Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747296

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.


Subject(s)
Desmoglein 2 , Macrophages , Receptors, CCR2 , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Mice , Humans , Desmoglein 2/genetics , Desmoglein 2/metabolism , Desmoglein 2/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/genetics , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/immunology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/pathology , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/immunology , Cardiomyopathies/metabolism
2.
Cell Adh Migr ; 18(1): 1-13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38566311

ABSTRACT

Desmosomes are intercellular junctions that regulate mechanical integrity in epithelia and cardiac muscle. Dynamic desmosome remodeling is essential for wound healing and development, yet the mechanisms governing junction assembly remain elusive. While we and others have shown that cadherin ectodomains are highly organized, how this ordered architecture emerges during assembly is unknown. Using fluorescence polarization microscopy, we show that desmoglein 2 (Dsg2) ectodomain order gradually increases during 8 h of assembly, coinciding with increasing adhesive strength. In a scratch wound assay, we observed a similar increase in order in desmosomes assembling at the leading edge of migratory cells. Together, our findings indicate that cadherin organization is a hallmark of desmosome maturity and may play a role in conferring adhesive strength.


Subject(s)
Desmoglein 2 , Desmosomes , Cadherins , Intercellular Junctions , Cell Adhesion
3.
J Clin Invest ; 134(10)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564300

ABSTRACT

Nuclear factor κ-B (NFκB) is activated in iPSC-cardiac myocytes from patients with arrhythmogenic cardiomyopathy (ACM) under basal conditions, and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single-cell RNA-Seq to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA-Seq and cellular indexing of transcriptomes and epitomes (CITE-Seq) studies revealed marked proinflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts, and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells, and fibroblasts in the pathogenesis of ACM.


Subject(s)
Desmoglein 2 , Disease Models, Animal , Macrophages , NF-kappa B , Receptors, CCR2 , Signal Transduction , Animals , Mice , Macrophages/metabolism , Macrophages/pathology , Macrophages/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Desmoglein 2/genetics , Desmoglein 2/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/immunology , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Arrhythmogenic Right Ventricular Dysplasia/pathology , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology
4.
BMC Cancer ; 24(1): 532, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671389

ABSTRACT

BACKGROUND: Aberrant expressions of desmoglein 2 (Dsg2) and desmocollin 2(Dsc2), the two most widely distributed desmosomal cadherins, have been found to play various roles in cancer in a context-dependent manner. Their specific roles on breast cancer (BC) and the potential mechanisms remain unclear. METHODS: The expressions of Dsg2 and Dsc2 in human BC tissues and cell lines were assessed by using bioinformatics analysis, immunohistochemistry and western blotting assays. Wound-healing and Transwell assays were performed to evaluate the cells' migration and invasion abilities. Plate colony-forming and MTT assays were used to examine the cells' capacity of proliferation. Mechanically, Dsg2 and Dsc2 knockdown-induced malignant behaviors were elucidated using western blotting assay as well as three inhibitors including MK2206 for AKT, PD98059 for ERK, and XAV-939 for ß-catenin. RESULTS: We found reduced expressions of Dsg2 and Dsc2 in human BC tissues and cell lines compared to normal counterparts. Furthermore, shRNA-mediated downregulation of Dsg2 and Dsc2 could significantly enhance cell proliferation, migration and invasion in triple-negative MDA-MB-231 and luminal MCF-7 BC cells. Mechanistically, EGFR activity was decreased but downstream AKT and ERK pathways were both activated maybe through other activated protein tyrosine kinases in shDsg2 and shDsc2 MDA-MB-231 cells since protein tyrosine kinases are key drivers of triple-negative BC survival. Additionally, AKT inhibitor treatment displayed much stronger capacity to abolish shDsg2 and shDsc2 induced progression compared to ERK inhibition, which was due to feedback activation of AKT pathway induced by ERK inhibition. In contrast, all of EGFR, AKT and ERK activities were attenuated, whereas ß-catenin was accumulated in shDsg2 and shDsc2 MCF-7 cells. These results indicate that EGFR-targeted therapy is not a good choice for BC patients with low Dsg2 or Dsc2 expression. Comparatively, AKT inhibitors may be more helpful to triple-negative BC patients with low Dsg2 or Dsc2 expression, while therapies targeting ß-catenin can be considered for luminal BC patients with low Dsg2 or Dsc2 expression. CONCLUSION: Our finding demonstrate that single knockdown of Dsg2 or Dsc2 could promote proliferation, motility and invasion in triple-negative MDA-MB-231 and luminal MCF-7 cells. Nevertheless, the underlying mechanisms were cellular context-specific and distinct.


Subject(s)
Cell Movement , Cell Proliferation , Desmocollins , Desmoglein 2 , Triple Negative Breast Neoplasms , Humans , Desmocollins/metabolism , Desmocollins/genetics , Desmoglein 2/metabolism , Desmoglein 2/genetics , Female , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic , beta Catenin/metabolism , Signal Transduction
5.
Pacing Clin Electrophysiol ; 47(4): 503-510, 2024 04.
Article in English | MEDLINE | ID: mdl-38375917

ABSTRACT

INTRODUCTION: Arrhythmogenic cardiomyopathy (AC) is an inherited cardiomyopathy characterized by fibro-fatty replacement of cardiomyocytes, leading to life-threatening ventricular arrhythmia and heart failure. Pathogenic variants of desmoglein2 gene (DSG2) have been reported as genetic etiologies of AC. In contrast, many reported DSG2 variants are benign or variants of uncertain significance. Correct genetic variant classification is crucial for determining the best medical therapy for the patient and family members. METHODS: Pathogenicity of the DSG2 Ser194Leu variant that was identified by whole exome sequencing in a patient, who presented with ventricular tachycardia and was diagnosed with AC, was investigated by electron microscopy and immunohistochemical staining of endomyocardial biopsy sample. RESULTS: Electron microscopy demonstrated a widened gap in the adhering junction and a less well-organized intercalated disk region in the mutated cardiomyocytes compared to the control. Immunohistochemical staining in the proband diagnosed with AC showed reduced expression of desmoglein 2 and connexin 43 and intercalated disc distortion. Reduced expression of DSG2 and Connexin 43 were observed in cellular cytoplasm and gap junctions. Additionally, we detected perinuclear accumulation of DSG2 and Connexin 43 in the proband sample. CONCLUSION: Ser194Leu is a missense pathogenic mutation of DSG2 gene associated with arrhythmogenic left ventricular cardiomyopathy.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Tachycardia, Ventricular , Humans , Connexin 43/genetics , Connexin 43/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Cardiomyopathies/complications , Mutation/genetics , Arrhythmias, Cardiac/complications , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/complications , Myocytes, Cardiac/metabolism , Desmoglein 2/genetics , Desmoglein 2/metabolism
6.
J Pathol ; 263(1): 99-112, 2024 05.
Article in English | MEDLINE | ID: mdl-38411280

ABSTRACT

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/metabolism , Phosphorylation , Protein Kinase D2 , Esophageal Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Serine , Cell Movement/physiology , Gene Expression Regulation, Neoplastic , Desmoglein 2/genetics , Desmoglein 2/metabolism
7.
Kidney Int ; 105(5): 1035-1048, 2024 May.
Article in English | MEDLINE | ID: mdl-38395410

ABSTRACT

Desmosomes are multi-protein cell-cell adhesion structures supporting cell stability and mechanical stress resilience of tissues, best described in skin and heart. The kidney is exposed to various mechanical stimuli and stress, yet little is known about kidney desmosomes. In healthy kidneys, we found desmosomal proteins located at the apical-junctional complex in tubular epithelial cells. In four different animal models and patient biopsies with various kidney diseases, desmosomal components were significantly upregulated and partly miss-localized outside of the apical-junctional complexes along the whole lateral tubular epithelial cell membrane. The most upregulated component was desmoglein-2 (Dsg2). Mice with constitutive tubular epithelial cell-specific deletion of Dsg2 developed normally, and other desmosomal components were not altered in these mice. When challenged with different types of tubular epithelial cell injury (unilateral ureteral obstruction, ischemia-reperfusion, and 2,8-dihydroxyadenine crystal nephropathy), we found increased tubular epithelial cell apoptosis, proliferation, tubular atrophy, and inflammation compared to wild-type mice in all models and time points. In vitro, silencing DSG2 via siRNA weakened cell-cell adhesion in HK-2 cells and increased cell death. Thus, our data show a prominent upregulation of desmosomal components in tubular cells across species and diseases and suggest a protective role of Dsg2 against various injurious stimuli.


Subject(s)
Desmosomes , Kidney Diseases , Animals , Humans , Mice , Cell Adhesion , Desmoglein 2/genetics , Desmoglein 2/metabolism , Desmosomes/metabolism , Heart , Kidney Diseases/genetics , Kidney Diseases/metabolism
8.
J Virol ; 97(11): e0091023, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37921471

ABSTRACT

IMPORTANCE: The main limitation of oncolytic vectors is neutralization by blood components, which prevents intratumoral administration to patients. Enadenotucirev, a chimeric HAdV-11p/HAdV-3 adenovirus identified by bio-selection, is a low seroprevalence vector active against a broad range of human carcinoma cell lines. At this stage, there's still some uncertainty about tropism and primary receptor utilization by HAdV-11. However, this information is very important, as it has a direct influence on the effectiveness of HAdV-11-based vectors. The aim of this work is to determine which of the two receptors, DSG2 and CD46, is involved in the attachment of the virus to the host, and what role they play in the early stages of infection.


Subject(s)
Adenoviruses, Human , Desmoglein 2 , Membrane Cofactor Protein , Receptors, Virus , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Cell Line , Desmoglein 2/genetics , Desmoglein 2/metabolism , Membrane Cofactor Protein/genetics , Membrane Cofactor Protein/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism
9.
J Gen Virol ; 104(10)2023 10.
Article in English | MEDLINE | ID: mdl-37815458

ABSTRACT

Desmoglein-2 (DSG2) has emerged as a potential biomarker for coronavirus disease 2019 (COVID-19) complications, particularly cardiac and cardiovascular involvement. The expression of DSG2 in lung tissues has been detected at elevated levels, and circulating DSG2 levels correlate with COVID-19 severity. DSG2 may contribute to myocardial injury, cardiac dysfunction and vascular endothelial dysfunction in COVID-19. Monitoring DSG2 levels could aid in risk stratification, early detection and prognostication of COVID-19 complications. However, further research is required to validate DSG2 as a biomarker. Such research will aim to elucidate its precise role in pathogenesis, establishing standardized assays for its measurement and possibly identifying therapeutic targets.


Subject(s)
COVID-19 , Desmoglein 2 , Humans , Biomarkers , Desmoglein 2/genetics , Desmoglein 2/metabolism
10.
Cell Mol Life Sci ; 80(8): 203, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37450050

ABSTRACT

AIMS: Arrhythmogenic cardiomyopathy (AC) is a severe heart disease predisposing to ventricular arrhythmias and sudden cardiac death caused by mutations affecting intercalated disc (ICD) proteins and aggravated by physical exercise. Recently, autoantibodies targeting ICD proteins, including the desmosomal cadherin desmoglein 2 (DSG2), were reported in AC patients and were considered relevant for disease development and progression, particularly in patients without underlying pathogenic mutations. However, it is unclear at present whether these autoantibodies are pathogenic and by which mechanisms show specificity for DSG2 and thus can be used as a diagnostic tool. METHODS AND RESULTS: IgG fractions were purified from 15 AC patients and 4 healthy controls. Immunostainings dissociation assays, atomic force microscopy (AFM), Western blot analysis and Triton X-100 assays were performed utilizing human heart left ventricle tissue, HL-1 cells and murine cardiac slices. Immunostainings revealed that autoantibodies against ICD proteins are prevalent in AC and most autoantibody fractions have catalytic properties and cleave the ICD adhesion molecules DSG2 and N-cadherin, thereby reducing cadherin interactions as revealed by AFM. Furthermore, most of the AC-IgG fractions causing loss of cardiomyocyte cohesion activated p38MAPK, which is known to contribute to a loss of desmosomal adhesion in different cell types, including cardiomyocytes. In addition, p38MAPK inhibition rescued the loss of cardiomyocyte cohesion induced by AC-IgGs. CONCLUSION: Our study demonstrates that catalytic autoantibodies play a pathogenic role by cleaving ICD cadherins and thereby reducing cardiomyocyte cohesion by a mechanism involving p38MAPK activation. Finally, we conclude that DSG2 cleavage by autoantibodies could be used as a diagnostic tool for AC.


Subject(s)
Antibodies, Catalytic , Cardiomyopathies , Humans , Mice , Animals , Myocytes, Cardiac/metabolism , Cadherins/metabolism , Desmoglein 2/genetics , Antibodies, Catalytic/metabolism , Cell Adhesion/genetics , Autoantibodies/metabolism , Cardiomyopathies/metabolism , Immunoglobulin G/metabolism , Desmoglein 3/metabolism , Desmosomes/metabolism
11.
Mol Cancer Res ; 21(8): 836-848, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37115197

ABSTRACT

Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS: These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.


Subject(s)
Desmoglein 2 , Neoplasms , Mice , Animals , Desmoglein 2/genetics , Desmoglein 2/metabolism , Epithelial Cells/metabolism , Fatty Acid-Binding Proteins/metabolism , Cadherins/metabolism , Obesity
12.
Sci Rep ; 13(1): 5044, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977772

ABSTRACT

Autoantibodies to desmoglein-2 have been associated with arrhythmogenic right ventricular cardiomyopathy (ARVC) in people. ARVC is a common disease in the Boxer dog. The role of anti-desmoglein-2 antibodies in Boxers with ARVC and correlation with disease status or severity is unknown. This prospective study is the first to evaluate dogs of various breeds and cardiac disease state for anti-desmoglein-2 antibodies. The sera of 46 dogs (10 ARVC Boxers, 9 healthy Boxers, 10 Doberman Pinschers with dilated cardiomyopathy, 10 dogs with myxomatous mitral valve disease, and 7 healthy non-Boxer dogs) were assessed for antibody presence and concentration via Western blotting and densitometry. Anti-desmoglein-2 antibodies were detected in all dogs. Autoantibody expression did not differ between study groups and there was no correlation with age or body weight. In dogs with cardiac disease, there was weak correlation with left ventricular dilation (r = 0.423, p = 0.020) but not left atrial size (r = 0.160, p = 0.407). In ARVC Boxers there was strong correlation with the complexity of ventricular arrhythmias (r = 0.841, p = 0.007) but not total number of ectopic beats (r = 0.383, p = 0.313). Anti-desmoglein-2 antibodies were not disease specific in the studied population of dogs. Correlation with some measures of disease severity requires further study with larger populations.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Dog Diseases , Animals , Dogs , Autoantibodies , Dog Diseases/metabolism , Heart Atria , Prospective Studies , Desmoglein 2/immunology
14.
JCI Insight ; 8(6)2023 03 22.
Article in English | MEDLINE | ID: mdl-36795511

ABSTRACT

Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.


Subject(s)
Desmosomes , Myocytes, Cardiac , Animals , Mice , Cell Adhesion/physiology , Desmoglein 2/metabolism , Desmosomes/metabolism , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Myocytes, Cardiac/metabolism , rho-Associated Kinases/metabolism
15.
Histol Histopathol ; 38(4): 467-474, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36259602

ABSTRACT

OBJECTIVE: To explore the correlation between the expression level of Desmoglein 2 (DSG2) and the epithelial-mesenchymal transition (EMT) progression in gallbladder cancer (GBC). METHOD: 106 GBC tissue specimens and corresponding clinical information were collected to make a tissue microarray. Immunohistochemical method was used to test the expression level of DSG2 in GBC tissues. DSG2 was knocked down in the GBC cell line GBC-SD to detect the change of its invasion and metastasis ability. Then RT-qPCR and Western Blot were applied on the DSG2-knocked down GBC-SD cells to detect the expression level change of genes associated with EMT. RESULT: The high expression rate of DSG2 was significantly correlated with the N, M and TNM staging of patients (P<0.05). Survival analysis identified that GBC patients with high DSG2 expression level had significantly better survival (P<0.05). To further investigate the potential mechanism of DSG2 on regulating GBC tumor progression, we used knockdown DSG2 on GBC-SD cell lines. The results showed that GBC-SD cell lines with DSG2 knockdown showed a promotion of cell invasion and metastatic ability. The mRNA levels of EMT-related genes E-Cadherin, Snail, Twist, ZEB1, and ß-catenin, which is a key protein in the Wnt signaling pathway, were also significantly altered. Besides, protein levels of E-cadherin and Snail showed consistent results. CONCLUSION: The downregulation of DSG2 in gallbladder cancer is hypothesized to be associated with the invasion and metastasis progression of gallbladder cancer cells by regulating EMT-related pathways. Its expression level can be a novel biomarker for gallbladder cancer, providing new perspectives for diagnosis and treatment strategies.


Subject(s)
Desmoglein 2 , Epithelial-Mesenchymal Transition , Gallbladder Neoplasms , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Desmoglein 2/genetics , Desmoglein 2/metabolism , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics , Prognosis
16.
Exp Cell Res ; 422(1): 113416, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36375513

ABSTRACT

In the previous study, we originally developed cancer stem cells (CSCs) models from mouse induced pluripotent stem cells (miPSCs) by culturing miPSCs in the conditioned medium of cancer cell lines, which mimiced as carcinoma microenvironment. However, the molecular mechanism of conversion in detail remains to be uncovered. Microarray analysis of the CSCs models in this study revealed Dsg2, one of the members of the desmosomal cadherin family, was up-regulated when compared with the original miPSCs. Moreover, the expression of key factors in Wnt/ß-catenin signaling pathway were also found up-regulated in one of the CSCs models, named miPS-LLCcm. An autocrine loop was implied between Dsg2 and Wnt/ß-catenin signaling pathway when miPSCs were treated with Wnt/ß-catenin signaling pathway activators, Wnt3a and CHIR99021, and when the CSCs model were treated with inhibitors, IWR-1 and IWP-2. Furthermore, the ability of proliferation and self-renewal in the CSCs model was markedly decreased in vitro and in vivo when Dsg2 gene was knocked down by shRNA. Our results showed that the Wnt/ß-catenin signaling pathway is activated by the up-regulation of Dsg2 expresssion during the conversion of miPSCs into CSCs implying a potential mechanism of the tranformation of stem cells into malignant phenotype.


Subject(s)
Desmoglein 2 , Induced Pluripotent Stem Cells , Neoplastic Stem Cells , Wnt Signaling Pathway , Animals , Mice , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Neoplastic Stem Cells/metabolism , Up-Regulation/genetics , Wnt Signaling Pathway/genetics , Desmoglein 2/genetics , Desmoglein 2/metabolism , Induced Pluripotent Stem Cells/metabolism
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(9): 1344-1350, 2022 Sep 20.
Article in Chinese | MEDLINE | ID: mdl-36210707

ABSTRACT

OBJECTIVE: To investigate the effect of silencing CD46 and desmoglein 2 (DSG2) in host A549 cells on the entry of human adenovirus type 3 (HAdV-3) and type 7 (HAdV-7) and host cell secretion of inflammatory cytokines. METHODS: RNA interference technique was use to silence the expression of CD46 or DSG2 in human epithelial alveolar A549 cells as the host cells of HAdV-3 or HAdV-7. The binding of the viruses with CD46 and DSG2 were observed with immunofluorescence staining at 0.5 and 1 h after viral infection. The viral load in the host cells was determined with qRT-PCR, and IL-8 secretion level was measured using ELISA. RESULTS: In infected A549 cells, immunofluorescent staining revealed colocalization of HAdV-3 and HAdV-37 with their receptors CD46 and DSG2 at 0.5 h and 2 h after infection, and the copy number of the viruses increased progressively after the infection in a time-dependent manner. In A549 cells with CD46 silencing, the virus titers were significantly lower at 2, 6, 12 and 24 h postinfection in comparison with the cells without gene silencing; the virus titers were also significantly decreased in the cells with DSG2 silencing. The secretion level of IL-8 increased significantly in A549 cells without siRNA transfection following infection with HAdV-3 and HAdV-7 (P < 0.0001), but decreased significantly in cells with CD46 and DSG2 silencing (P < 0.0001). CONCLUSION: HAdV-3 and HAdV-7 enter host cells by binding to their receptors CD46 and DSG2, and virus titer and cytokines release increase with infection time. Silencing CD46 and DSG2 can inhibit virus entry and cytokine IL-8 production in host cells.


Subject(s)
Adenoviruses, Human , A549 Cells , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Desmoglein 2/genetics , Desmoglein 2/metabolism , Humans , Interleukin-8 , Membrane Cofactor Protein/genetics , RNA, Small Interfering
18.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291052

ABSTRACT

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is a genetic heart muscle disease characterized by progressive fibro-fatty replacement of cardiac myocytes. Up to now, the existing therapeutic modalities for ACM are mostly palliative. About 50% of ACM is caused by mutations in genes encoding desmosomal proteins including Desmoglein-2 (Dsg2). In the current study, the cardiac fibrosis of ACM and its underlying mechanism were investigated by using a cardiac-specific knockout of Dsg2 mouse model. METHODS: Cardiac-specific Dsg2 knockout (CS-Dsg2-/-) mice and wild-type (WT) mice were respectively used as the animal model of ACM and controls. The myocardial collagen volume fraction was determined by histological analysis. The expression levels of fibrotic markers such as α-SMA and Collagen I as well as signal transducers such as STAT3, SMAD3, and PPARα were measured by Western blot and quantitative real-time PCR. RESULTS: Increased cardiac fibrosis was observed in CS-Dsg2-/- mice according to Masson staining. PPARα deficiency and hyperactivation of STAT3 and SMAD3 were observed in the myocardium of CS-Dsg2-/- mice. The biomarkers of fibrosis such as α-SMA and Collagen I were upregulated after gene silencing of Dsg2 in HL-1 cells. Furthermore, STAT3 gene silencing by Stat3 siRNA inhibited the expression of fibrotic markers. The activation of PPARα by fenofibrate or AAV9-Pparα improved the cardiac fibrosis and decreased the phosphorylation of STAT3, SMAD3, and AKT in CS-Dsg2-/- mice. CONCLUSIONS: Activation of PPARα alleviates the cardiac fibrosis in ACM.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Desmoglein 2 , Myocardium , PPAR alpha , Animals , Mice , Biomarkers/metabolism , Desmoglein 2/genetics , Desmoglein 2/metabolism , Disease Models, Animal , Fenofibrate/pharmacology , Fibrosis , Myocytes, Cardiac/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/pathology , Myocardium/pathology , Collagen Type I/metabolism
19.
Microbiol Spectr ; 10(5): e0218322, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36135378

ABSTRACT

Krüppel-like factor 5 (KLF5) is critical in maintaining intestinal barrier function, and renal denervation (RDN) mitigates gut microbiota aberrations in rats with heart failure (HF). It is unclear whether intestinal KLF5 can be regulated by RDN and whether inhibiting intestinal KLF5 weakens the beneficial role of RDN on gut microbiota. Sprague-Dawley rats were distributed into a CG (sham transverse aortic constriction [TAC] and sham RDN), HF (induced by TAC), or RDN (underwent RDN after TAC) group or a CG.M, HF.M, or RDN.M group, which included the administration of the KLF5 inhibitor to the CG, HF, or RDN group, respectively. Transmission electron microscopy, mRNA, and protein expression of KLF5 and desmoglein 2 (DSG2) in jejunum and sequencing of the 16S rRNA gene in fecal samples were evaluated. KLF5 expression was lower in the RDN group than in the HF group (P < 0.001). The microvillus length, density, length-to-width ratio, and DSG2 expression were lower in the RDN.M group than in the RDN group, and the same trend was observed between the HF.M and HF groups (all P < 0.05). The gut bacterial community structure was altered after administration of a KLF5 inhibitor. The abundances of Proteobacteria, Gammaproteobacteria, Sutterella, and Prevotellaceae were higher, and the abundance of Firmicutes was lower in the RDN.M group than in the RDN group (all P < 0.05). These findings indicated that RDN suppressed intestinal KLF5 expression, and inhibiting intestinal KLF5 expression exacerbated the gut microbiota by impairing the intestinal barrier function in HF rats following RDN, which weakened the beneficial role of RDN on gut microbiota. IMPORTANCE Krüppel-like factor 5 (KLF5) is critical for the maintenance of intestinal barrier function. It is unclear whether intestinal KLF5 expression can be affected by renal denervation (RDN) in heart failure (HF) and whether inhibiting intestinal KLF5 expression exacerbates the gut microbiome and weakens the role of RDN in mitigating gut microbiome aberrations in HF rats after RDN. We demonstrated that RDN significantly suppressed intestinal KLF5 expression and that inhibiting intestinal expression of KLF5 exacerbated the gut microbiota and weakened the role of RDN in mitigating microbiota aberrations by impairing intestinal barrier function, resulting in an increase in bacteria harmful to cardiac function and a decrease in beneficial bacteria in HF rats following RDN. This study highlighted the important roles of intestinal KLF5 in modulating gut microbiota in HF and suggested that the influence of RDN on intestinal KLF5 was another possible role of RDN in HF besides downregulating the sympathetic nerve.


Subject(s)
Gastrointestinal Microbiome , Heart Failure , Animals , Rats , Denervation , Desmoglein 2 , Kruppel-Like Transcription Factors/genetics , Rats, Sprague-Dawley , RNA, Messenger , RNA, Ribosomal, 16S
20.
Acta Physiol (Oxf) ; 236(3): e13881, 2022 11.
Article in English | MEDLINE | ID: mdl-36039679

ABSTRACT

AIM: Cardiac autonomic nervous system (ANS) dysregulation is a hallmark of several cardiovascular diseases. Adrenergic signaling enhanced cardiomyocyte cohesion via PKA-mediated plakoglobin phosphorylation at serine 665, referred to as positive adhesiotropy. This study investigated cholinergic regulation of cardiomyocyte cohesion using muscarinic receptor agonist carbachol (CCH). METHODS: Dissociation assays, Western blot analysis, immunostaining, atomic force microscopy (AFM), immunoprecipitation, transmission electron microscopy (TEM), triton assays, and siRNA knockdown of genes were performed in either HL-1 cells or plakoglobin (PG) wild type (Jup+/+ ) and knockout (Jup-/- ) mice, which served as a model for arrhythmogenic cardiomyopathy. RESULTS: In HL-1 cells grown in norepinephrine (NE)-containing medium for baseline adrenergic stimulation, and murine cardiac slice cultures from Jup+/+ and Jup-/- mice CCH treatment impaired cardiomyocyte cohesion. Immunostainings and AFM experiments revealed that CCH reduced desmoglein 2 (DSG2) localization and binding at cell borders. Furthermore, CCH reduced intercalated disc plaque thickness in both Jup+/+ and Jup-/- mice, evidenced by TEM analysis. Immunoprecipitation experiments in HL-1 cells revealed no changes in DSG2 interaction with desmoplakin (DP), plakophilin 2 (PKP2), PG, and desmin (DES) after CCH treatment. However, knockdown of any of the above proteins abolished CCH-mediated loss of cardiomyocyte cohesion. Furthermore, in HL-1 cells, CCH inhibited adrenergic-stimulated ERK phosphorylation but not PG phosphorylation at serine 665. In addition, CCH activated the AKT/GSK-3ß axis in the presence of NE. CONCLUSION: Our results demonstrate that cholinergic signaling antagonizes the positive effect of adrenergic signaling on cardiomyocyte cohesion and thus causes negative adhesiotropy independent of PG phosphorylation.


Subject(s)
Desmoglein 2 , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , Desmoglein 2/genetics , Desmoglein 2/metabolism , gamma Catenin/metabolism , gamma Catenin/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Desmoplakins/metabolism , Carbachol/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Plakophilins/metabolism , RNA, Small Interfering/metabolism , Desmin/metabolism , Desmin/pharmacology , Cholinergic Agents/metabolism , Cholinergic Agents/pharmacology , Receptors, Muscarinic/metabolism , Adrenergic Agents/pharmacology , Norepinephrine/metabolism , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...