Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Mol Cells ; 47(6): 100076, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825188

ABSTRACT

The actin-based cytoskeleton is considered a fundamental driving force for cell differentiation and development. Destrin (Dstn), a member of the actin-depolymerizing factor family, regulates actin dynamics by treadmilling actin filaments and increasing globular actin pools. However, the specific developmental roles of dstn have yet to be fully elucidated. Here, we investigated the physiological functions of dstn during early embryonic development using Xenopus laevis as an experimental model organism. dstn is expressed in anterior neural tissue and neural plate during Xenopus embryogenesis. Depleting dstn promoted morphants with short body axes and small heads. Moreover, dstn inhibition extended the neural plate region, impairing cell migration and distribution during neurulation. In addition to the neural plate, dstn knockdown perturbed neural crest cell migration. Our data suggest new insights for understanding the roles of actin dynamics in embryonic neural development, simultaneously presenting a new challenge for studying the complex networks governing cell migration involving actin dynamics.


Subject(s)
Cell Movement , Destrin , Embryonic Development , Xenopus laevis , Animals , Xenopus laevis/embryology , Xenopus laevis/metabolism , Destrin/metabolism , Destrin/genetics , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Neural Crest/metabolism , Neural Crest/embryology , Neural Crest/cytology , Neurogenesis , Neural Plate/metabolism , Neural Plate/embryology , Actins/metabolism , Gene Expression Regulation, Developmental
2.
Biochem Biophys Res Commun ; 703: 149637, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38354464

ABSTRACT

The normal development of pollen grains and the completion of double fertilization in embryos are crucial for both the sexual reproduction of angiosperms and grain production. Actin depolymerizing factor (ADF) regulates growth, development, and responses to biotic and abiotic stress by binding to actin in plants. In this study, the function of the ZmADF1 gene was validated through bioinformatic analysis, subcellular localization, overexpression in maize and Arabidopsis, and knockout via CRISPR/Cas9. The amino acid sequence of ZmADF1 exhibited high conservation and a similar tertiary structure to that of ADF homologs. Subcellular localization analysis revealed that ZmADF1 is localized mainly to the nucleus and cytoplasm. The ZmADF1 gene was specifically expressed in maize pollen, and overexpression of the ZmADF1 gene decreased the number of pollen grains in the anthers of transgenic Arabidopsis plants. The germination rate of pollen and the empty seed shell rate in the fruit pods of the overexpressing plants were significantly greater than those in the wild-type (WT) plants. In maize, the pollen viability of the knockout lines was significantly greater than that of both the WT and the overexpressing lines. Our results confirmed that the ZmADF1 gene was specifically expressed in pollen and negatively regulated pollen quantity, vigor, germination rate, and seed setting rate. This study provides insights into ADF gene function and possible pathways for improving high-yield maize breeding.


Subject(s)
Arabidopsis , Destrin , Pollen , Zea mays , Amino Acid Sequence , Arabidopsis/metabolism , Destrin/genetics , Destrin/metabolism , Gelsolin/metabolism , Gene Expression Regulation, Plant , Pollen/genetics , Pollen/growth & development , Zea mays/metabolism
3.
Plant Biotechnol J ; 22(1): 98-115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37688588

ABSTRACT

As a multifunctional hormone-like molecule, melatonin exhibits a pleiotropic role in plant salt stress tolerance. While actin cytoskeleton is essential to plant tolerance to salt stress, it is unclear if and how actin cytoskeleton participates in the melatonin-mediated alleviation of plant salt stress. Here, we report that melatonin alleviates salt stress damage in pigeon pea by activating a kinase-like protein, which interacts with an actin-depolymerizing factor. Cajanus cajan Actin-Depolymerizing Factor 9 (CcADF9) has the function of severing actin filaments and is highly expressed under salt stress. The CcADF9 overexpression lines (CcADF9-OE) showed a reduction of transgenic root length and an increased sensitivity to salt stress. By using CcADF9 as a bait to screen an Y2H library, we identified actin depolymerizing factor-related phosphokinase 1 (ARP1), a novel protein kinase that interacts with CcADF9. CcARP1, induced by melatonin, promotes salt resistance of pigeon pea through phosphorylating CcADF9, inhibiting its severing activity. The CcARP1 overexpression lines (CcARP1-OE) displayed an increased transgenic root length and resistance to salt stress, whereas CcARP1 RNA interference lines (CcARP1-RNAi) presented the opposite phenotype. Altogether, our findings reveal that melatonin-induced CcARP1 maintains F-actin dynamics balance by phosphorylating CcADF9, thereby promoting root growth and enhancing salt tolerance.


Subject(s)
Cajanus , Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Actins/metabolism , Cajanus/genetics , Destrin/metabolism , Salt Tolerance/genetics , Phosphorylation , Actin Cytoskeleton/metabolism
4.
Parasitol Res ; 122(11): 2621-2630, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37676305

ABSTRACT

Cryptosporidium is a highly pathogenic water and food-borne zoonotic parasitic protozoan that causes severe diarrhea in humans and animals. Apicomplexan parasites invade host cells via a unique motility process called gliding, which relies on the parasite's microfilaments. Actin depolymerizing factor (ADF) is a fibrous-actin (F-actin) and globular actin (G-actin) binding protein essential for regulating the turnover of microfilaments. However, the role of ADF in Cryptosporidium parvum (C. parvum) remains unknown. In this study, we preliminarily characterized the biological functions of ADF in C. parvum (CpADF). The CpADF was a 135-aa protein encoded by cgd5_2800 gene containing an ADF-H domain. The expression of cgd5_2800 gene peaked at 12 h post-infection, and the CpADF was located in the cytoplasm of oocysts, middle region of sporozoites, and cytoplasm of merozoites. Neutralization efficiency of anti-CpADF serum was approximately 41.30%. Actin sedimentation assay revealed that CpADF depolymerized but did not undergo cosedimentation with F-actin and its ability of F-actin depolymerization was pH independent. These results provide a basis for further investigation of the roles of CpADF in the invasion of C. parvum.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humans , Animals , Cryptosporidium parvum/genetics , Cryptosporidium parvum/metabolism , Actins/metabolism , Actin Depolymerizing Factors/metabolism , Destrin/metabolism , Cryptosporidiosis/parasitology , Microfilament Proteins/metabolism
5.
Int J Radiat Oncol Biol Phys ; 117(1): 198-210, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37019366

ABSTRACT

PURPOSE: Although surgical resection combined with neoadjuvant radiation therapy can reduce the local recurrence rate of rectal cancer, not all patients benefit from neoadjuvant radiation therapy. Therefore, screening for patients with rectal cancer who are sensitive or resistant to radiation therapy has great clinical significance. METHODS AND MATERIALS: Patients with rectal cancer were selected according to postoperative tumor regression grade, and tumor samples were taken for detection. Differential genes between radiation-resistant and radiation-sensitive tissues were screened and validated by Illumina Infinium MethylationEPIC BeadChip, proteomics, Agena MassARRAY methylation, reverse transcription quantitative real-time polymerase chain reaction, and immunohistochemistry. In vitro and in vivo functional experiments verified the role of DSTN. Protein coimmunoprecipitation, western blot, and immunofluorescence were used to investigate the mechanisms of DSTN-related radiation resistance. RESULTS: DSTN was found to be highly expressed (P < .05) and hypomethylated (P < .01) in rectal cancer tissues resistant to neoadjuvant radiation therapy. Follow-up data confirmed that patients with high expression of DSTN in neoadjuvant radiation therapy-resistant rectal cancer tissues had shorter disease-free survival (P < .05). DSTN expression increased after methyltransferase inhibitor inhibition of DNA methylation in colorectal cancer cells (P < .05). In vitro and in vivo experiments showed that knockdown of DSTN promoted the sensitivity of colorectal cancer cells to radiation therapy, and overexpression of DSTN promoted the resistance of colorectal cancer cells to radiation (P < .05). The Wnt/ß-catenin signaling pathway was activated in colorectal cancer cells overexpressing DSTN. ß-catenin was highly expressed in radiation therapy-resistant tissues, and there was a linear correlation between the expression of DSTN and ß-catenin (P < .0001). Further studies showed that DSTN can bind to ß-catenin and increase its stability. CONCLUSIONS: The degree of DNA methylation and the expression level of DSTN can be used as biomarkers to predict the sensitivity of neoadjuvant radiation therapy for rectal cancer. DSTN and ß-catenin are also expected to become a reference for the selection of neoadjuvant radiation therapy.


Subject(s)
Destrin , Radiation Tolerance , Rectal Neoplasms , Humans , beta Catenin/genetics , beta Catenin/metabolism , Biomarkers/metabolism , Cell Line, Tumor , Cell Proliferation , Destrin/genetics , Destrin/metabolism , DNA Methylation , Rectal Neoplasms/genetics , Rectal Neoplasms/radiotherapy , Rectal Neoplasms/pathology , Wnt Signaling Pathway/genetics
6.
PLoS Biol ; 21(4): e3002073, 2023 04.
Article in English | MEDLINE | ID: mdl-37011088

ABSTRACT

As the stimulus-responsive mediator of actin dynamics, actin-depolymerizing factor (ADF)/cofilin is subject to tight regulation. It is well known that kinase-mediated phosphorylation inactivates ADF/cofilin. Here, however, we found that the activity of Arabidopsis ADF7 is enhanced by CDPK16-mediated phosphorylation. We found that CDPK16 interacts with ADF7 both in vitro and in vivo, and it enhances ADF7-mediated actin depolymerization and severing in vitro in a calcium-dependent manner. Accordingly, the rate of actin turnover is reduced in cdpk16 pollen and the amount of actin filaments increases significantly at the tip of cdpk16 pollen tubes. CDPK16 phosphorylates ADF7 at Serine128 both in vitro and in vivo, and the phospho-mimetic mutant ADF7S128D has enhanced actin-depolymerizing activity compared to ADF7. Strikingly, we found that failure in the phosphorylation of ADF7 at Ser128 impairs its function in promoting actin turnover in vivo, which suggests that this phospho-regulation mechanism is biologically significant. Thus, we reveal that CDPK16-mediated phosphorylation up-regulates ADF7 to promote actin turnover in pollen.


Subject(s)
Actins , Arabidopsis , Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Destrin/metabolism , Phosphorylation , Pollen Tube/metabolism
7.
PLoS Genet ; 18(9): e1010338, 2022 09.
Article in English | MEDLINE | ID: mdl-36095000

ABSTRACT

Actin cytoskeleton is essential for root hair formation. However, the underlying molecular mechanisms of actin dynamics in root hair formation in response to abiotic stress are largely undiscovered. Here, genetic analysis showed that actin-depolymerizing protein ADF7 and actin-bundling protein VILLIN1 (VLN1) were positively and negatively involved in root hair formation of Arabidopsis respectively. Moreover, RT-qPCR, GUS staining, western blotting, and genetic analysis revealed that ADF7 played an important role in inhibiting the expression and function of VLN1 during root hair formation. Filament actin (F-actin) dynamics observation and actin pharmacological experiments indicated that ADF7-inhibited-VLN1 pathway led to the decline of F-actin bundling and thick bundle formation, as well as the increase of F-actin depolymerization and turnover to promote root hair formation. Furthermore, the F-actin dynamics mediated by ADF7-inhibited-VLN1 pathway was associated with the reactive oxygen species (ROS) accumulation in root hair formation. Finally, ADF7-inhibited-VLN1 pathway was critical for osmotic stress-induced root hair formation. Our work demonstrates that ADF7 inhibits VLN1 to regulate F-actin dynamics in root hair formation in response to osmotic stress, providing the novel evidence on the F-actin dynamics and their molecular mechanisms in root hair formation and in abiotic stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actins/genetics , Actins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Destrin/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Osmotic Pressure , Plant Roots/genetics , Plant Roots/metabolism , Reactive Oxygen Species/metabolism
8.
Cell Mol Gastroenterol Hepatol ; 14(5): 1123-1145, 2022.
Article in English | MEDLINE | ID: mdl-35953024

ABSTRACT

BACKGROUND & AIMS: Glia maturation factor-ß (GMFB) is a bona fide member of the actin depolymerizing factor homology family. Recently, emerging evidence suggested its implication in liver diseases, but data on its role in liver remain limited. METHODS: Assessment of GMFB in liver histology, impact on liver regeneration and hepatocyte proliferation, and the underlying molecular pathways were conducted using mouse models with acute liver injury. RESULTS: GMFB is widely distributed in normal liver. Its expression increases within 24 hours after partial hepatectomy (PHx). Adult Gmfb knockout mice and wild-type littermates are similar in gross appearance, body weight, liver function, and histology. However, compared with wild-type control, Gmfb knockout mice post-PHx develop more serious liver damage and steatosis and have delayed liver regeneration; the dominant change in liver transcriptome at 24 hours after PHx is the significantly suppressed acute inflammation pathways; the top down-regulated gene sets relate to interleukin (IL)6/Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling. Another mouse model intoxicated with carbon tetrachloride replicated these findings. Furthermore, Gmfb knockout and wild-type groups have the similar numbers of Kupffer cells, but Gmfb knockout Kupffer cells once stimulated produce less IL6, tumor necrosis factor, and IL1ß. In hepatocytes treated with IL6, GMFB associates positively with cell proliferation and STAT3/cyclin D1 activation, but without any direct interaction with STAT3. In Gmfb knockout hepatocytes, cytoskeleton-related gene expression was changed significantly, with an abnormal-appearing morphology of actin networks. In hepatocyte modeling, actin-filament turnover, STAT3 activation, and metabolite excretion show a strong reliance on the status of actin-filament organization. CONCLUSIONS: GMFB plays a significant role in liver regeneration by promoting acute inflammatory response in Kupffer cells and by intracellularly coordinating the responsive hepatocyte proliferation.


Subject(s)
Glia Maturation Factor , Liver Regeneration , Animals , Mice , Actins/metabolism , Carbon Tetrachloride , Cyclin D1/metabolism , Destrin/metabolism , Glia Maturation Factor/metabolism , Interleukin-6/metabolism , Janus Kinases/metabolism , Liver Diseases , Mice, Knockout , STAT3 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Front Cell Infect Microbiol ; 12: 952720, 2022.
Article in English | MEDLINE | ID: mdl-36601306

ABSTRACT

Neospora caninum is a member of Apicomplexa Phylum and the causative agent of neosporosis, a disease responsible for abortions in cattle. Apicomplexan parasites have a limited set of actin-binding proteins conducting the regulation of the dynamics of nonconventional actin. The parasite actin-based motility is implicated in the parasite invasion process in the host cell. Once no commercial strategy for the neosporosis control is available, the interference in the parasite actin function may result in novel drug targets. Actin-depolymerization factor (ADF) is a member of the ADF/cofilin family, primarily known for its function in actin severing and depolymerization. ADF/cofilins are versatile proteins modulated by different mechanisms, including reduction and oxidation. In apicomplexan parasites, the mechanisms involved in the modulation of ADF function are barely explored and the effects of oxidation in the protein are unknown so far. In this study, we used the oxidants N-chlorotaurine (NCT) and H2O2 to investigate the susceptibility of the recombinant N. caninum ADF (NcADF) to oxidation. After exposing the protein to either NCT or H2O2, the dimerization status and cysteine residue oxidation were determined. Also, the interference of NcADF oxidation in the interaction with actin was assessed. The treatment of the recombinant protein with oxidants reversibly induced the production of dimers, indicating that disulfide bonds between NcADF cysteine residues were formed. In addition, the exposure of NcADF to NCT resulted in more efficient oxidation of the cysteine residues compared to H2O2. Finally, the oxidation of NcADF by NCT reduced the ability of actin-binding and altered the function of NcADF in actin polymerization. Altogether, our results clearly show that recombinant NcADF is sensitive to redox conditions, indicating that the function of this protein in cellular processes involving actin dynamics may be modulated by oxidation.


Subject(s)
Actins , Neospora , Pregnancy , Female , Animals , Cattle , Actins/metabolism , Destrin/genetics , Destrin/chemistry , Destrin/metabolism , Neospora/genetics , Cysteine/metabolism , Hydrogen Peroxide , Actin Depolymerizing Factors/metabolism , Oxidation-Reduction , Oxidants
10.
Am J Physiol Heart Circ Physiol ; 321(5): H893-H904, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34559579

ABSTRACT

We have previously shown that several components of the RhoA signaling pathway control smooth muscle cell (SMC) phenotype by altering serum response factor (SRF)-dependent gene expression. Because our genome-wide analyses of chromatin structure and transcription factor binding suggested that the actin depolymerizing factor, destrin (DSTN), was regulated in a SMC-selective fashion, the goals of the current study were to identify the transcription mechanisms that control DSTN expression in SMC and to test whether it regulates SMC function. Immunohistochemical analyses revealed strong and at least partially SMC-selective expression of DSTN in many mouse tissues, a result consistent with human data from the genotype-tissue expression (GTEx) consortium. We identified several regulatory regions that control DSTN expression including a SMC-selective enhancer that was activated by myocardin-related transcription factor-A (MRTF-A), recombination signal binding protein for immunoglobulin κ-J region (RBPJ), and the SMAD transcription factors. Indeed, enhancer activity and endogenous DSTN expression were upregulated by RhoA and transforming growth factor-ß (TGF-ß) signaling and downregulated by inhibition of Notch cleavage. We also showed that DSTN expression was decreased in vivo by carotid artery injury and in cultured SMC cells by platelet-derived growth factor-BB (PDGF-BB) treatment. siRNA-mediated depletion of DSTN significantly enhanced MRTF-A nuclear localization and SMC differentiation marker gene expression, decreased SMC migration in scratch wound assays, and decreased SMC proliferation, as measured by cell number and cyclin-E expression. Taken together our data indicate that DSTN is a negative feedback inhibitor of RhoA/SRF-dependent gene expression in SMC that coordinately promotes SMC phenotypic modulation. Interventions that target DSTN expression or activity could serve as potential therapies for atherosclerosis and restenosis.NEW & NOTEWORTHY First, DSTN is selectively expressed in SMC in RhoA/SRF-dependent manner. Second, a SMC-selective enhancer just upstream of DSTN TSS harbors functional SRF, SMAD, and Notch/RBPJ binding elements. Third, DSTN depletion increased SRF-dependent SMC marker gene expression while inhibiting SMC migration and proliferation. Taken together, our data suggest that DSTN is a critical negative feedback inhibitor of SMC differentiation.


Subject(s)
Actins/metabolism , Carotid Artery Injuries/metabolism , Cell Differentiation , Destrin/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Chemokine CXCL12/metabolism , Destrin/genetics , Disease Models, Animal , Feedback, Physiological , Gene Expression Regulation , Humans , Mice , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phenotype , Promoter Regions, Genetic , Rats , Rats, Wistar , Receptors, Notch/metabolism , Signal Transduction , Transcription, Genetic , rhoA GTP-Binding Protein/metabolism
11.
Cell Rep ; 36(8): 109601, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433058

ABSTRACT

Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.


Subject(s)
Actin Cytoskeleton/metabolism , Cofilin 1/metabolism , Destrin/metabolism , Lamin Type A/metabolism , Laminopathies/metabolism , Muscle, Striated/metabolism , Sarcomeres/metabolism , Adolescent , Adult , Animals , Cell Line , Child , Humans , Lamin Type A/genetics , Laminopathies/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Muscle, Striated/pathology , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/metabolism , Mutation , Phosphorylation , Signal Transduction , Young Adult
12.
Elife ; 102021 06 25.
Article in English | MEDLINE | ID: mdl-34169836

ABSTRACT

Melanoma cells have been shown to undergo fast amoeboid (leader bleb-based) migration, requiring a single large bleb for migration. In leader blebs, is a rapid flow of cortical actin that drives the cell forward. Using RNAi, we find that co-depleting cofilin-1 and actin depolymerizing factor (ADF) led to a large increase in cortical actin, suggesting that both proteins regulate cortical actin. Furthermore, severing factors can promote contractility through the regulation of actin architecture. However, RNAi of cofilin-1 but not ADF led to a significant decrease in cell stiffness. We found cofilin-1 to be enriched at leader bleb necks, whereas RNAi of cofilin-1 and ADF reduced bleb sizes and the frequency of motile cells. Strikingly, cells without cofilin-1 and ADF had blebs with abnormally long necks. Many of these blebs failed to retract and displayed slow actin turnover. Collectively, our data identifies cofilin-1 and ADF as actin remodeling factors required for fast amoeboid migration.


Subject(s)
Actins/metabolism , Cell Surface Extensions/metabolism , Cofilin 1/genetics , Destrin/genetics , A549 Cells , Cofilin 1/metabolism , Destrin/metabolism , Humans
13.
Genome Biol ; 22(1): 180, 2021 06 13.
Article in English | MEDLINE | ID: mdl-34120636

ABSTRACT

BACKGROUND: Canonical nonsense-mediated decay (NMD) is an important splicing-dependent process for mRNA surveillance in mammals. However, processed pseudogenes are not able to trigger NMD due to their lack of introns. It is largely unknown whether they have evolved other surveillance mechanisms. RESULTS: Here, we find that the RNAs of pseudogenes, especially processed pseudogenes, have dramatically higher m6A levels than their cognate protein-coding genes, associated with de novo m6A peaks and motifs in human cells. Furthermore, pseudogenes have rapidly accumulated m6A motifs during evolution. The m6A sites of pseudogenes are evolutionarily younger than neutral sites and their m6A levels are increasing, supporting the idea that m6A on the RNAs of pseudogenes is under positive selection. We then find that the m6A RNA modification of processed, rather than unprocessed, pseudogenes promotes cytosolic RNA degradation and attenuates interference with the RNAs of their cognate protein-coding genes. We experimentally validate the m6A RNA modification of two processed pseudogenes, DSTNP2 and NAP1L4P1, which promotes the RNA degradation of both pseudogenes and their cognate protein-coding genes DSTN and NAP1L4. In addition, the m6A of DSTNP2 regulation of DSTN is partially dependent on the miRNA miR-362-5p. CONCLUSIONS: Our discovery reveals a novel evolutionary role of m6A RNA modification in cleaning up the unnecessary processed pseudogene transcripts to attenuate their interference with the regulatory network of protein-coding genes.


Subject(s)
Adenosine/analogs & derivatives , Genome, Human , Pseudogenes , RNA Splicing , RNA, Messenger/genetics , Selection, Genetic , Adenosine/genetics , Adenosine/metabolism , Cell Line , Cell Line, Transformed , Destrin/genetics , Destrin/metabolism , HEK293 Cells , HapMap Project , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nonsense Mediated mRNA Decay , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Messenger/metabolism
14.
Parasitol Res ; 120(2): 579-592, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33438042

ABSTRACT

Dendritic cells play a crucial role in inducing antigen-specific immunity to pathogens. During host-parasite interaction, host immune response to the parasite molecules is considered essential for recognizing novel antigens for control strategies. Therefore, in the present study, chicken dendritic cells (DCs) (ChDCs), derived from spleens were used to evaluate their capacity to proliferate and differentiate autologous T lymphocytes in response to actin-depolymerizing factor from Eimeria tenella (EtADF). Immunoblot analysis showed that recombinant EtADF protein (rEtADF) was able to interact with rat anti-rEtADF antibodies. The immunofluorescence test confirmed rEtADF binding on ChDCs surface. Flow cytometric analysis revealed that phenotypes for MHCII, CD1.1, CD11c, CD80, and CD86 were increased in ChDCs after rEtADF treatment. qRT-PCR results indicated that ChDCs triggered TLR signaling in response to rEtADF, and suppressed Wnt signaling. Transcript levels of CD83, CCL5, and CCR7 in ChDCs were improved following rEtADF treatment. In addition, rEtADF promoted DC-directed T cell proliferation and differentiation of naïve T cells into CD3+/CD4+ T cells in DC/T cell co-incubation system. Cytokine analysis of rEtADF-pulsed ChDCs showed increased levels of IL-12 and IFN-γ, while IL-10 and TGF-ß remained unchanged. Moreover, rEtADF-treated ChDCs enhanced production of IFN-γ when incubated with T cells, and IL-4 secretion remained unchanged. Our findings indicted that rEtADF could facilitate the polarization of Th1 immune cells by triggering both host DCs and T cells. Our findings provide useful insights into future work aimed at anticoccidial vaccine strategies.


Subject(s)
Coccidiosis/prevention & control , Cytokines/immunology , Destrin/metabolism , Eimeria tenella/immunology , Animals , Cell Differentiation , Cell Proliferation , Chickens , Coccidiosis/immunology , Coccidiosis/parasitology , Dendritic Cells/immunology , Destrin/genetics , Eimeria tenella/genetics , Humans , Immunization , Lymphocyte Activation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Rats , Spleen/immunology , Th1 Cells/immunology
15.
Mol Cancer Res ; 18(12): 1789-1802, 2020 12.
Article in English | MEDLINE | ID: mdl-32878967

ABSTRACT

Lung cancer, especially lung adenocarcinoma, is one of the most common neoplasms worldwide. However, the mechanisms underlying its initiation, development, and metastasis are still poorly understood. Destrin (DSTN) is a member of ADF/cofilin family. Its detailed biological function remains unknown, although it is reported that DSTN is involved in cytoskeleton remodeling and regulation of actin filament turnover. Recent evidence has shown that high expression of cofilin-1 is associated with invasion and poor prognosis of several types of human tumors, but the detailed mechanism is still entirely unclear, particularly in lung cancer tumorigenesis and malignancy. Here, we report that DSTN was highly expressed in a mouse lung cancer model induced by urethane and in clinical lung adenocarcinoma tissue samples. Its expression level was positively correlated with cancer development, as well as metastasis to the liver and lymph nodes. Consistently, it was directly associated with the poor prognosis of lung adenocarcinoma patients. Furthermore, we also found that DSTN promotes cell proliferation, invasion, and migration in vitro, and facilitates subcutaneous tumor formation and lung metastasis via intravenous injection in vivo. Mechanically, DSTN associates with and facilitates nuclear translocation of ß-catenin, which promotes epithelial-to-mesenchymal transition (EMT). Taken together, our results indicated that DSTN enhances lung cancer malignancy through facilitating ß-catenin nuclear translocation and inducing EMT. Combined with multivariate analyses, DSTN might potentially serve as a therapeutic target and an independent prognostic marker of lung adenocarcinoma. IMPLICATIONS: This finding indicates that DSTN facilitates ß-catenin nuclear translocation and promotes malignancy in lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung/pathology , Destrin/genetics , Destrin/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Lung Neoplasms/pathology , beta Catenin/metabolism , A549 Cells , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Female , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Neoplasm Transplantation , Prognosis , Survival Analysis , Up-Regulation , Urethane/adverse effects , Wnt Signaling Pathway
16.
Transl Neurodegener ; 9(1): 32, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32746944

ABSTRACT

BACKGROUND: Diseases and disorders with a chronic neuroinflammatory component are often linked with changes in brain metabolism. Among neurodegenerative disorders, people living with human immunodeficiency virus (HIV) and Alzheimer's disease (AD) are particularly vulnerable to metabolic disturbances, but the mechanistic connections of inflammation, neurodegeneration and bioenergetic deficits in the central nervous system (CNS) are poorly defined. The particularly interesting new cysteine histidine-rich-protein (PINCH) is nearly undetectable in healthy mature neurons, but is robustly expressed in tauopathy-associated neurodegenerative diseases including HIV infection and AD. Although robust PINCH expression has been reported in neurons in the brains of patients with HIV and AD, the molecular mechanisms and cellular consequences of increased PINCH expression in CNS disease remain largely unknown. METHODS: We investigated the regulatory mechanisms responsible for PINCH protein-mediated changes in bioenergetics, mitochondrial subcellular localization and bioenergetic deficits in neurons exposed to physiological levels of TNFα or the HIV protein Tat. Changes in the PINCH-ILK-Parvin (PIP) complex association with cofilin and TESK1 were assessed to identify factors responsible for actin depolymerization and mitochondrial mislocalization. Lentiviral and pharmacological inhibition experiments were conducted to confirm PINCH specificity and to reinstate proper protein-protein complex communication. RESULTS: We identified MEF2A as the PINCH transcription factor in neuroinflammation and determined the biological consequences of increased PINCH in neurons. TNFα-mediated activation of MEF2A via increased cellular calcium induced PINCH, leading to disruption of the PIP ternary complex, cofilin activation by TESK1 inactivation, and actin depolymerization. The disruption of actin led to perinuclear mislocalization of mitochondria by destabilizing the kinesin-dependent mitochondrial transport machinery, resulting in impaired neuronal metabolism. Blocking TNFα-induced PINCH expression preserved mitochondrial localization and maintained metabolic functioning. CONCLUSIONS: This study reported for the first time the mechanistic and biological consequences of PINCH expression in CNS neurons in diseases with a chronic neuroinflammation component. Our findings point to the maintenance of PINCH at normal physiological levels as a potential new therapeutic target for neurodegenerative diseases with impaired metabolisms.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/biosynthesis , Destrin/metabolism , Inflammation Mediators/metabolism , LIM Domain Proteins/biosynthesis , Mitochondria/metabolism , Neurons/metabolism , Actins/genetics , Adaptor Proteins, Signal Transducing/genetics , Brain/metabolism , Brain/pathology , Cells, Cultured , Destrin/genetics , Fetus , Gene Expression , Humans , LIM Domain Proteins/genetics , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mitochondria/pathology , Neurons/pathology
17.
Int J Mol Sci ; 21(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143437

ABSTRACT

Actin-depolymerizing factor (ADF) is a small class of actin-binding proteins that regulates the dynamics of actin in cells. Moreover, it is well known that the plant ADF family plays key roles in growth, development and defense-related functions. Results: Thirteen maize (Zea mays L., ZmADFs) ADF genes were identified using Hidden Markov Model. Phylogenetic analysis indicated that the 36 identified ADF genes in Physcomitrella patens, Arabidopsis thaliana, Oryza sativa japonica, and Zea mays were clustered into five groups. Four pairs of segmental genes were found in the maize ADF gene family. The tissue-specific expression of ZmADFs and OsADFs was analyzed using microarray data obtained from the Maize and Rice eFP Browsers. Five ZmADFs (ZmADF1/2/7/12/13) from group V exhibited specifically high expression in tassel, pollen, and anther. The expression patterns of 13 ZmADFs in seedlings under five abiotic stresses were analyzed using qRT-PCR, and we found that the ADFs mainly responded to heat, salt, drought, and ABA. Conclusions: In our study, we identified ADF genes in maize and analyzed the gene structure and phylogenetic relationships. The results of expression analysis demonstrated that the expression level of ADF genes was diverse in various tissues and different stimuli, including abiotic and phytohormone stresses, indicating their different roles in plant growth, development, and response to external stimulus. This report extends our knowledge to understand the function of ADF genes in maize.


Subject(s)
Destrin/genetics , Gene Expression Regulation, Plant , Stress, Physiological , Zea mays/genetics , Actins/metabolism , Arabidopsis/genetics , Bryopsida/genetics , Chromosomes, Plant/ultrastructure , Destrin/metabolism , Droughts , Gene Expression Profiling , Genetic Association Studies , Genome, Plant , Oligonucleotide Array Sequence Analysis , Oryza/genetics , Phylogeny , Plant Growth Regulators/metabolism , Pollen/chemistry
18.
PLoS One ; 14(11): e0225782, 2019.
Article in English | MEDLINE | ID: mdl-31770407

ABSTRACT

Interleukin (IL)-38 is a member of the IL-1 family of cytokines, which was proposed to exert anti-inflammatory effects. IL-38 is constitutively expressed in the skin, where keratinocytes are the main producing cells. Little information is currently available concerning IL-38 biology. Here, we investigated the subcellular localization and interaction partners of the IL-38 protein in human keratinocytes. IL-38 expression was reduced in primary keratinocytes grown in monolayer (2D) cultures. We thus used IL-38 overexpressing immortalized normal human keratinocytes (NHK/38) to study this cytokine in cell monolayers. In parallel, differentiation of primary human keratinocytes in an in vitro reconstructed human epidermis (RHE) 3D model allowed us to restore endogenous IL-38 expression. In NHK/38 cells and in RHE, IL-38 was mainly cell-associated, rather than released into culture supernatants. Intracellular IL-38 was preferentially, although not exclusively, cytoplasmic. Similarly, in normal human skin sections, IL-38 was predominantly cytoplasmic in the epidermis and essentially excluded from keratinocyte nuclei. A yeast two-hybrid screen identified destrin/actin-depolymerizing factor (DSTN) as a potential IL-38-interacting molecule. Co-immunoprecipitation and proximity ligation assay confirmed this interaction. We further observed partial co-localization of IL-38 and DSTN in NHK/38 cells. Endogenous IL-38 and DSTN were also co-expressed in all epidermal layers in RHE and in normal human skin. Finally, IL-38 partially co-localized with F-actin in NHK/38 cells, in particular along the cortical actin network and in filopodia. In conclusion, IL-38 is found predominantly in the cytoplasm of human keratinocytes, where it interacts with DSTN. The functional relevance of this interaction remains to be investigated.


Subject(s)
Destrin/metabolism , Interleukins/metabolism , Cell Culture Techniques , Cells, Cultured , Destrin/chemistry , Humans , Interleukins/genetics , Keratinocytes/cytology , Keratinocytes/metabolism , Microscopy, Fluorescence , Protein Binding , Skin/cytology , Two-Hybrid System Techniques
19.
Neuron ; 103(6): 1073-1085.e6, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31400829

ABSTRACT

Injured axons fail to regenerate in the adult CNS, which contrasts with their vigorous growth during embryonic development. We explored the potential of re-initiating axon extension after injury by reactivating the molecular mechanisms that drive morphogenetic transformation of neurons during development. Genetic loss- and gain-of-function experiments followed by time-lapse microscopy, in vivo imaging, and whole-mount analysis show that axon regeneration is fueled by elevated actin turnover. Actin depolymerizing factor (ADF)/cofilin controls actin turnover to sustain axon regeneration after spinal cord injury through its actin-severing activity. This pinpoints ADF/cofilin as a key regulator of axon growth competence, irrespective of developmental stage. These findings reveal the central role of actin dynamics regulation in this process and elucidate a core mechanism underlying axon growth after CNS trauma. Thereby, neurons maintain the capacity to stimulate developmental programs during adult life, expanding their potential for plasticity. Thus, actin turnover is a key process for future regenerative interventions.


Subject(s)
Actins/metabolism , Axons/metabolism , Cofilin 1/genetics , Cofilin 2/genetics , Destrin/genetics , Growth Cones/pathology , Nerve Regeneration/genetics , Spinal Cord Injuries/genetics , Animals , Axons/pathology , Cofilin 1/metabolism , Cofilin 2/metabolism , Destrin/metabolism , Growth Cones/metabolism , Intravital Microscopy , Mice , Microscopy, Confocal , Neurons/metabolism , Neurons/pathology , Rats , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Time-Lapse Imaging
20.
Health Phys ; 116(6): 749-759, 2019 06.
Article in English | MEDLINE | ID: mdl-30913056

ABSTRACT

Gamma radiation causes cell injury and leads to an increased risk of cancer, so it is of practical significance to identify biomarkers for gamma radiation. We used proteomic analysis to identify differentially expressed proteins in liver tissues of C57BL/6J mice treated with gamma radiation from Cs for 360 d. We confirmed obvious pathological changes in mouse liver tissues after irradiation. Compared with the control group, 74 proteins showed a fold change of ≥1.5 in the irradiated groups. We selected 24 proteins for bioinformatics analysis and peptide mass fingerprinting and found that 20 of the identified proteins were meaningful. These proteins were associated with tumorigenesis, tumor suppression, catalysis, cell apoptosis, cytoskeleton, metabolism, gene transcription, T-cell response, and other pathways. We confirmed that both cofilin-1 and destrin were up regulated in the irradiated groups by western blot and real-time polymerase chain reaction. Our findings indicate that cofilin-1 and destrin are sensitive to gamma radiation and may be potential biomarkers for gamma radiation. Whether these proteins are involved in radiation-induced tumorigenesis requires further investigation.


Subject(s)
Biomarkers/metabolism , Cofilin 1/metabolism , Destrin/metabolism , Liver/metabolism , Proteome/analysis , Animals , Biomarkers/analysis , Cofilin 1/genetics , Destrin/genetics , Gamma Rays , Liver/radiation effects , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...