Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.735
Filter
1.
Cardiovasc Diabetol ; 23(1): 159, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715052

ABSTRACT

BACKGROUND: In observational and experimental studies, diabetes has been reported as a protective factor for aortic dissection. 3-Hydroxybutyrate, a key constituent of ketone bodies, has been found to favor improvements in cardiovascular disease. However, whether the protective effect of diabetes on aortic dissection is mediated by 3-hydroxybutyrate is unclear. We aimed to investigate the causal effects of diabetes on the risk of aortic dissection and the mediating role of 3-hydroxybutyrate in them through two-step Mendelian randomization. MATERIALS AND METHODS: We performed a two-step Mendelian randomization to investigate the causal connections between diabetes, 3-hydroxybutyrate, and aortic dissection and calculate the mediating effect of 3-hydroxybutyrate. Publicly accessible data for Type 1 diabetes, Type 2 diabetes, dissection of aorta and 3-hydroxybutyrate were obtained from genome-wide association studies. The association between Type 1 diabetes and dissection of aorta, the association between Type 2 diabetes and dissection of aorta, and mediation effect of 3-hydroxybutyrate were carried out separately. RESULTS: The IVW method showed that Type 1 diabetes was negatively associated with the risk of aortic dissection (OR 0.912, 95% CI 0.836-0.995), The weighted median, simple mode and weighted mode method showed consistent results. The mediated proportion of 3-hydroxybutyrate on the relationship between Type 1 diabetes and dissection of aorta was 24.80% (95% CI 5.12-44.47%). The IVW method showed that Type 2 diabetes was negatively associated with the risk of aortic dissection (OR 0.763, 95% CI 0.607-0.960), The weighted median, simple mode and weighted mode method showed consistent results. 3-Hydroxybutyrate does not have causal mediation effect on the relationship between Type 2 diabetes and dissection of aorta. CONCLUSION: Mendelian randomization study revealed diabetes as a protective factor for dissection of aorta. The protective effect of type 1 diabetes on aortic dissection was partially mediated by 3-hydroxybutyrate, but type 2 diabetes was not 3-hydroxybutyrate mediated.


Subject(s)
3-Hydroxybutyric Acid , Aortic Aneurysm , Aortic Dissection , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Aortic Dissection/genetics , Aortic Dissection/epidemiology , Aortic Dissection/etiology , 3-Hydroxybutyric Acid/blood , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Risk Factors , Aortic Aneurysm/genetics , Aortic Aneurysm/epidemiology , Aortic Aneurysm/etiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Risk Assessment , Protective Factors , Phenotype , Biomarkers/blood , Mediation Analysis
2.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715048

ABSTRACT

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Subject(s)
Adipose Tissue , DNA Methylation , Diabetes, Gestational , Epigenesis, Genetic , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Diabetes, Gestational/genetics , Epigenesis, Genetic/genetics , Adult , DNA Methylation/genetics , Muscle, Skeletal/metabolism , Adolescent , Adipose Tissue/metabolism , Male , Prenatal Exposure Delayed Effects/genetics , Child , Diabetes Mellitus, Type 1/genetics , RNA, Untranslated/genetics , RNA, Untranslated/blood , RNA, Long Noncoding/genetics , CpG Islands/genetics
3.
Medicine (Baltimore) ; 103(19): e38055, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728465

ABSTRACT

Multiple studies have indicated a potential correlation between immune-mediated inflammatory diseases (IMIDs) and Frozen shoulder (FS). To explore the genetic causal relationship between IMIDs and FS using 2-sample Mendelian randomization (MR) analysis. Genome-wide association study (GWAS) summary data for FS were obtained from Green's study, while data for 10 IMIDs were sourced from the FinnGen Consortium. The MR analysis was performed using inverse variance weighting, MR Egger, and weighted median methods. IVW, as the primary MR analysis technique, was complemented with other sensitivity analyses to validate the robustness of the results. Additionally, reverse MR analysis was further conducted to investigate the presence of reverse causal relationships. In the forward MR analysis, genetically determined 4 IMIDs are causally associated with FS: rheumatoid arthritis (odds ratio [OR] (95% confidence interval [95% CI]) = 1.05 [1.02-1.09], P < .01); type 1 diabetes (OR [95% CI] = 1.06 [1.03-1.09], P < .01); hypothyroidism (OR [95% CI] = 1.07 [1.01-1.14], P = .02); and Celiac disease (OR [95% CI] = 1.02 [1.01-1.04], P = .01). However, no causal relationship was found between 6 IMIDs (autoimmune hyperthyroidism, Crohn disease, ulcerative colitis, psoriasis, sicca syndrome and systemic lupus erythematosus) and FS. Sensitivity analyses did not detect any heterogeneity or horizontal pleiotropy. In the reverse MR analysis, no causal relationship was observed between FS and IMIDs. In conclusion, this MR study suggests a potential causal relationship between rheumatoid arthritis, type 1 diabetes, hypothyroidism, and Celiac disease in the onset and development of FS. Nevertheless, more basic and clinical research will be needed in the future to support our findings.


Subject(s)
Bursitis , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Bursitis/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Genetic Predisposition to Disease , Hypothyroidism/genetics , Polymorphism, Single Nucleotide
4.
Front Endocrinol (Lausanne) ; 15: 1362584, 2024.
Article in English | MEDLINE | ID: mdl-38774228

ABSTRACT

Background: Previous observational studies have demonstrated a link between diabetes mellitus(DM) and primary biliary cholangitis (PBC). Nevertheless, since these relationships might be confused, whether there is any causal connection or in which direction it exists is unclear. Our investigation aimed to identify the causal associations between DM and PBC. Methods: We acquired genome-wide association study (GWAS) datasets for PBC, Type 1 diabetes(T1DM), and Type 2 diabetes(T2DM) from published GWASs. Inverse variance-weighted (IVW), MR-Egger, weighted median (WM), Simple mode, and weighted mode methods were used to determine the causal relationships between DM(T1DM or T2DM) and PBC. Sensitivity analyses were also carried out to ensure the results were robust. To determine the causal relationship between PBC and DM(T1DM or T2DM), we also used reverse MR analysis. Results: T1DM was associated with a higher risk of PBC (OR 1.1525; 95% CI 1.0612-1.2517; p = 0.0007) in the IVW method, but no evidence of a causal effect T2DM on PBC was found (OR 0.9905; 95% CI 0.8446-1.1616; p = 0.9071) in IVW. Results of the reverse MR analysis suggested genetic susceptibility that PBC was associated with an increased risk of T1DM (IVW: OR 1.1991; 95% CI 1.12-1.2838; p = 1.81E-07), but no evidence of a causal effect PBC on T2DM was found (IVW: OR 1.0101; 95% CI 0.9892-1.0315; p = 0.3420). Conclusion: The current study indicated that T1DM increased the risk of developing PBC and vice versa. There was no proof of a causal connection between PBC probability and T2DM. Our results require confirmation through additional replication in larger populations.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Liver Cirrhosis, Biliary , Mendelian Randomization Analysis , Humans , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/epidemiology , Liver Cirrhosis, Biliary/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Risk Factors
6.
J Diabetes Res ; 2024: 1610688, 2024.
Article in English | MEDLINE | ID: mdl-38751603

ABSTRACT

Objective: This Mendelian randomization (MR) analysis aims to investigate the causal relationship between type 1 diabetes (T1D) and osteoporosis (OP). Methods: Single nucleotide polymorphisms (SNPs) associated with T1D were selected from the summary statistics of the genome-wide association study (GWAS) in European ancestry as instrumental variables (IVs) for univariable MR (UVMR) to explore the causal relationship between T1D and OP. Inverse variance weighting (IVW) was the primary method used to assess possible causality between T1D and OP. MR-PRESSO and MR-Egger intercepts were used to assess the horizontal pleiotropy of the IVs, and Q tests and the "leave-one-out" method were used to test for heterogeneity of MR results. Multivariable MR (MVMR) analysis was used to account for potential confounders such as smoking, obesity, drinking, and serum 25-hydroxyvitamin D (25OHD) concentrations. Result: Inverse variance weighted estimates suggest T1D may increase risk of OP (UVMR: OR = 1.06, 95% CI: 1.02-1.10, p = 0.002) (MVMR: OR = 1.50, 95% CI: 1.07-1.90, p < 0.001). Conclusion: Our findings suggest that T1D can increase the risk of OP.


Subject(s)
Diabetes Mellitus, Type 1 , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoporosis , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/epidemiology , Osteoporosis/genetics , Osteoporosis/epidemiology , Risk Factors , Genetic Predisposition to Disease , Vitamin D/blood , Vitamin D/analogs & derivatives
7.
Sci Adv ; 10(20): eadn2136, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758799

ABSTRACT

Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic ß cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional ß cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.


Subject(s)
Diabetes Mellitus, Type 1 , Disease Progression , Monocytes , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/genetics , Monocytes/metabolism , Monocytes/immunology , Male , Female , Adolescent , Child , Adult , Cytokines/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Young Adult , Case-Control Studies
8.
Sci Rep ; 14(1): 8315, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594375

ABSTRACT

Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease characterized by autoantibodies against insulin producing pancreatic beta cells and initial lack of need for insulin treatment. The aim of the present study was to investigate if individuals with LADA have an altered gut microbiota relative to non-diabetic control subjects, individuals with type 1 diabetes (T1D), and individuals with type 2 diabetes (T2D). Bacterial community profiling was performed with primers targeting the variable region 4 of the 16S rRNA gene and sequenced. Amplicon sequence variants (ASVs) were generated with DADA2 and annotated to the SILVA database. The gut virome was sequenced, using a viral particle enrichment and metagenomics approach, assembled, and quantified to describe the composition of the viral community. Comparison of the bacterial alpha- and beta-diversity measures revealed that the gut bacteriome of individuals with LADA resembled that of individuals with T2D. Yet, specific genera were found to differ in abundance in individuals with LADA compared with T1D and T2D, indicating that LADA has unique taxonomical features. The virome composition reflected the stability of the most dominant order Caudovirales and the families Siphoviridae, Podoviridae, and Inoviridae, and the dominant family Microviridae. Further studies are needed to confirm these findings.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glucose Intolerance , Latent Autoimmune Diabetes in Adults , Adult , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Latent Autoimmune Diabetes in Adults/genetics , Gastrointestinal Microbiome/genetics , Adenosine Deaminase , RNA, Ribosomal, 16S/genetics , Intercellular Signaling Peptides and Proteins , Insulin
9.
Exp Gerontol ; 191: 112434, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636571

ABSTRACT

BACKGROUND: Observational evidence suggests that type 1 diabetes mellitus (T1DM) is associated with the risk of osteoporosis (OP). Nevertheless, it is not apparent whether these correlations indicate a causal relationship. To elucidate the causal relationship, a two-sample Mendelian randomization (MR) analysis was performed. METHODS: T1DM data was obtained from the large genome-wide association study (GWAS), in which 6683 cases and 12,173 controls from 12 European cohorts were involved. Bone mineral density (BMD) samples at four sites were extracted from the GEnetic Factors for OSteoporosis (GEFOS) consortium, including forearm (FA) (n = 8,143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498), and heel (eBMD) (n = 426,824). The former three samples were from mixed populations and the last one was from European. Inverse variance weighting, MR-Egger, and weighted median tests were used to test the causal relationship between T1DM and OP. A series of sensitivity analyses were then conducted to verify the robustness of the results. RESULTS: Twenty-three independent SNPs were associated with FN-BMD and LS-BMD, twenty-seven were associated with FA-BMD, and thirty-one were associated with eBMD. Inverse variance-weighted estimates indicated a causal effect of T1DM on FN-BMD (odds ratio (OR) =1.033, 95 % confidence interval (CI): 1.012-1.054, p = 0.002) and LS-BMD (OR = 1.032, 95 % CI: 1.005-1.060, p = 0.022) on OP risk. Other MR methods, including weighted median and MR-Egger, calculated consistent trends. While no significant causation was found between T1DM and the other sites (FA-BMD: OR = 1.008, 95 % CI: 0.975-1.043, p = 0.632; eBMD: OR = 0.993, 95 % CI: 0.985-1.001, p = 0.106). No significant heterogeneity (except for eBMD) or horizontal pleiotropy was found for instrumental variables, suggesting these results were reliable and robust. CONCLUSIONS: This study shows a causal relationship between T1DM and the risk of some sites of OP (FN-BMD, LS-BMD), allowing for continued research to discover the clinical and experimental mechanisms of T1DM and OP. It also contributes to the recommendation if patients with T1DM need targeted care to promote bone health and timely prevention of osteoporosis.


Subject(s)
Bone Density , Diabetes Mellitus, Type 1 , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoporosis , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Osteoporosis/genetics , Bone Density/genetics , Risk Factors , Female , Male , Femur Neck/diagnostic imaging , Genetic Predisposition to Disease , Lumbar Vertebrae , Middle Aged , Case-Control Studies , Adult , Forearm
10.
Genome Med ; 16(1): 65, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685057

ABSTRACT

Using computational tools, bulk transcriptomics can be deconvoluted to estimate the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, ignoring person-to-person heterogeneity. Here, we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. Simulation studies demonstrate reduced bias compared with existing methods. Real data analyses on longitudinal consortia show disparities in cell type proportions are associated with several disease phenotypes in Type 1 diabetes and Parkinson's disease. imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/ .


Subject(s)
Algorithms , Parkinson Disease , Humans , Parkinson Disease/genetics , Precision Medicine/methods , Software , Diabetes Mellitus, Type 1/genetics , Gene Expression Profiling/methods , Computational Biology/methods , Transcriptome
11.
Diabetes Res Clin Pract ; 211: 111683, 2024 May.
Article in English | MEDLINE | ID: mdl-38663549

ABSTRACT

BACKGROUND AND AIMS: Because FTO gene is connected with the risk of obesity, cardiovascular disease and hypertension, as well as type 2 diabetes, we hypothesize that the rs9939609 FTO polymorphism may affect type 1 diabetes (T1D) complications and comorbidities. METHODS: We have investigated the associations of the FTO gene variant with the T1D and its complications and comorbidities, as well as the serum levels of pro- and anti-inflammatory markers and lipid profiles. RESULTS: The key results of our study are as follows: (1) the rs9939609 FTO polymorphism does not predispose individuals to T1D; (2) AA genotype is associated with an increased risk of overweight and obesity, retinopathy, hypertension, dyslipidemia and celiac disease; (3) AT genotype is associated with a decreased risk of retinopathy and celiac disease, whereas TT genotype is connected with decreased risk of dyslipidemia; (4) the FTO rs9939609 polymorphism affects the inflammatory status as well as lipid profile in T1D patients. CONCLUSIONS: Our results, for the first time, comprehensively indicate that the rs9939609 FTO polymorphism could be considered a genetic marker for increased susceptibility to T1D complications and comorbidities as well as suggests importance of FTO-mediated pathways in their etiology.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Diabetes Mellitus, Type 1 , Obesity , Humans , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Diabetes Mellitus, Type 1/genetics , Female , Male , Adult , Obesity/genetics , Proteins/genetics , Dyslipidemias/genetics , Dyslipidemias/epidemiology , Comorbidity , Middle Aged , Genetic Predisposition to Disease , Genotype , Celiac Disease/genetics , Celiac Disease/epidemiology , Hypertension/genetics , Hypertension/epidemiology , Diabetic Retinopathy/genetics , Diabetic Retinopathy/epidemiology , Polymorphism, Single Nucleotide , Young Adult
12.
Diabetes Metab Res Rev ; 40(4): e3793, 2024 May.
Article in English | MEDLINE | ID: mdl-38661109

ABSTRACT

AIMS: The aims of the present study were to assess the effects of lipid-lowering drugs [HMG-CoA reductase inhibitors, proprotein convertase subtilisin/kexin type 9 inhibitors, and Niemann-Pick C1-Like 1 (NPC1L1) inhibitors] on novel subtypes of adult-onset diabetes through a Mendelian randomisation study. MATERIALS AND METHODS: We first inferred causal associations between lipid-related traits [including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), apolipoproteins A-I, and apolipoproteins B] and novel subtypes of adult-onset diabetes. The expression quantitative trait loci of drug target genes for three classes of lipid-lowering drugs, as well as genetic variants within or nearby drug target genes associated with LDL-C, were then utilised as proxies for the exposure of lipid-lowering drugs. Mendelian randomisation analysis was performed using summary data from genome-wide association studies of LDL-C, severe autoimmune diabetes, severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes. RESULTS: There was an association between HMGCR-mediated LDL-C and the risk of SIRD [odds ratio (OR) = 0.305, 95% confidence interval (CI) = 0.129-0.723; p = 0.007], and there was an association of PCSK9-mediated LDL-C with the risk of SIDD (OR = 0.253, 95% CI = 0.120-0.532; p < 0.001) and MOD (OR = 0.345, 95% CI = 0.171-0.696; p = 0.003). Moreover, NPC1L1-mediated LDL-C (OR = 0.109, 95% CI = 0.019-0.613; p = 0.012) and the increased expression of NPC1L1 gene in blood (OR = 0.727, 95% CI = 0.541-0.977; p = 0.034) both showed a significant association with SIRD. These results were further confirmed by sensitivity analyses. CONCLUSIONS: In summary, the different lipid-lowering medications have a specific effect on the increased risk of different novel subtypes of adult-onset diabetes.


Subject(s)
Genome-Wide Association Study , Hypolipidemic Agents , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Adult , Hypolipidemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Membrane Transport Proteins/genetics , Age of Onset , Prognosis , PCSK9 Inhibitors , Male , Quantitative Trait Loci , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/genetics , Female , Biomarkers/analysis , Polymorphism, Single Nucleotide
13.
Front Immunol ; 15: 1384406, 2024.
Article in English | MEDLINE | ID: mdl-38596681

ABSTRACT

Introduction: The autoimmune response in type 1 diabetes (T1D), in which the beta cells expressing aberrant or modified proteins are killed, resembles an effective antitumor response. Defective ribosomal protein products in tumors are targets of the anti-tumor immune response that is unleashed by immune checkpoint inhibitor (ICI) treatment in cancer patients. We recently described a defective ribosomal product of the insulin gene (INS-DRiP) that is expressed in stressed beta cells and targeted by diabetogenic T cells. T1D patient-derived INS-DRiP specific T cells can kill beta cells and are present in the insulitic lesion. T cells reactive to INS-DRiP epitopes are part of the normal T cell repertoire and are believed to be kept in check by immune regulation without causing autoimmunity. Method: T cell autoreactivity was tested using a combinatorial HLA multimer technology measuring a range of epitopes of islet autoantigens and neoantigen INS-DRiP. INS-DRiP expression in human pancreas and insulinoma sections was tested by immunohistochemistry. Results: Here we report the induction of islet autoimmunity to INS-DRiP and diabetes after ICI treatment and successful tumor remission. Following ICI treatment, T cells of the cancer patient were primed against INS-DRiP among other diabetogenic antigens, while there was no sign of autoimmunity to this neoantigen before ICI treatment. Next, we demonstrated the expression of INS-DRiP as neoantigen in both pancreatic islets and insulinoma by staining with a monoclonal antibody to INS-DRiP. Discussion: These results bridge cancer and T1D as two sides of the same coin and point to neoantigen expression in normal islets and insulinoma that may serve as target of both islet autoimmunity and tumor-related autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Insulinoma , Pancreatic Neoplasms , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/therapy , Autoimmunity/genetics , Insulinoma/genetics , Insulinoma/therapy , Insulinoma/complications , Autoantigens , Insulin , Epitopes , Immunotherapy/methods
15.
Lancet Diabetes Endocrinol ; 12(5): 320-329, 2024 May.
Article in English | MEDLINE | ID: mdl-38561011

ABSTRACT

BACKGROUND: Type 1 diabetes in children is known to be highly heritable, but much less is known about the heritability of adult-onset type 1 diabetes. Thus, our objective was to compare the familial aggregation and heritability of type 1 diabetes in adults and children. METHODS: This Swedish nationwide register-based cohort study included individuals born from Jan 1, 1982, to Dec 31, 2010, identified through the Medical Birth Register who were linked to their parents, full siblings, half siblings, and cousins through the Multi-Generation Register (MGR). We excluded multiple births, deaths within the first month of life, individuals who could not be linked to MGR, or individuals with contradictory information on sex. Information on diagnoses of type 1 diabetes was retrieved by linkages to the National Diabetes Register and National Patient Register (1982-2020). Individuals with inconsistent records of diabetes type were excluded. We estimated the cumulative incidence and hazard ratios (HRs) of type 1 diabetes in adults (aged 19-30 years) and children (aged 0-18 years) by family history of type 1 diabetes and the heritability of adult-onset and childhood-onset type 1 diabetes based on tetrachoric correlations, using sibling pairs. FINDINGS: 2 943 832 individuals were born in Sweden during the study period, 2 832 755 individuals were included in the analysis of childhood-onset type 1 diabetes and 1 805 826 individuals were included in the analysis of adult-onset type 1 diabetes. 3240 cases of adult-onset type 1 diabetes (median onset age 23·4 years [IQR 21·1-26·2]; 1936 [59·7%] male and 1304 [40·2%] female) and 17 914 cases of childhood-onset type 1 diabetes (median onset age 9·8 years [6·2-13·3]; 9819 [54·8%] male and 8095 [45·2%] female) developed during follow-up. Having a first-degree relative with type 1 diabetes conferred an HR of 7·21 (95% CI 6·28-8·28) for adult-onset type 1 diabetes and 9·92 (9·38-10·50) for childhood-onset type 1 diabetes. The HR of developing type 1 diabetes before the age 30 years was smaller if a first-degree relative developed type 1 diabetes during adulthood (6·68 [6·04-7·39]) rather than during childhood (10·54 [9·92-11·19]). Similar findings were observed for type 1 diabetes in other relatives. Heritability was lower for adult-onset type 1 diabetes (0·56 [0·45-0·66]) than childhood-onset type 1 diabetes (0·81 [0·77-0·85]). INTERPRETATION: Adult-onset type 1 diabetes seems to have weaker familial aggregation and lower heritability than childhood-onset type 1 diabetes. This finding suggests a larger contribution of environmental factors to the development of type 1 diabetes in adults than in children and highlights the need to identify and intervene on such factors. FUNDING: Swedish Research Council, the Swedish Research Council for Health, Working Life and Welfare, Swedish Diabetes Foundation, and the China Scholarship Council.


Subject(s)
Age of Onset , Diabetes Mellitus, Type 1 , Registries , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/epidemiology , Sweden/epidemiology , Adult , Male , Child , Female , Adolescent , Child, Preschool , Young Adult , Cohort Studies , Infant , Infant, Newborn , Genetic Predisposition to Disease , Incidence
16.
HLA ; 103(4): e15446, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575369

ABSTRACT

This family-based study was conducted in a group of Iranians with Type 1 diabetes (T1D) to investigate the transmission from parents of risk and non-risk HLA alleles and haplotypes, and to estimate the genetic risk score for this disease within this population. A total of 240 T1D subjects including 111 parent-child trios (111 children with T1D, 133 siblings, and 222 parents) and 330 ethnically matched healthy individuals were recruited. High-resolution HLA typing for DRB1/DQB1 loci was performed for all study subjects (n = 925) using polymerase chain reaction-sequence-specific oligonucleotide probe method. The highest predisposing effect on developing T1D was conferred by the following haplotypes both in all subjects and in probands compared to controls: DRB1*04:05-DQB1*03:02 (Pc = 2.97e-06 and Pc = 6.04e-10, respectively), DRB1*04:02-DQB1*03:02 (Pc = 5.94e-17 and Pc = 3.86e-09, respectively), and DRB1*03:01-DQB1*02:01 (Pc = 8.26e-29 and Pc = 6.56e-16, respectively). Conversely, the major protective haplotypes included DRB1*13:01-DQB1*06:03 (Pc = 6.99e-08), DRB1*15:01-DQB1*06:02 (Pc = 2.97e-06) in the cases versus controls. Also, DRB1*03:01-DQB1*02:01/DRB1*04:02|05-DQB1*03:02 and DRB1*03:01-DQB1*02:01/DRB1*03:01-DQB1*02:01 diplotypes conferred the highest predisposing effect in the cases (Pc = 8.65e-17 and Pc = 6.26e-08, respectively) and in probands (Pc = 5.4e-15 and Pc = 0.001, respectively) compared to controls. Transmission disequilibrium test showed that the highest risk was conferred by DRB1*04:02-DQB1*03:02 (Pc = 3.26e-05) and DRB1*03:01-DQB1*02:01 (Pc = 1.78e-12) haplotypes and the highest protection by DRB1*14:01-DQB1*05:03 (Pc = 8.66e-05), DRB1*15:01-DQB1*06:02 (Pc = 0.002), and DRB1*11:01-DQB1*03:01 (Pc = 0.0003) haplotypes. Based on logistic regression analysis, carriage of risk haplotypes increased the risk of T1D development 24.5 times in the Iranian population (p = 5.61e-13). Also, receiver operating characteristic curve analysis revealed a high predictive power of those risk haplotypes in discrimination of susceptible from healthy individuals (area under curve: 0.88, p = 5.5e-32). Our study highlights the potential utility of genetic risk assessment based on HLA diplotypes for predicting T1D risk in individuals, particularly among family members of affected children in our population.


Subject(s)
Diabetes Mellitus, Type 1 , Middle Eastern People , Humans , Diabetes Mellitus, Type 1/genetics , HLA-DRB1 Chains/genetics , Haplotypes , Iran/epidemiology , Gene Frequency , Alleles , HLA-DQ beta-Chains/genetics , Genetic Predisposition to Disease
17.
J Exp Med ; 221(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38634869

ABSTRACT

We previously reported two siblings with inherited PD-1 deficiency who died from autoimmune pneumonitis at 3 and 11 years of age after developing other autoimmune manifestations, including type 1 diabetes (T1D). We report here two siblings, aged 10 and 11 years, with neonatal-onset T1D (diagnosed at the ages of 1 day and 7 wk), who are homozygous for a splice-site variant of CD274 (encoding PD-L1). This variant results in the exclusive expression of an alternative, loss-of-function PD-L1 protein isoform in overexpression experiments and in the patients' primary leukocytes. Surprisingly, cytometric immunophenotyping and single-cell RNA sequencing analysis on blood leukocytes showed largely normal development and transcriptional profiles across lymphoid and myeloid subsets in the PD-L1-deficient siblings, contrasting with the extensive dysregulation of both lymphoid and myeloid leukocyte compartments in PD-1 deficiency. Our findings suggest that PD-1 and PD-L1 are essential for preventing early-onset T1D but that, unlike PD-1 deficiency, PD-L1 deficiency does not lead to fatal autoimmunity with extensive leukocytic dysregulation.


Subject(s)
B7-H1 Antigen , Diabetes Mellitus, Type 1 , Child , Child, Preschool , Humans , Infant, Newborn , Autoimmunity , B7-H1 Antigen/deficiency , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Homozygote , Programmed Cell Death 1 Receptor/deficiency , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology
18.
Genes (Basel) ; 15(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38674328

ABSTRACT

Autoimmunity is defined as the inability to regulate immunological activities in the body, especially in response to external triggers, leading to the attack of the tissues and organs of the host. Outcomes include the onset of autoimmune diseases whose effects are primarily due to dysregulated immune responses. In past years, there have been cases that show an increased susceptibility to other autoimmune disorders in patients who are already experiencing the same type of disease. Research in this field has started analyzing the potential molecular and cellular causes of this interconnectedness, bearing in mind the possibility of advancing drugs and therapies for the treatment of autoimmunity. With that, this study aimed to determine the correlation of four autoimmune diseases, which are type 1 diabetes (T1D), psoriasis (PSR), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE), by identifying highly preserved co-expressed genes among datasets using WGCNA. Functional annotation was then employed to characterize these sets of genes based on their systemic relationship as a whole to elucidate the biological processes, cellular components, and molecular functions of the pathways they are involved in. Lastly, drug repurposing analysis was performed to screen candidate drugs for repositioning that could regulate the abnormal expression of genes among the diseases. A total of thirteen modules were obtained from the analysis, the majority of which were associated with transcriptional, post-transcriptional, and post-translational modification processes. Also, the evaluation based on KEGG suggested the possible role of TH17 differentiation in the simultaneous onset of the four diseases. Furthermore, clomiphene was the top drug candidate for regulating overexpressed hub genes; meanwhile, prilocaine was the top drug for regulating under-expressed hub genes. This study was geared towards utilizing transcriptomics approaches for the assessment of microarray data, which is different from the use of traditional genomic analyses. Such a research design for investigating correlations among autoimmune diseases may be the first of its kind.


Subject(s)
Signal Transduction , Humans , Signal Transduction/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Oligonucleotide Array Sequence Analysis/methods , Gene Regulatory Networks , Immune System/metabolism , Scleroderma, Systemic/genetics , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Psoriasis/genetics , Psoriasis/drug therapy , Psoriasis/immunology , Gene Expression Profiling/methods
19.
Front Endocrinol (Lausanne) ; 15: 1315046, 2024.
Article in English | MEDLINE | ID: mdl-38681765

ABSTRACT

Background: NAFLD (Nonalcoholic fatty liver disease) is becoming an increasingly common cause of chronic liver disease. Metabolic dysfunction, overweight/obesity, and diabetes are thought to be closely associated with increased NAFLD risk. However, few studies have focused on the mechanisms of NAFLD occurrence in T1DM. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to assess the causal association between T1DM and NAFLD with/without complications, such as coma, renal complications, ketoacidosis, neurological complications, and ophthalmic complications. Multiple Mendelian randomization methods, such as the inverse variance weighted (IVW) method, weighted median method, and MR-Egger test were performed to evaluate the causal association of T1DM and NAFLD using genome-wide association study summary data from different consortia, such as Finngen and UK biobank. Results: We selected 37 SNPs strongly associated with NAFLD/LFC (at a significance level of p < 5 × 10-8) as instrumental variables from the Finnish database based on the T1DM phenotype (8,967 cases and 308,373 controls). We also selected 14/16 SNPs based on with or without complications. The results suggest that the genetic susceptibility of T1DM does not increase the risk of NAFLD (OR=1.005 [0.99, 1.02], IVW p=0.516, MR Egger p=0.344, Weighted median p=0.959, Weighted mode p=0.791), regardless of whether complications are present. A slight causal effect of T1DM without complications on LFC was observed (OR=1.025 [1.00, 1.03], MR Egger p=0.045). However, none of the causal relationships were significant in the IVW (p=0.317), Weighted median (p=0.076), and Weighted mode (p=0.163) methods. Conclusion: Our study did not find conclusive evidence for a causal association between T1DM and NAFLD, although clinical observations indicate increasing abnormal transaminase prevalence and NAFLD progression in T1DM patients.


Subject(s)
Diabetes Mellitus, Type 1 , Genome-Wide Association Study , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Genetic Predisposition to Disease
20.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673735

ABSTRACT

Experimental animal models of diabetes can be useful for identifying novel targets related to disease, for understanding its physiopathology, and for evaluating emerging antidiabetic treatments. This study aimed to characterize two rat diabetes models: HFD + STZ, a high-fat diet (60% fat) combined with streptozotocin administration (STZ, 35 mg/kg BW), and a model with a single STZ dose (65 mg/kg BW) in comparison with healthy rats. HFD + STZ- induced animals demonstrated a stable hyperglycemia range (350-450 mg/dL), whereas in the STZ-induced rats, we found glucose concentration values with a greater dispersion, ranging from 270 to 510 mg/dL. Moreover, in the HFD + STZ group, the AUC value of the insulin tolerance test (ITT) was found to be remarkably augmented by 6.2-fold higher than in healthy animals (33,687.0 ± 1705.7 mg/dL/min vs. 5469.0 ± 267.6, respectively), indicating insulin resistance (IR). In contrast, a more moderate AUC value was observed in the STZ group (19,059.0 ± 3037.4 mg/dL/min) resulting in a value 2.5-fold higher than the average exhibited by the control group. After microarray experiments on liver tissue from all animals, we analyzed genes exhibiting a fold change value in gene expression <-2 or >2 (p-value <0.05). We found 27,686 differentially expressed genes (DEG), identified the top 10 DEGs and detected 849 coding genes that exhibited opposite expression patterns between both diabetes models (491 upregulated genes in the STZ model and 358 upregulated genes in HFD + STZ animals). Finally, we performed an enrichment analysis of the 849 selected genes. Whereas in the STZ model we found cellular pathways related to lipid biosynthesis and metabolism, in the HFD + STZ model we identified pathways related to immunometabolism. Some phenotypic differences observed in the models could be explained by transcriptomic results; however, further studies are needed to corroborate these findings. Our data confirm that the STZ and the HFD + STZ models are reliable experimental models for human T1D and T2D, respectively. These results also provide insight into alterations in the expression of specific liver genes and could be utilized in future studies focusing on diabetes complications associated with impaired liver function.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Liver , Animals , Liver/metabolism , Rats , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Male , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diet, High-Fat/adverse effects , Transcriptome , Insulin Resistance/genetics , Gene Expression Profiling , Streptozocin , Disease Models, Animal , Blood Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...