate filament dynamics at the cellular and tissue levels. They serve as a foundation for future studies using systematic molecular biological techniques in this field.


Subject(s)
Intermediate Filament Proteins , Keratins , Animals , Sheep , Cattle , Intermediate Filament Proteins/metabolism , Vimentin/metabolism , Desmin/metabolism , Laminin/metabolism , Tongue/metabolism , Intermediate Filaments/metabolism , Mammals
11.
Stem Cell Res Ther ; 15(1): 10, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167524

ABSTRACT

BACKGROUND: Beyond the observed alterations in cellular structure and mitochondria, the mechanisms linking rare genetic mutations to the development of heart failure in patients affected by desmin mutations remain unclear due in part, to the lack of relevant human cardiomyocyte models. METHODS: To shed light on the role of mitochondria in these mechanisms, we investigated cardiomyocytes derived from human induced pluripotent stem cells carrying the heterozygous DESE439K mutation that were either isolated from a patient or generated by gene editing. To increase physiological relevance, cardiomyocytes were either cultured on an anisotropic micropatterned surface to obtain elongated and aligned cardiomyocytes, or as a cardiac spheroid to create a micro-tissue. Moreover, when applicable, results from cardiomyocytes were confirmed with heart biopsies of suddenly died patient of the same family harboring DESE439K mutation, and post-mortem heart samples from five control healthy donors. RESULTS: The heterozygous DESE439K mutation leads to dramatic changes in the overall cytoarchitecture of cardiomyocytes, including cell size and morphology. Most importantly, mutant cardiomyocytes display altered mitochondrial architecture, mitochondrial respiratory capacity and metabolic activity reminiscent of defects observed in patient's heart tissue. Finally, to challenge the pathological mechanism, we transferred normal mitochondria inside the mutant cardiomyocytes and demonstrated that this treatment was able to restore mitochondrial and contractile functions of cardiomyocytes. CONCLUSIONS: This work highlights the deleterious effects of DESE439K mutation, demonstrates the crucial role of mitochondrial abnormalities in the pathophysiology of desmin-related cardiomyopathy, and opens up new potential therapeutic perspectives for this disease.


Subject(s)
Cardiomyopathies , Induced Pluripotent Stem Cells , Humans , Desmin/genetics , Desmin/metabolism , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathies/metabolism , Mutation/genetics , Myocytes, Cardiac/metabolism , Mitochondria/genetics , Mitochondria/metabolism
12.
Cells ; 13(2)2024 01 16.
Article in English | MEDLINE | ID: mdl-38247853

ABSTRACT

In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.


Subject(s)
Desmin , Lamin Type A , Muscular Dystrophy, Emery-Dreifuss , Plectin , Humans , Desmin/metabolism , Muscular Dystrophy, Emery-Dreifuss/genetics , Myoblasts , Plectin/metabolism
13.
Int J Biol Macromol ; 257(Pt 2): 128567, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061521

ABSTRACT

The study investigated the different effects between protein phosphorylation and acetylation on glycolytic enzyme activity and myofibrillar protein degradation. Lamb longissimus thoracis lumborum muscles were homogenized and then inhibitors were added for incubation at 4 °C. Phosphatase inhibitor was added to produce a high phosphorylation level (PI group) and lysine deacetylase inhibitor was added to produce a high acetylation level (DI group). The lactate and ATP content in the PI group was inhibited compared with that in the DI group (P < 0.05). Phosphofructokinase (PFK) activity was negatively related with the phosphorylation level and was positively related with the acetylation level in the DI group (P < 0.05). The degradation of troponin T and desmin of the DI group were restrained when compared to that in the PI group (P < 0.05). Compared with initial PFK and desmin, the simulation of phosphorylation and acetylation of PFK and desmin showed different electrostatic potential at the surface and a more unstable structure. The phosphorylation level of the DI group was increased, suggesting that the changes of protein acetylation altered protein phosphorylation. In conclusion, compared with protein phosphorylation, protein acetylation had a greater effect on promoting glycolysis and inhibiting protein degradation.


Subject(s)
Glycolysis , Muscle, Skeletal , Animals , Sheep , Proteolysis , Phosphorylation , Acetylation , Desmin/analysis , Desmin/metabolism , Muscle, Skeletal/metabolism , Meat/analysis
14.
Acta Diabetol ; 61(4): 451-460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072843

ABSTRACT

AIMS: Diabetic nephropathy (DN), a destructive complication of diabetes mellitus (DM), is one of the leading causes of end-stage renal disease (ESRD). This study aimed to investigate the role of long non-coding RNA (lncRNA) MIAT in high-glucose (HG)-induced podocyte injury associated with DN. METHODS: Three human kidney podocyte (HKP) cultures were treated with HG to mimic DN. Expression of lncRNA MIAT, podocyte-specific and injury-related proteins, and apoptosis were assessed before and after MIAT knockdown using MIAT shRNAs. RESULTS: MIAT expression was upregulated in HKPs in response to glucose stress. HG treatment resulted in a significant increase in the apoptotic rate, Bax level, and levels of injury-related proteins desmin, fibroblast-specific protein 1 (FSP-1), and smooth muscle α-actin (α-SMA), and a significant reduction in Bcl-2 levels and the levels of podocyte-specific proteins synaptopodin and podocin. Transfection of HKPs with shRNAs significantly reduced MIAT levels (p < 0.05) and attenuated apoptosis in HG-medium. Correspondingly, the levels of synaptopodin and podocin were upregulated, and desmin, FSP-1, and α-SMA were reduced (p < 0.05). Western blot analysis also showed that anti-apoptotic active caspase-3 and Bax and proapoptotic Bcl-2 were elevated and decreased, respectively, after MIAT knockdown, suggesting that apoptosis pathways are deactivated after MIAT downregulation. CONCLUSIONS: High glucose upregulates MIAT level in HKPs and induces cellular injury. Knockdown of MIAT alleviates the injury likely via deactivating apoptosis pathways.


Subject(s)
Diabetic Nephropathies , Podocytes , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Desmin/genetics , Desmin/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Apoptosis/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Glucose/pharmacology , Glucose/metabolism
15.
J Anat ; 244(1): 120-132, 2024 01.
Article in English | MEDLINE | ID: mdl-37626442

ABSTRACT

Myocardial sleeve around human pulmonary veins plays a critical role in the pathomechanism of atrial fibrillation. Besides the well-known arrhythmogenicity of these veins, there is evidence that myocardial extensions into caval veins and coronary sinus may exhibit similar features. However, studies investigating histologic properties of these structures are limited. We aimed to investigate the immunoreactivity of myocardial sleeves for intermediate filament desmin, which was reported to be more abundant in Purkinje fibers than in ventricular working cardiomyocytes. Sections of 16 human (15 adult and 1 fetal) hearts were investigated. Specimens of atrial and ventricular myocardium, sinoatrial and atrioventricular nodes, pulmonary veins, superior caval vein and coronary sinus were stained with anti-desmin monoclonal antibody. Intensity of desmin immunoreactivity in different areas was quantified by the ImageJ program. Strong desmin labeling was detected at the pacemaker and conduction system as well as in the myocardial sleeves around pulmonary veins, superior caval vein, and coronary sinus of adult hearts irrespective of sex, age, and medical history. In the fetal heart, prominent desmin labeling was observed at the sinoatrial nodal region and in the myocardial extensions around the superior caval vein. Contrarily, atrial and ventricular working myocardium exhibited low desmin immunoreactivity in both adults and fetuses. These differences were confirmed by immunohistochemical quantitative analysis. In conclusion, this study indicates that desmin is abundant in the conduction system and venous myocardial sleeves of human hearts.


Subject(s)
Coronary Sinus , Desmin , Pulmonary Veins , Adult , Humans , Myocardium/pathology , Myocytes, Cardiac , Pulmonary Veins/pathology , Vena Cava, Superior
16.
Biochimie ; 216: 137-159, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37827485

ABSTRACT

Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.


Subject(s)
Crystallins , Desmin/chemistry , Desmin/genetics , Desmin/metabolism , Crystallins/metabolism , Mechanotransduction, Cellular , Molecular Chaperones/metabolism , Muscle, Skeletal/metabolism , Protein Processing, Post-Translational
17.
Cytoskeleton (Hoboken) ; 81(2-3): 184-187, 2024.
Article in English | MEDLINE | ID: mdl-38158587

ABSTRACT

Both diastolic filling and systolic pumping of the heart are dependent on the passive stiffness characteristics of various mechanical elements of myocardium. However, the specific contribution from each element, including the extracellular matrix, actin filaments, microtubules, desmin intermediate filaments, and sarcomeric titin springs, remains challenging to assess. Recently, a mouse model allowing for precise and acute cleavage of the titin springs was used to remove one mechanical element after the other from cardiac fibers and record the effect on passive stiffness. It became clear that the stiffness contribution from each element is context-dependent and varies depending on strain level and the force component considered (elastic or viscous); elements do not act in isolation but in a tensegral relationship. Titin is a substantial contributor under all conditions and dominates the elastic forces at both low and high strains. The contribution to viscous forces is more equally shared between microtubules, titin, and actin. However, the extracellular matrix substantially contributes to both force components at higher strain levels. Desmin filaments may bear low stiffness. These insights enhance our understanding of how different filament networks contribute to passive stiffness in the heart and offer new perspectives for targeting this stiffness in heart failure treatment.


Subject(s)
Muscle Proteins , Myocardium , Animals , Mice , Connectin , Desmin , Heart
18.
Mod Pathol ; 37(3): 100418, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38158126

ABSTRACT

Desmoplastic small round cell tumor (DSRCT) is a high-grade, primitive round cell sarcoma classically associated with prominent desmoplastic stroma, coexpression of keratin and desmin, and a characteristic EWSR1::WT1 gene fusion. DSRCT typically arises in the abdominopelvic cavity of young males with diffuse peritoneal spread and poor overall survival. Although originally considered to be pathognomonic for DSRCT, EWSR1::WT1 gene fusions have recently been detected in rare tumors lacking the characteristic morphologic and immunohistochemical features of DSRCT. Here, we report 3 additional cases of neoplasms other than conventional DSCRCT with EWSR1::WT1 gene fusions that occurred outside the female genital tract. Two occurred in the abdominopelvic cavities of a 27-year-old man and a 12-year-old girl, whereas the third arose in the axillary soft tissue of an 85-year-old man. All cases lacked prominent desmoplastic stroma and were instead solid and cystic with peripheral fibrous pseudocapsules and occasional intervening fibrous septa. Necrosis was either absent (1/3) or rare (2/3), and mitotic activity was low (<1 to 3 per 10 hpf). In immunohistochemical studies, there was expression of smooth muscle actin (3/3) and desmin (3/3), rare to focal reactivity for EMA (2/3), and variable expression of CK AE1/AE3 (1/3). Myogenin and MyoD1 were negative, and C-terminus-specific WT1 was positive in both cases tested (2/2). All 3 tumors followed a more indolent clinical course with 2 cases demonstrating no evidence of disease at 20 and 44 months after resection. The patient from case 3 died of other causes at 14 months with no evidence of recurrence. DNA methylation profiling showed that the 3 cases clustered with DSRCT; however, they demonstrated fewer copy number variations with 2 cases having a flat profile (0% copy number variation). Differential methylation analysis with hierarchical clustering further showed variation between the 3 cases and conventional DSRCT. Although further study is needed, our results, in addition to previous reports, suggest that EWSR1::WT1 gene fusions occur in rare and seemingly distinctive tumors other than conventional DSRCT with indolent behavior. Proper classification of these unusual soft tissue tumors with EWSR1::WT1 gene fusions requires direct correlation with tumor morphology and clinical behavior, which is essential to avoid overtreatment with aggressive chemotherapy.


Subject(s)
Desmoplastic Small Round Cell Tumor , Soft Tissue Neoplasms , Male , Humans , Female , Child , Aged, 80 and over , Adult , DNA Copy Number Variations , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/pathology , Desmin , Genitalia, Female/chemistry , Genitalia, Female/metabolism , Genitalia, Female/pathology , Oncogene Proteins, Fusion/analysis , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , WT1 Proteins/genetics
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009360

ABSTRACT

OBJECTIVE@#To explore the clinical characteristics and genetic variant of a patient with desminopathy manifesting with atypical symptoms.@*METHODS@#A patient who was admitted to the Department of Neurology of Jing'an District Central Hospital on February 24, 2021 was selected as the study subject. Clinical data, laboratory tests, muscle pathology, muscle magnetic resonance imaging (MRI) and genetic testing of the patient were retrospectively analyzed.@*RESULTS@#The patient had developed myalgia after lower limb activity, and gradually developed asymmetrical muscle weakness and atrophy of the lower limbs. Cardiac examination revealed atrioventricular block and decreased left ventricular diastolic function. Muscle MRI showed that semitendinosus, sartorius, gracilis, fibula, gastronemius and supinator muscles were selectively involved at the early stage. Muscle biopsy confirmed pathological changes of desmin positive myofibrils. Genetic testing revealed that the patient has harbored a c.1024A>G (p.n342d) missense variant in exon 6 of the DES gene. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was rated as likely pathogenic (PS4_moderate+PM2_supporting+PP3_moderate+PP1).@*CONCLUSION@#Desmin disease has a great clinical heterogeneity. Postexercise myalgia of lower limbs is a rare clinical phenotype. For patients harboring the c.1024A>G (p.n342d) variant of the DES gene, in addition to semitendinosus and fibula, Cardiac involvement is relatively insidious and easy to be ignored in clinic. Timely muscle MRI, muscle biopsy and gene detection will help the early diagnosis of the disease.


Subject(s)
Humans , Myalgia/genetics , Desmin/genetics , Retrospective Studies , Muscle, Skeletal , Lower Extremity , Mutation
20.
Curr Opin Cell Biol ; 85: 102280, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37972529

ABSTRACT

The intermediate filament (IF) cytoskeleton supports cellular structural integrity, particularly in response to mechanical stress. The most abundant IF proteins in mature cardiomyocytes are desmin and lamins. The desmin network tethers the contractile apparatus and organelles to the nuclear envelope and the sarcolemma, while lamins, as components of the nuclear lamina, provide structural stability to the nucleus and the genome. Mutations in desmin or A-type lamins typically result in cardiomyopathies and recent studies emphasized the synergistic roles of desmin and lamins in the maintenance of nuclear integrity in cardiac myocytes. Here we explore the emerging roles of the interdependent relationship between desmin and lamins in providing resilience to nuclear structure while transducing extracellular mechanical cues into the nucleus.


Subject(s)
Cytoskeleton , Intermediate Filaments , Intermediate Filaments/metabolism , Lamins/metabolism , Desmin/genetics , Desmin/metabolism , Cytoskeleton/metabolism , Nuclear Lamina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...