Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Biochem Biophys Res Commun ; 720: 150104, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38749189

ABSTRACT

The T-BOX transcription factor TBX1 is essential for the development of the pharyngeal apparatus and it is haploinsufficient in DiGeorge syndrome (DGS), a developmental anomaly associated with congenital heart disease and other abnormalities. The murine model recapitulates the heart phenotype and showed collagen accumulation. We first used a cellular model to study gene expression during cardiogenic differentiation of WT and Tbx1-/- mouse embryonic stem cells. Then we used a mouse model of DGS to test whether interfering with collagen accumulation using an inhibitor of lysyl hydroxylase would modify the cardiac phenotype of the mutant. We found that loss of Tbx1 in a precardiac differentiation model was associated with up regulation of a subset of ECM-related genes, including several collagen genes. In the in vivo model, early prenatal treatment with Minoxidil, a lysyl hydroxylase inhibitor, ameliorated the cardiac outflow tract septation phenotype in Tbx1 mutant fetuses, but it had no effect on septation in WT fetuses. We conclude that TBX1 suppresses a defined subset of ECM-related genes. This function is critical for OFT septation because the inhibition of collagen cross-linking in the mutant reduces significantly the penetrance of septation defects.


Subject(s)
DiGeorge Syndrome , Disease Models, Animal , Minoxidil , T-Box Domain Proteins , Animals , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , DiGeorge Syndrome/drug therapy , DiGeorge Syndrome/pathology , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Minoxidil/pharmacology , Collagen/metabolism , Cell Differentiation/drug effects
2.
Mov Disord Clin Pract ; 11(7): 808-813, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38661486

ABSTRACT

BACKGROUND: 22q11.2 deletion syndrome (22q11.2DS) has been linked to an increased risk of early-onset Parkinson's disease. However, the pathophysiological mechanisms underlying parkinsonism remain poorly understood. OBJECTIVE: The objective is to investigate salivary total α-synuclein levels in 22q11.2DS patients with and without parkinsonian motor signs. METHODS: This cross-sectional study included 10 patients with 22q11.2DS with parkinsonism (Park+), ten 22q11.2DS patients without parkinsonism (Park-), and 10 age and sex-comparable healthy subjects (HS). Salivary and serum α-synuclein levels were measured using enzyme-linked immunosorbent assay. RESULTS: Salivary total α-synuclein concentration was significantly lower in Park (+) patients than in Park (-) patients and HS (P = 0.007). In addition, salivary α-synuclein showed good accuracy in discriminating Park (+) from Park (-) patients (area under the curve = 0.86) and correlated with motor severity and cognitive impairment. CONCLUSION: This exploratory study suggests that the parkinsonian phenotype of 22q11.2DS is associated with a reduced concentration of monomeric α-synuclein in biological fluids.


Subject(s)
Biomarkers , DiGeorge Syndrome , Parkinsonian Disorders , Saliva , alpha-Synuclein , Humans , Male , Female , Cross-Sectional Studies , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Saliva/chemistry , Saliva/metabolism , Biomarkers/blood , Biomarkers/metabolism , Biomarkers/analysis , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/genetics , Parkinsonian Disorders/diagnosis , Parkinsonian Disorders/blood , Adult , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/blood , Young Adult , Middle Aged , Adolescent
3.
Life Sci Alliance ; 5(12)2022 10 10.
Article in English | MEDLINE | ID: mdl-36216515

ABSTRACT

The loss of a single copy of <i>TBX1</i> accounts for most of the clinical signs and symptoms of 22q11.2 deletion syndrome, a common genetic disorder that is characterized by multiple congenital anomalies and brain-related clinical problems, some of which likely have vascular origins. <i>Tbx1</i> mutant mice have brain vascular anomalies, thus making them a useful model to gain insights into the human disease. Here, we found that the main morphogenetic function of TBX1 in the mouse brain is to suppress vessel branching morphogenesis through regulation of <i>Vegfr3</i> We demonstrate that inactivating <i>Vegfr3</i> in the <i>Tbx1</i> expression domain on a <i>Tbx1</i> mutant background enhances brain vessel branching and filopodia formation, whereas increasing <i>Vegfr3</i> expression in this domain fully rescued these phenotypes. Similar results were obtained using an in vitro model of endothelial tubulogenesis. Overall, the results of this study provide genetic evidence that <i>VEGFR3</i> is a regulator of early vessel branching and filopodia formation in the mouse brain and is a likely mediator of the brain vascular phenotype caused by <i>Tbx1</i> loss of function.


Subject(s)
DiGeorge Syndrome , Animals , Brain/metabolism , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Disease Models, Animal , Humans , Mice , Microvessels/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
4.
Biomed Pharmacother ; 141: 111889, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34323697

ABSTRACT

Long non-coding RNA (lncRNA), a subgroup of ncRNA with a length of more than 200 nt without protein coding function, has been recognized by the academia for its mediating effects of dysregulated expression on the tumorigenesis and development of a variety of tumors. LncRNA DiGeorge syndrome critical region gene 5 (DGCR5), originally found to induce DiGeorge syndrome, has been confirmed to be extremely dysregulated in multiple tumors, which mediates the malignant phenotypes of hepatocellular carcinoma, pancreatic cancer, lung cancer, etc. through the regulation of Wnt/ß-catenin, MEK/ERK1/2 and other cancerous signaling pathways as a molecular sponge. Researches on the cancerous derivation-related pathways involved in DGCR5 can provide potential molecular intervention targets for tumor precision treatment. Moreover, liquid biopsy based on the detection of DGCR5 in body fluids is also expected to provide a non-invasive evaluation method for the early diagnosis and prognostic evaluation of malignant tumors.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , DiGeorge Syndrome/genetics , Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Apoptosis/physiology , Biomarkers, Tumor/biosynthesis , Carcinogenesis/metabolism , Cell Proliferation/physiology , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/metabolism , Humans , Neoplasms/diagnosis , Neoplasms/metabolism , RNA, Long Noncoding/biosynthesis
5.
Hum Genet ; 140(6): 885-896, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33417013

ABSTRACT

The 22q11.2 deletion syndrome (22q11DS) is associated with a wide spectrum of cognitive and psychiatric symptoms. Despite the considerable work performed over the past 20 years, the genetic etiology of the neurodevelopmental phenotype remains speculative. Here, we report de novo heterozygous truncating variants in the HIRA (Histone cell cycle regulation defective, S. Cerevisiae, homolog of, A) gene associated with a neurodevelopmental disorder in two unrelated patients. HIRA is located within the commonly deleted region of the 22q11DS and encodes a histone chaperone that regulates neural progenitor proliferation and neurogenesis, and that belongs to the WD40 Repeat (WDR) protein family involved in brain development and neuronal connectivity. To address the specific impact of HIRA haploinsufficiency in the neurodevelopmental phenotype of 22q11DS, we combined Hira knock-down strategies in developing mouse primary hippocampal neurons, and the direct study of brains from heterozygous Hira+/- mice. Our in vitro analyses revealed that Hira gene is mostly expressed during neuritogenesis and early dendritogenesis stages in mouse total brain and in developing primary hippocampal neurons. Moreover, shRNA knock-down experiments showed that a twofold decrease of endogenous Hira expression level resulted in an impaired dendritic growth and branching in primary developing hippocampal neuronal cultures. In parallel, in vivo analyses demonstrated that Hira+/- mice displayed subtle neuroanatomical defects including a reduced size of the hippocampus, the fornix and the corpus callosum. Our results suggest that HIRA haploinsufficiency would likely contribute to the complex pathophysiology of the neurodevelopmental phenotype of 22q11DS by impairing key processes in neurogenesis and by causing neuroanatomical defects during cerebral development.


Subject(s)
Cell Cycle Proteins/genetics , DiGeorge Syndrome/genetics , Haploinsufficiency , Histone Chaperones/genetics , Neurodevelopmental Disorders/genetics , Neuronal Plasticity/genetics , Neurons/metabolism , Transcription Factors/genetics , Animals , Base Sequence , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Child , Child, Preschool , Corpus Callosum/metabolism , Corpus Callosum/pathology , DiGeorge Syndrome/metabolism , DiGeorge Syndrome/pathology , Female , Fornix, Brain/metabolism , Fornix, Brain/pathology , Gene Expression , Heterozygote , Hippocampus/metabolism , Hippocampus/pathology , Histone Chaperones/antagonists & inhibitors , Histone Chaperones/deficiency , Histone Chaperones/metabolism , Humans , Mice , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Neurogenesis/genetics , Neurons/pathology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/deficiency , Transcription Factors/metabolism
7.
EBioMedicine ; 63: 103138, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33341442

ABSTRACT

BACKGROUND: The chromosome 22q11.2 deletion is an extremely high risk genetic factor for various neuropsychiatric disorders; however, the 22q11.2 deletion-related brain pathology in humans at the cellular and molecular levels remains unclear. METHODS: We generated iPS cells from healthy controls (control group) and patients with 22q11.2 deletion (22DS group), and differentiated them into dopaminergic neurons. Semiquantitative proteomic analysis was performed to compare the two groups. Next, we conducted molecular, cell biological and pharmacological assays. FINDINGS: Semiquantitative proteomic analysis identified 'protein processing in the endoplasmic reticulum (ER)' as the most altered pathway in the 22DS group. In particular, we found a severe defect in protein kinase R-like endoplasmic reticulum kinase (PERK) expression and its activity in the 22DS group. The decreased PERK expression was also shown in the midbrain of a 22q11.2 deletion mouse model. The 22DS group showed characteristic phenotypes, including poor tolerance to ER stress, abnormal F-actin dynamics, and decrease in protein synthesis. Some of phenotypes were rescued by the pharmacological manipulation of PERK activity and phenocopied in PERK-deficient dopaminergic neurons. We lastly showed that DGCR14 was associated with reduction in PERK expression. INTERPRETATION: Our findings led us to conclude that the 22q11.2 deletion causes various vulnerabilities in dopaminergic neurons, dependent on PERK dysfunction. FUNDING: This study was supported by the AMED under grant nos JP20dm0107087, JP20dm0207075, JP20ak0101113, JP20dk0307081, and JP18dm0207004h0005; the MEXT KAKENHI under grant nos. 16K19760, 19K08015, 18H04040, and 18K19511; the Uehara Memorial Foundation under grant no. 201810122; and 2019 iPS Academia Japan Grant.


Subject(s)
Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Dopaminergic Neurons/metabolism , eIF-2 Kinase/metabolism , Actins/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Models, Biological
8.
J Psychopharmacol ; 34(8): 856-863, 2020 08.
Article in English | MEDLINE | ID: mdl-32448020

ABSTRACT

AIMS: 22q11.2 deletion syndrome (22q11.2DS) is associated with impaired cognitive functioning. Glutamatergic pathways have been linked with cognition and are hypothesized to be disrupted in 22q11.2DS patients, possibly 'shifting' the excitatory (glutamate)/inhibitory (GABA) balance. Hence, the glutamate/GABA balance may constitute a target for pharmacological treatment. We aimed to examine alterations of glutamate/GABA metabolites in 22q11.2DS in vivo using riluzole, a compound with glutamate/GABA-modulating action, as pharmacological challenge. METHODS: Seventeen 22q11.2DS patients and 20 matched healthy controls were enrolled in this randomized double-blind placebo-controlled crossover study. Glutamate and glutamine concentrations in the anterior cingulate cortex (ACC) and striatum, as well as ACC GABA concentrations were obtained after placebo and after a single dose of 50 mg riluzole using 7-Tesla magnetic resonance spectroscopy (MRS). Within the 22q11.2DS group, the relationship between metabolite concentrations and cognition was examined. RESULTS: No group differences were found in ACC and striatal metabolite concentrations following placebo. Riluzole numerically decreased ACC (η2= 0.094) but not striatal glutamate concentrations as well as ACC GABA concentrations (η2= 0.176) in all subjects. In both regions, riluzole did not alter glutamine concentration. No interaction effects were found. Although not significant after Bonferroni correction, ACC glutamate concentrations were inversely correlated with cognitive functions in 22q11.2DS patients. DISCUSSION: We did not demonstrate altered ACC and striatal metabolite concentrations in 22q11.2DS. Nevertheless, these results suggest that glutamate and GABA can be modulated with a single dose of riluzole. Possibly, riluzole may have memory-enhancing effects in 22q11.2DS. Future studies should examine the long-term effects of riluzole on cognition.


Subject(s)
Corpus Striatum/drug effects , Corpus Striatum/metabolism , DiGeorge Syndrome/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/metabolism , Riluzole/pharmacology , gamma-Aminobutyric Acid/metabolism , Adult , Attention/physiology , Cognition/physiology , Corpus Striatum/diagnostic imaging , Cross-Over Studies , DiGeorge Syndrome/diagnostic imaging , Double-Blind Method , Excitatory Amino Acid Antagonists/administration & dosage , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy , Male , Memory/physiology , Riluzole/administration & dosage , Young Adult
9.
Cell Rep ; 30(7): 2136-2149.e4, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32075733

ABSTRACT

HIRA is a histone chaperone that deposits the histone variant H3.3 in transcriptionally active genes. In DiGeorge syndromes, a DNA stretch encompassing HIRA is deleted. The syndromes manifest varied abnormalities, including immunodeficiency and thrombocytopenia. HIRA is essential in mice, as total knockout (KO) results in early embryonic death. However, the role of HIRA in hematopoiesis is poorly understood. We investigate hematopoietic cell-specific Hira deletion in mice and show that it dramatically reduces bone marrow hematopoietic stem cells (HSCs), resulting in anemia, thrombocytopenia, and lymphocytopenia. In contrast, fetal hematopoiesis is normal in Hira-KO mice, although fetal HSCs lack the reconstitution capacity. Transcriptome analysis reveals that HIRA is required for expression of many transcription factors and signaling molecules critical for HSCs. ATAC-seq analysis demonstrates that HIRA establishes HSC-specific DNA accessibility, including the SPIB/PU.1 sites. Together, HIRA provides a chromatin environment essential for HSCs, thereby steering their development and survival.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , DiGeorge Syndrome/genetics , Histone Chaperones/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle Proteins/genetics , Chromatin/genetics , DiGeorge Syndrome/metabolism , Female , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Histone Chaperones/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics
10.
Life Sci Alliance ; 3(2)2020 02.
Article in English | MEDLINE | ID: mdl-32041892

ABSTRACT

CRK and CRKL (CRK-like) encode adapter proteins with similar biochemical properties. Here, we show that a 50% reduction of the family-combined dosage generates developmental defects, including aspects of DiGeorge/del22q11 syndrome in mice. Like the mouse homologs of two 22q11.21 genes CRKL and TBX1, Crk and Tbx1 also genetically interact, thus suggesting that pathways shared by the three genes participate in organogenesis affected in the syndrome. We also show that Crk and Crkl are required during mesoderm development, and Crk/Crkl deficiency results in small cell size and abnormal mesenchyme behavior in primary embryonic fibroblasts. Our systems-wide analyses reveal impaired glycolysis, associated with low Hif1a protein levels as well as reduced histone H3K27 acetylation in several key glycolysis genes. Furthermore, Crk/Crkl deficiency sensitizes MEFs to 2-deoxy-D-glucose, a competitive inhibitor of glycolysis, to induce cell blebbing. Activated Rapgef1, a Crk/Crkl-downstream effector, rescues several aspects of the cell phenotype, including proliferation, cell size, focal adhesions, and phosphorylation of p70 S6k1 and ribosomal protein S6. Our investigations demonstrate that Crk/Crkl-shared pathways orchestrate metabolic homeostasis and cell behavior through widespread epigenetic controls.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DiGeorge Syndrome/metabolism , Homeostasis/genetics , Proto-Oncogene Proteins c-crk/metabolism , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Proliferation/genetics , Cell Size , Cells, Cultured , Disease Models, Animal , Female , Fibroblasts/metabolism , Focal Adhesions/metabolism , Glucose/metabolism , Glycolysis/genetics , Male , Mesoderm/growth & development , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation/genetics , Proto-Oncogene Proteins c-crk/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transfection
11.
Psychoneuroendocrinology ; 113: 104540, 2020 03.
Article in English | MEDLINE | ID: mdl-31958652

ABSTRACT

BACKGROUND: 22q11.2 Deletion Syndrome (22q11DS) confers strongly increased genetic risk for multiple psychiatric disorders. Similarly to the general population, rates of psychiatric comorbidity suggest that common disease mechanisms are shared across dimensions of psychopathology. Such pleiotropic disease mechanisms remain however currently unknown. We hypothesized that pituitary dysmaturation, indicative of HPA-axis dysregulation, could correlate to reduced tolerance to daily life stressors and reflect pleiotropic risk factor for psychopathology. Moreover HPA-axis dysregulation could affect atypical cortical and hippocampal development previously described in 22q11DS. METHODS: Pituitary volume, hippocampal volume and cortical thickness measures were obtained from T1-weighted MRI images in a large longitudinal cohort of youth with 22q11DS (115 subjects, 260 scans, age-range = 5.4-31.6) and healthy controls (151 subjects, 280 scans, age-range = 5.1-32.3). We explored effects of pituitary dysmaturation on tolerance to stress, psychopathology and neurodevelopment employing mixed-models linear regression. Associations of pituitary and cortical development were correlated with the expression pattern of glucocorticoid receptor gene NR3C1 obtained from the Allen-Human-Brain-Atlas. RESULTS: We observed aberrant pituitary developmental trajectories in 22q11DS, with volumetric reductions emerging by young-adulthood (P = 0.0006). Longitudinal pituitary decline was associated with to reduced tolerance to stress (P = 0.04), higher overall psychopathology (P = 0.0003) and increased risk of psychiatric comorbidity (P = 0.02). Moreover, pituitary decline correlated with blunted growth of the right hippocampus (P = 0.03) and to increased cortical thinning of mostly temporal and orbitofrontal regions mediated by NR3C1 gene expression. CONCLUSION: Atypical pituitary development could reflect progressive extinction of HPAA due to chronic hyper-activation, in agreement with existing biochemical evidence in 22q11DS. HPAA dysregulation could represent and endophenotype that confers pleiotropic vulnerability to psychopathology and atypical neurodevelopment in 22q11DS.


Subject(s)
DiGeorge Syndrome/pathology , Mental Disorders/metabolism , Pituitary Gland/physiology , Adolescent , Adult , Cerebral Cortex/pathology , Child , Child, Preschool , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Female , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Male , Mental Disorders/pathology , Neurodevelopmental Disorders/pathology , Organ Size , Pituitary Gland/metabolism , Prefrontal Cortex/pathology , Psychopathology/methods , Receptors, Glucocorticoid/genetics , Young Adult
12.
Psychol Med ; 50(5): 799-807, 2020 04.
Article in English | MEDLINE | ID: mdl-30935427

ABSTRACT

BACKGROUND: The 22q11.2 deletion syndrome (22q11DS) is caused by a deletion on chromosome 22 locus q11.2. This copy number variant results in haplo-insufficiency of the catechol-O-methyltransferase (COMT) gene, and is associated with a significant increase in the risk for developing cognitive impairments and psychosis. The COMT gene encodes an enzyme that primarily modulates clearance of dopamine (DA) from the synaptic cleft, especially in the prefrontal cortical areas. Consequently, extracellular DA levels may be increased in prefrontal brain areas in 22q11DS, which may underlie the well-documented susceptibility for cognitive impairments and psychosis in affected individuals. This study aims to examine DA D2/3 receptor binding in frontal brain regions in adults with 22q11DS, as a proxy of frontal DA levels. METHODS: The study was performed in 14 non-psychotic, relatively high functioning adults with 22q11DS and 16 age- and gender-matched healthy controls (HCs), who underwent DA D2/3 receptor [18F]fallypride PET imaging. Frontal binding potential (BPND) was used as the main outcome measure. RESULTS: BPND was significantly lower in adults with 22q11DS compared with HCs in the prefrontal cortex and the anterior cingulate gyrus. After Bonferroni correction significance remained for the anterior cingulate gyrus. There were no between-group differences in BPND in the orbitofrontal cortex and anterior cingulate cortex. CONCLUSIONS: This study is the first to demonstrate lower frontal D2/3 receptor binding in adults with 22q11DS. It suggests that a 22q11.2 deletion affects frontal dopaminergic neurotransmission.


Subject(s)
Benzamides/metabolism , DiGeorge Syndrome/diagnostic imaging , Positron-Emission Tomography , Prefrontal Cortex/diagnostic imaging , Receptors, Dopamine D2/metabolism , Adult , Brain Mapping , Catechol O-Methyltransferase/genetics , DiGeorge Syndrome/metabolism , Female , Humans , Male , Middle Aged , Prefrontal Cortex/metabolism , Psychotic Disorders/complications , Young Adult
13.
Genet Med ; 22(2): 326-335, 2020 02.
Article in English | MEDLINE | ID: mdl-31474763

ABSTRACT

PURPOSE: The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion in humans, with highly variable phenotypic expression. Whereas congenital heart defects, palatal anomalies, immunodeficiency, hypoparathyroidism, and neuropsychiatric conditions are observed in over 50% of patients with 22q11DS, a subset of patients present with additional "atypical" findings such as craniosynostosis and anorectal malformations. Recently, pathogenic variants in the CDC45 (Cell Division Cycle protein 45) gene, located within the LCR22A-LCR22B region of chromosome 22q11.2, were noted to be involved in the pathogenesis of craniosynostosis. METHODS: We performed next-generation sequencing on DNA from 15 patients with 22q11.2DS and atypical phenotypic features such as craniosynostosis, short stature, skeletal differences, and anorectal malformations. RESULTS: We identified four novel rare nonsynonymous variants in CDC45 in 5/15 patients with 22q11.2DS and craniosynostosis and/or other atypical findings. CONCLUSION: This study supports CDC45 as a causative gene in craniosynostosis, as well as a number of other anomalies. We suggest that this association results in a condition independent of Meier-Gorlin syndrome, perhaps representing a novel condition and/or a cause of features associated with Baller-Gerold syndrome. In addition, this work confirms that the phenotypic variability observed in a subset of patients with 22q11.2DS is due to pathogenic variants on the nondeleted chromosome.


Subject(s)
Cell Cycle Proteins/genetics , DiGeorge Syndrome/genetics , Alleles , Cell Cycle Proteins/metabolism , Child , Child, Preschool , Chromosome Deletion , Chromosomes/genetics , Chromosomes, Human, Pair 22/genetics , Craniosynostoses/genetics , DiGeorge Syndrome/metabolism , Female , Heart Defects, Congenital/genetics , Humans , Male , Phenotype , Retrospective Studies
14.
Hum Mol Genet ; 28(22): 3724-3733, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31884517

ABSTRACT

The majority (99%) of individuals with 22q11.2 deletion syndrome (22q11.2DS) have a deletion that is caused by non-allelic homologous recombination between two of four low copy repeat clusters on chromosome 22q11.2 (LCR22s). However, in a small subset of patients, atypical deletions are observed with at least one deletion breakpoint within unique sequence between the LCR22s. The position of the chromosome breakpoints and the mechanisms driving those atypical deletions remain poorly studied. Our large-scale, whole genome sequencing study of >1500 subjects with 22q11.2DS identified six unrelated individuals with atypical deletions of different types. Using a combination of whole genome sequencing data and fiber-fluorescence in situ hybridization, we mapped the rearranged alleles in these subjects. In four of them, the distal breakpoints mapped within one of the LCR22s and we found that the deletions likely occurred by replication-based mechanisms. Interestingly, in two of them, an inversion probably preceded inter-chromosomal 'allelic' homologous recombination between differently oriented LCR22-D alleles. Inversion associated allelic homologous recombination (AHR) may well be a common mechanism driving (atypical) deletions on 22q11.2.


Subject(s)
DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Homologous Recombination/genetics , Adult , Alleles , Chromosome Breakpoints , Chromosome Deletion , Chromosome Inversion/genetics , Chromosome Mapping/methods , Chromosomes/genetics , Chromosomes, Human, Pair 22/genetics , Female , Humans , In Situ Hybridization, Fluorescence/methods , Male , Segmental Duplications, Genomic/genetics , Whole Genome Sequencing/methods
15.
Article in English | MEDLINE | ID: mdl-31836587

ABSTRACT

Callous-unemotional (CU) traits are highly disabling behavioral characteristics, common predictors of delinquency and criminality, and pathognomonic for antisocial personality disorder. They are highly heritable, but their specific molecular genetic causes are unknown. Here, we briefly review the literature on neuropsychiatric correlates of 22q11.2 duplication and describe a newly identified case of a 737-kb microduplication within the low copy repeat (LCR) B-D region, involving a 13-yr-old early adoptee with mild developmental delay and severe, chronic antisocial behavior of early childhood onset. When psychiatric symptoms have been reported in relation to duplications in this specific region, 19% of the reports feature aggression-but never previously CU traits-as a component of the phenotype. We discuss the potential implications of gain of function in this chromosomal region for heritable origins of sociopathy and their possible relation to genetic influences on aggression.


Subject(s)
Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Antisocial Personality Disorder/genetics , Chromosome Duplication/genetics , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Aggression , Attention Deficit and Disruptive Behavior Disorders/genetics , Child , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Female , Humans , Male , Mental Disorders/genetics
16.
Eur Neuropsychopharmacol ; 29(12): 1333-1342, 2019 12.
Article in English | MEDLINE | ID: mdl-31648854

ABSTRACT

Glutamatergic dysregulation is one of the leading theories regarding the pathoaetiolopy of schizophrenia. Meta-analysis of magnetic resonance spectroscopy studies in schizophrenia shows increased levels of glutamate and glutamine (Glx) in the medial frontal cortex and basal ganglia in clinical high-risk groups for psychosis and increased glutamine levels in the thalamus, but it is unclear if this is also the case in people at genetic high risk for psychosis. The aim of this study was to investigate glutamatergic function in the anterior cingulate cortex, striatum and thalamus in carriers of a genetic variant (22q11.2 deletion) associated with a high risk for psychosis. 53 volunteers (23 22q11.2 deletion carriers and 30 controls) underwent proton magnetic resonance spectroscopy imaging and neuropsychological assessments for prodromal psychotic symptoms, schizotypy, anxiety, depression and FSIQ. We did not find any difference between groups in Glx in the anterior cingulate cortex, striatum or thalamus (Glx: t(50)=-1.26, p = 0.21; U = 251, z = -0.7, p = 0.49; U = 316, z= -0.26, p = 0.79, respectively). No correlation was detected between Glx levels in any region and symptomatology or FSIQ. Our findings indicate that glutamatergic function is not altered in people at genetic high risk of psychosis due to the 22q11.2 deletion, which could suggest that this is not the mechanism underlying psychosis risk in 22q11.2 deletion carriers.


Subject(s)
DiGeorge Syndrome/genetics , Genetic Predisposition to Disease/genetics , Glutamic Acid/genetics , Magnetic Resonance Spectroscopy/methods , Psychotic Disorders/genetics , Adolescent , Adult , Corpus Striatum/metabolism , Cross-Sectional Studies , DiGeorge Syndrome/metabolism , Female , Glutamic Acid/metabolism , Glutamine/genetics , Glutamine/metabolism , Gyrus Cinguli/metabolism , Humans , Male , Psychotic Disorders/metabolism , Risk Factors , Thalamus/metabolism , Young Adult
17.
Mol Genet Genomic Med ; 7(6): e666, 2019 06.
Article in English | MEDLINE | ID: mdl-31044557

ABSTRACT

BACKGROUND: The bladder exstrophy-epispadias complex (BEEC) is a congenital malformation of the bladder and urethra. The underlying causes of this malformation are still largely unknown; however, aside from environment, genetics is thought to play an essential role. The recurrent 22q11.2 microduplication is the most persistently detected genetic aberration found in BEEC cases. METHODS: We performed array comparative genomic hybridization (array-CGH) analysis of 76 Swedish BEEC patients. Statistical analysis was performed on current dataset pooled with previously published data on the 22q11.2 microduplication in BEEC patients. We performed massive parallel sequencing (MPS) of the 22q11.2 region in 20 BEEC patients without the 22q11.2 microduplication followed by functional studies. RESULTS: We identified three additional cases with the 22q11.2 microduplication. Pooling data from this study with previously published reports showed a statistically significant enrichment of the 22q11.2 microduplication in BEEC patients (2.61% in cases vs. 0.08% in controls; OR = 32.6; p = 8.7 × 10-4 ). MPS of the 22q11.2 region in 20 BEEC patients without the 22q11.2 microduplication identified a novel variant in LZTR1 (p.Ser698Phe) in one patient. Functional evaluation of the LZTR1 p.Ser698Phe variant in live NIH 3T3 cells showed that the concentration and cytoplasmic mobility differ between the Lztr1wt and Lztr1mut , indicating a potential functional effect of the LZTR1mut . CONCLUSION: Our study further emphasizes the involvement of the 22q11.2 region in BEEC development and highlights LZTR1 as a candidate gene underlying the urogenital malformation.


Subject(s)
Abnormalities, Multiple/genetics , Bladder Exstrophy/genetics , Chromosome Duplication/genetics , DiGeorge Syndrome/genetics , Abnormalities, Multiple/metabolism , Adult , Animals , Bladder Exstrophy/metabolism , Bladder Exstrophy/physiopathology , Chromosome Structures/genetics , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Comparative Genomic Hybridization/methods , DiGeorge Syndrome/metabolism , Epispadias/genetics , Epispadias/physiopathology , Female , Humans , Male , Mice , NIH 3T3 Cells , Risk Factors , Sweden , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Psychoneuroendocrinology ; 106: 85-94, 2019 08.
Article in English | MEDLINE | ID: mdl-30959234

ABSTRACT

BACKGROUND: 22q11.2 deletion syndrome (22q11DS) is a genetic disorder associated with neurodevelopmental, anxiety and mood disorders, as well as an increased risk for developing psychosis. Cortisol levels and stress reactivity reflect hypothalamic-pituitary-adrenal (HPA)-axis activity, and are believed to be altered in individuals that often experience daily-life stress, depression, and psychotic symptoms. However, it is unknown whether individuals with 22q11DS display an altered stress reactivity. METHODS: We included 27 adults with 22q11DS (mean age: 34.1 years, 67% female) and 24 age and sex-matched healthy controls (HC; mean age: 39.9 years, 71% female) into an experience sampling study. Throughout 6 consecutive days, we measured participants' subjective stress related to current activity and at the same time collected salivary cortisol samples. Multilevel regression models were used to analyze cortisol reactivity to activity-related stress. RESULTS: Diurnal cortisol levels were significantly lower in the 22q11DS group compared to HCs (B=-1.03, p < 0.001). 22q11DS adults displayed significantly attenuated cortisol reactivity to activity-related stress compared to HCs (B = -0.04, p = 0.026). Post-hoc exploratory analysis revealed that these results were independent from 22q11DS psychiatric diagnosis or medication use. CONCLUSION: These results indicate that adults with 22q11DS have lower cortisol levels and attenuated cortisol response to daily stress, possibly resulting from an increased sensitization of the HPA-axis. This suggests that alterations in HPA-axis functioning, previously reported in several psychiatric disorders including post-traumatic stress disorder (PTSD), psychotic disorder, and mood disorder, also appear to be present in adults with 22q11DS.


Subject(s)
DiGeorge Syndrome/metabolism , Hydrocortisone/metabolism , Stress, Psychological/genetics , Adult , Anxiety , Case-Control Studies , Depression , DiGeorge Syndrome/physiopathology , Female , Humans , Hydrocortisone/analysis , Hypothalamo-Hypophyseal System/chemistry , Hypothalamo-Hypophyseal System/metabolism , Male , Pituitary-Adrenal System/chemistry , Pituitary-Adrenal System/metabolism , Saliva/chemistry , Stress, Psychological/physiopathology
19.
PLoS One ; 13(11): e0207251, 2018.
Article in English | MEDLINE | ID: mdl-30408103

ABSTRACT

The CXCL12-CXCR4 pathway has crucial roles in stem cell homing and maintenance, neuronal guidance, cancer progression, inflammation, remote-conditioning, cell migration and development. Recently, work in chick suggested that signalling via CXCR4 in neural crest cells (NCCs) has a role in the 22q11.2 deletion syndrome (22q11.2DS), a disorder where haploinsufficiency of the transcription factor TBX1 is responsible for the major structural defects. We tested this idea in mouse models. Our analysis of genes with altered expression in Tbx1 mutant mouse models showed down-regulation of Cxcl12 in pharyngeal surface ectoderm and rostral mesoderm, both tissues with the potential to signal to migrating NCCs. Conditional mutagenesis of Tbx1 in the pharyngeal surface ectoderm is associated with hypo/aplasia of the 4th pharyngeal arch artery (PAA) and interruption of the aortic arch type B (IAA-B), the cardiovascular defect most typical of 22q11.2DS. We therefore analysed constitutive mouse mutants of the ligand (CXCL12) and receptor (CXCR4) components of the pathway, in addition to ectodermal conditionals of Cxcl12 and NCC conditionals of Cxcr4. However, none of these typical 22q11.2DS features were detected in constitutively or conditionally mutant embryos. Instead, duplicated carotid arteries were observed, a phenotype recapitulated in Tie-2Cre (endothelial) conditional knock outs of Cxcr4. Previous studies have demonstrated genetic interaction between signalling pathways and Tbx1 haploinsufficiency e.g. FGF, WNT, SMAD-dependent. We therefore tested for possible epistasis between Tbx1 and the CXCL12 signalling axis by examining Tbx1 and Cxcl12 double heterozygotes as well as Tbx1/Cxcl12/Cxcr4 triple heterozygotes, but failed to identify any exacerbation of the Tbx1 haploinsufficient arch artery phenotype. We conclude that CXCL12 signalling via NCC/CXCR4 has no major role in the genesis of the Tbx1 loss of function phenotype. Instead, the pathway has a distinct effect on remodelling of head vessels and interventricular septation mediated via CXCL12 signalling from the pharyngeal surface ectoderm and second heart field to endothelial cells.


Subject(s)
Cardiovascular System/growth & development , Cardiovascular System/metabolism , Chemokine CXCL12/deficiency , Receptors, CXCR4/deficiency , T-Box Domain Proteins/deficiency , Animals , Aorta, Thoracic/abnormalities , Aorta, Thoracic/embryology , Aorta, Thoracic/metabolism , Cardiovascular Abnormalities/embryology , Cardiovascular Abnormalities/genetics , Cardiovascular Abnormalities/metabolism , Cardiovascular System/embryology , Chemokine CXCL12/genetics , DiGeorge Syndrome/enzymology , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Disease Models, Animal , Epistasis, Genetic , Female , Haploinsufficiency , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neural Crest/metabolism , Pregnancy , Receptors, CXCR4/genetics , Signal Transduction/genetics , T-Box Domain Proteins/genetics
20.
ACS Chem Neurosci ; 9(9): 2101-2113, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30044078

ABSTRACT

The potential role in neuropsychiatric disease risk arising from alterations and derangements of endogenous small-molecule metabolites remains understudied. Alterations of endogenous metabolite concentrations can arise in multiple ways. Marked derangements of single endogenous small-molecule metabolites are found in a large group of rare genetic human diseases termed "inborn errors of metabolism", many of which are associated with prominent neuropsychiatric symptomology. Whether such metabolites act neuroactively to directly lead to distinct neural dysfunction has been frequently hypothesized but rarely demonstrated unequivocally. Here we discuss this disease concept in the context of our recent findings demonstrating that neural dysfunction arising from accumulation of the schizophrenia-associated metabolite l-proline is due to its structural mimicry of the neurotransmitter GABA that leads to alterations in GABA-ergic short-term synaptic plasticity. For cases in which a similar direct action upon neurotransmitter binding sites is suspected, we lay out a systematic approach that can be extended to assessing the potential disruptive action of such candidate disease metabolites. To address the potentially important and broader role in neuropsychiatric disease, we also consider whether the more subtle yet more ubiquitous variations in endogenous metabolites arising from natural allelic variation may likewise contribute to disease risk but in a more complex and nuanced manner.


Subject(s)
Metabolism, Inborn Errors/metabolism , Proline/metabolism , gamma-Aminobutyric Acid/metabolism , DiGeorge Syndrome/metabolism , DiGeorge Syndrome/psychology , Humans , Metabolism, Inborn Errors/psychology , Metabolomics , Molecular Mimicry , Neuronal Plasticity , Neurotransmitter Agents , Proline Oxidase/metabolism , Schizophrenia/metabolism , Schizophrenic Psychology
SELECTION OF CITATIONS
SEARCH DETAIL