Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Int. j. morphol ; 41(3): 789-797, jun. 2023. ilus
Article in English | LILACS | ID: biblio-1514318

ABSTRACT

SUMMARY: Diacylglycerol kinase (DGK) exerts balancing the intracellular level between two-second messengers, diacylglycerol and phosphatidic acid, by its phosphorylation activity. DGK ζ is often localized in cell nuclei, suggesting its involvement in the regulation of intranuclear activities, including mitosis and apoptosis. The present immunohistochemical study of rat kidneys first revealed no detection levels of DGK ζ -immunoreactivity in nuclei of most proximal tubule epithelia in contrast to its distinct occurrence in cell nuclei of collecting and distal tubules with the former more dominant. This finding suggests that DGK ζ is a key factor regulating vulnerability to acute kidney injury in various renal tubules: its low expression represents the high vulnerability of proximal tubule cells, and its distinct expression does the resistance of collecting and distal tubule cells. In addition, this isozyme was more or less localized in nuclei of cells forming glomeruli as well as in endothelial nuclei of peritubular capillaries and other intrarenal blood vessels, and epithelial nuclei of glomerular capsules (Bowman's capsules) and renal calyces, including intrarenal interstitial cells.


La diacilglicerol quinasa (DGK) ejerce el equilibrio del nivel intracelular entre dos segundos mensajeros, diacilglicerol y ácido fosfatídico, por su actividad de fosforilación. La DGK ζ a menudo se localiza en los núcleos celulares, lo que sugiere su participación en la regulación de las actividades intranucleares, incluidas la mitosis y la apoptosis. El presente estudio inmunohistoquímico en riñones de rata no reveló niveles de detección de inmunorreactividad de DGK ζ en los núcleos de la mayoría de los epitelios de los túbulos proximales, en contraste a la detección en los núcleos celulares de los túbulos colectores y distales, siendo el primero más dominante. Este hallazgo sugiere que DGK ζ es un factor clave que regula la vulnerabilidad a la lesión renal aguda en varios túbulos renales: su baja expresión representa la alta vulnerabilidad de las células del túbulo proximal, y su expresión distinta hace a la resistencia de las células del túbulo colector y distal. Además, esta isoenzima estaba más o menos localizada en los núcleos de las células que forman los glomérulos, así como en los núcleos endoteliales de los capilares peritubulares y otros vasos sanguíneos intrarrenales, y en los núcleos epiteliales de las cápsulas glomerulares (cápsulas de Bowman) y los cálices renales, incluidas las células intersticiales intrarrenales.


Subject(s)
Animals , Rats , Diacylglycerol Kinase/metabolism , Kidney Tubules/metabolism , Immunohistochemistry , Microscopy, Immunoelectron , Rats, Sprague-Dawley , Diacylglycerol Kinase/ultrastructure , Kidney Tubules/ultrastructure
2.
Oncoimmunology ; 10(1): 1941566, 2021.
Article in English | MEDLINE | ID: mdl-34350062

ABSTRACT

Two isoforms of diacylglycerol kinases (DGKs), DGKα and DGKζ, are primarily responsible for terminating DAG-mediated activation of Ras and PKCθ pathways in T cells. A direct comparison of tumor growth between mice lacking each isoform has not been undertaken. We evaluated the growth of three syngeneic tumor cell lines in mice lacking either DGKα or DGKζ in the presence or absence of treatment with anti-PD1 and determined that (i) mice deficient in DGKζ conferred enhanced control of tumor relative to mice deficient in DGKα and (ii) deficiency of DGKζ acted additively with anti-PD1 in tumor control. Consistent with this finding, functional and RNA-sequencing analyses revealed greater changes in stimulated DGKζ-deficient T cells compared with DGKα-deficient T cells, which were enhanced relative to wildtype T cells. DGKζ also imparted greater regulation than DGKα in human T cells. Together, these data support targeting the ζ isoform of DGKs to therapeutically enhance T cell anti-tumor activity.


Subject(s)
Diacylglycerol Kinase , T-Lymphocytes , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Diacylglycerol Kinase/genetics , Mice
3.
BMC Plant Biol ; 21(1): 62, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33494714

ABSTRACT

BACKGROUND: Mexico is considered the diversification center for chili species, but these crops are susceptible to infection by pathogens such as Colletotrichum spp., which causes anthracnose disease and postharvest decay in general. Studies have been carried out with isolated strains of Colletotrichum in Capsicum plants; however, under growing conditions, microorganisms generally interact with others, resulting in an increase or decrease of their ability to infect the roots of C. chinense seedlings and thus, cause disease. RESULTS: Morphological changes were evident 24 h after inoculation (hai) with the microbial consortium, which consisted primarily of C. ignotum. High levels of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA) were found around 6 hai. These metabolic changes could be correlated with high transcription levels of diacylglycerol-kinase (CchDGK1 and CchDG31) at 3, 6 and 12 hai and also to pathogen gene markers, such as CchPR1 and CchPR5. CONCLUSIONS: Our data constitute the first evidence for the phospholipids signalling events, specifically DGPP and PA participation in the phospholipase C/DGK (PI-PLC/DGK) pathway, in the response of Capsicum to the consortium, offering new insights on chilis' defense responses to damping-off diseases.


Subject(s)
Capsicum/immunology , Colletotrichum/physiology , Microbial Consortia/physiology , Phospholipids/metabolism , Plant Diseases/immunology , Plant Immunity , Signal Transduction , Capsicum/genetics , Capsicum/microbiology , Colletotrichum/isolation & purification , Diacylglycerol Kinase , Diphosphates/metabolism , Glycerol/analogs & derivatives , Glycerol/metabolism , Host-Pathogen Interactions , Phosphatidic Acids/metabolism , Phylogeny , Plant Diseases/microbiology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , Seedlings/genetics , Seedlings/immunology , Seedlings/microbiology , Type C Phospholipases/metabolism
4.
Neuroscience ; 396: 66-72, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30458219

ABSTRACT

Drosophila phototransduction occurs in light-sensitive microvilli arranged in a longitudinal structure of the photoreceptor, termed the rhabdomere. Rhodopsin (Rh), isomerized by light, couples to G-protein, which activates phospholipase C (PLC), which in turn cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol (DAG), inositol trisphosphate and H+. This pathway opens the light-dependent channels, transient receptor potential (TRP) and transient receptor potential like (TRPL). PLC and TRP are held together in a protein assembly by the scaffold protein INAD. We report that the channels can be photoactivated in on-cell rhabdomeric patches and in excised patches by DAG. In excised patches, addition of PLC-activator, m-3M3FBS, or G-protein-activator, GTP-γ-S, opened TRP. These reagents were ineffective in PLC-mutant norpA and in the presence of PLC inhibitor U17322. However, DAG activated TRP even when PLC was pharmacologically or mutationally suppressed. These observations indicate that PLC, G-protein, and TRP were retained functional in these patches. DAG also activated TRP in the protein kinase C (PKC) mutant, inaC, excluding the possibility that PKC could mediate DAG-dependent TRP activation. Labeling diacylglycerol kinase (DGK) by fusion of fluorescent mCherry (mCherry-DGK) indicates that DGK, which returns DAG to dark levels, is highly expressed in the microvilli. In excised patches, TRP channels could be light-activated in the presence of GTP, which is required for G-protein activation. The evidence indicates that the proteins necessary for phototransduction are retained functionally after excision and that DAG is necessary and sufficient for TRP opening. This work opens up unique possibilities for studying, in sub-microscopic native membrane patches, the ubiquitous phosphoinositide signaling pathway and its regulatory mechanisms in unprecedented detail.


Subject(s)
Ion Channel Gating/radiation effects , Light , Microvilli/metabolism , Microvilli/radiation effects , Photoreceptor Cells, Invertebrate/cytology , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/radiation effects , Animals , Diacylglycerol Kinase/biosynthesis , Diglycerides/pharmacology , Drosophila Proteins/genetics , Drosophila Proteins/isolation & purification , Drosophila Proteins/metabolism , Drosophila Proteins/radiation effects , Drosophila melanogaster , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Membrane Potentials/drug effects , Protein Kinase C/genetics , Signal Transduction/drug effects , Signal Transduction/physiology , Sulfonamides/pharmacology , Transient Receptor Potential Channels/isolation & purification , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/genetics
5.
Planta ; 247(4): 1001-1009, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29340795

ABSTRACT

MAIN CONCLUSION: The phytotoxin botrydial triggers PA production in tomato cell suspensions via PLD and PLC/DGK activation. PLC/DGK-derived PA is partially required for botrydial-induced ROS generation. Phosphatidic acid (PA) is a phospholipid second messenger involved in the induction of plant defense responses. It is generated via two distinct enzymatic pathways, either via phospholipase D (PLD) or by the sequential action of phospholipase C and diacylglycerol kinase (PLC/DGK). Botrydial is a phytotoxic sesquiterpene generated by the necrotrophic fungus Botrytis cinerea that induces diverse plant defense responses, such as the production of reactive oxygen species (ROS). Here, we analyzed PA and ROS production and their interplay upon botrydial treatments, employing tomato (Solanum lycopersicum) cell suspensions as a model system. Botrydial induces PA production within minutes via PLD and PLC/DGK. Either inhibition of PLC or DGK diminishes ROS generation triggered by botrydial. This indicates that PLC/DGK is upstream of ROS production. In tomato, PLC is encoded by a multigene family constituted by SlPLC1-SlPLC6 and the pseudogene SlPLC7. We have shown that SlPLC2-silenced plants have reduced susceptibility to B. cinerea. In this work, we studied the role of SlPLC2 on botrydial-induced PA production by silencing the expression of SlPLC2 via a specific artificial microRNA. Upon botrydial treatments, SlPLC2-silenced-cell suspensions produce PA levels similar to wild-type cells. It can be concluded that PA is a novel component of the plant responses triggered by botrydial.


Subject(s)
Aldehydes/pharmacology , Bridged Bicyclo Compounds/pharmacology , Phosphatidic Acids/biosynthesis , Solanum lycopersicum/drug effects , Botrytis/metabolism , Cells, Cultured , Diacylglycerol Kinase/metabolism , Solanum lycopersicum/metabolism , Reactive Oxygen Species/metabolism , Type C Phospholipases/metabolism
6.
Lipids Health Dis ; 16(1): 245, 2017 Dec 16.
Article in English | MEDLINE | ID: mdl-29246161

ABSTRACT

BACKGROUND: Undernutrition during childhood leads to chronic diseases in adult life including hypertension, diabetes and chronic kidney disease. Here we explore the hypothesis that physiological alterations in the bioactive lipids pattern within kidney tissue might be involved in the progression of chronic kidney disease. METHODS: Membrane fractions from kidney homogenates of undernourished rats (RBD) were submitted to lipid extraction and analysis by thin layer chromatography and cholesterol determination. RESULTS: Kidneys from RBD rats had 25% lower cholesterol content, which disturb membrane microdomains, affecting Ca2+ homeostasis and the enzymes responsible for important lipid mediators such as phosphatidylinositol-4 kinase, sphingosine kinase, diacylglicerol kinase and phospholipase A2. We observed a decrease in phosphatidylinositol(4)-phosphate (8.8 ± 0.9 vs. 3.6 ± 0.7 pmol.mg-1.mim-1), and an increase in phosphatidic acid (2.2 ± 0.8 vs. 3.8 ± 1.3 pmol.mg-1.mim-1), being these lipid mediators involved in the regulation of key renal functions. Ceramide levels are augmented in kidney tissue from RBD rats (18.7 ± 1.4 vs. 21.7 ± 1.5 fmol.mg-1.min-1) indicating an ongoing renal lesion. CONCLUSION: Results point to an imbalance in the bioactive lipid generation with further consequences to key events related to kidney function, thus contributing to the establishment of chronic kidney disease.


Subject(s)
Cholesterol/metabolism , Hypertension/metabolism , Kidney/metabolism , Malnutrition/metabolism , Phosphatidylinositol Phosphates/metabolism , Renal Insufficiency, Chronic/metabolism , 1-Phosphatidylinositol 4-Kinase/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Animals , Animals, Newborn , Ceramides/metabolism , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Gene Expression Regulation , Hypertension/etiology , Hypertension/genetics , Hypertension/pathology , Kidney/chemistry , Lipid Metabolism , Male , Malnutrition/complications , Malnutrition/genetics , Malnutrition/pathology , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Phosphatidic Acids/metabolism , Phospholipases A2/genetics , Phospholipases A2/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Rats , Rats, Wistar , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
7.
Int. j. morphol ; 34(2): 471-477, June 2016. ilus
Article in English | LILACS | ID: lil-787023

ABSTRACT

By utilizing the antibody for rat DGKz a substantial number of immunopositive cells were found in the OV (Opisthorchis viverrini). The immunopositive cells appeared solitarily and they were distributed rather symmetrically to the longitudinal axis of the OV. Some of them were located in close proximity to internal organs such as uterus, ovary, testes, vitelline glands and guts. The immunostained cells extended tapering processes horizontally or obliquely to the OV longitudinal axis. In immuno-electron microscopy, the immunopositive cells were characterized by intensely immunostained mitochondria and weakly immunostained cytoplasm and immunonegative chromatin-poor nucleus. Vacuoles of various sizes without the immunoreactivity were also contained in the cells. Thin cellular processes without the immunoreactivity were found to enclose thinly the entire surfaces of the immunostained cells and processes, and they were in continuity with the interstitial partition-like processes which contained nuclei and aggregation of microfibrils at some distance from the cytoplasmic envelopes. The present finding suggests the possibility that the immunostained cells were peripheral neurons enveloped by peripheral glia and that the glia are of mesenchymal origin because of their cytoplasmic continuity to the interstitial partition-like processes. The motor or sensory nature of the neurons remains to be elucidated.


Mediante el uso del anticuerpos DGK para rata se determinó un número considerable de células inmunopositivas en el Opisthorchis viverrini (OV). Las células inmunopositivas aparecían solitarias y se distribuían simétricamente al eje longitudinal de la OV. Algunas estaban ubicadas en las proximidades de los órganos internos como el útero, ovarios, testículos, glándulas vitelinas e intestino. Las células inmunoteñidas extendían sus procesos horizontalmente u oblicuamente al eje longitudinal de la OV. Por microscopía inmunoelectrónica, las células inmunopositivas se caracterizaron por presentar mitocondrias intensamente teñidas, citoplasma con tinción débil e inmunonegatividad en núcleos pobres en cromatina. También se observó en las células, vacuolas de diversos tamaños sin inmunorreactividad. Se encontraron procesos celulares sin inmunorreactividad para cerrar finamente todas las superficies de las células y procesos, y se continuaron con los procesos de partición intersticiales que contenían núcleos y agregación de microfibrillas a cierta distancia de las envolturas citoplásmicas. El presente hallazgo sugiere la posibilidad de que las células inmunoteñidas son neuronas periféricas envueltas por glia periférica y que la glía presenta origen mesenquimal debido a su continuidad citoplasmática con los procesos de partición intersticiales. La naturaleza motora o sensorial de las neuronas aún no se ha dilucidado.


Subject(s)
Animals , Rats , Diacylglycerol Kinase/metabolism , Neurons/ultrastructure , Opisthorchis/ultrastructure , Peripheral Nerves/ultrastructure , Microscopy, Immunoelectron , Opisthorchis/immunology
8.
Exp Eye Res ; 145: 36-47, 2016 04.
Article in English | MEDLINE | ID: mdl-26551282

ABSTRACT

Retina light stimulation triggers phototransduction events as well as different signaling mechanisms in outer segments (sensorial portion) of photoreceptor cells. We have recently reported a novel light-dependent activation of diacylglycerol kinase (DAGK) and protein kinase C (PKC) at the nuclear level of photoreceptor cells. The aim of the present study was to analyze whether ex-vivo light exposure of bovine retinas also modulates insulin-related signaling pathways in nuclei from photoreceptor cells. To this end, a nuclear fraction enriched in small nuclei from photoreceptor cells (PNF) was obtained using a modified nuclear isolation protocol. In PNF obtained from bovine retinas exposed to light or darkness, the presence of insulin receptor (IR) and phosphorylated insulin receptor (pIR), the activation of Akt, p38 and extracellular signal-regulated kinase (ERK1/2) and the local action of insulin on lipid kinases were studied. Immunofluorescence (IF) and Western blot (WB) studies revealed the presence of IR in photoreceptor nuclei. In PNF a light-dependent increase in IR total content was observed. The presence of activated IR (pIR) was also observed in PNF by WB, being its content higher in PNF from light than in to darkness. Light exposure also produced a significant increase in the content of p-Akt (3 fold) and p-p38 (60%) without changes in total Akt and p38. In addition, an increase in the content of total ERK1/2 (2 fold) was found without changes in p-ERK/total ERK ratio, indicating that light induces translocation of p-ERK to the nucleus. Polyphosphoinositide kinase and diacylglycerol kinase (DAGK) activities were measured in isolated nuclei from light-activated or darkness-adapted retinas through the formation of polyphosphoinositides (PPIs) and phosphatidic acid (PA) using nuclear lipid substrates and [γ-(32)P]ATP as radioactive substrate. A light-dependent increase in PPIs and PA formation was detected when isolated nuclei were exposed to 0.8 µM insulin plus 0.2 mM vanadate. WB studies revealed that retina's exposure to insulin under light condition increased nuclear IR content. In addition, PNF exposure to insulin increased ERK1/2 phosphorylation with no changes in total ERK1/2. Our results demonstrate the presence and the functional state of IR in the nucleus from photoreceptor cells. They also show that molecular signaling components linked to tyrosine kinase receptors and MAPK pathways, such as Akt and ERK1/2, respectively, are present in photoreceptor nuclei and are regulated by insulin and light.


Subject(s)
Cell Nucleus/metabolism , Diacylglycerol Kinase/metabolism , Insulin/pharmacology , Photoreceptor Cells, Vertebrate/metabolism , Receptor, Insulin/metabolism , Animals , Blotting, Western , Cattle , Cell Nucleus/drug effects , Electrophoresis, Polyacrylamide Gel , Light , Light Signal Transduction/drug effects , Models, Animal , Phosphorylation , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/drug effects
9.
Exp Eye Res ; 125: 142-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24950064

ABSTRACT

In this work, we describe a selective light-dependent distribution of the lipid kinase 1,2-diacylglycerol kinase (EC 2.7.1.107, DAGK) and the phosphorylated protein kinase C alpha (pPKCα) in a nuclear fraction of photoreceptor cells from bovine retinas. A nuclear fraction enriched in small nuclei from photoreceptor cells (PNF), was obtained when a modified nuclear isolation protocol developed by our laboratory was used. We measured and compared DAGK activity as phosphatidic acid (PA) formation in PNF obtained from retinas exposed to light and in retinas kept in darkness using [γ-(32)P]ATP or [(3)H]DAG. In the absence of exogenous substrates and detergents, no changes in DAGK activity were observed. However, when DAGK activity assays were performed in the presence of exogenous substrates, such as stearoyl arachidonoyl glycerol (SAG) or dioleoyl glycerol (DOG), and different detergents (used to make different DAGK isoforms evident), we observed significant light effects on DAGK activity, suggesting the presence of several DAGK isoforms in PNF. Under conditions favoring DAGKζ activity (DOG, Triton X-100, dioleoyl phosphatidylserine and R59022) we observed an increase in PA formation in PNF from retinas exposed to light with respect to those exposed to darkness. In contrast, under conditions favoring DAGKɛ (SAG, octylglucoside and R59022) we observed a decrease in its activity. These results suggest different physiological roles of the above-mentioned DAGK isoforms. Western blot analysis showed that whereas light stimulation of bovine retinas increases DAGKζ nuclear content, it decreases DAGKɛ and DAGKß content in PNF. The role of PIP2-phospholipase C in light-stimulated DAGK activity was demonstrated using U73122. Light was also observed to induce enhanced pPKCα content in PNF. The selective distribution of DAGKζ and ɛ in PNF could be a light-dependent mechanism that in vertebrate retina promotes selective DAG removal and PKC regulation.


Subject(s)
Cell Nucleus/enzymology , Diacylglycerol Kinase/metabolism , Photoreceptor Cells, Vertebrate/enzymology , Protein Kinase C-alpha/metabolism , Analysis of Variance , Animals , Cattle , Cell Nucleus/radiation effects , Dark Adaptation , Enzyme Inhibitors/pharmacology , Light , Phosphorylation , Photoreceptor Cells, Vertebrate/radiation effects , Retina/enzymology , Retina/radiation effects , Type C Phospholipases/antagonists & inhibitors
10.
Clin Transl Oncol ; 16(1): 29-35, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23572183

ABSTRACT

PURPOSE: Lung cancer is a leading cause of cancer deaths and efforts are underway to identify novel therapies to treat these tumors. Diacylglycerol kinase η (DGKη), an enzyme that phosphorylates diacylglycerol to form phosphatidic acid, has been shown to modulate MAPK signaling downstream of EGFR, which is an oncogenic driver in some lung cancers. Since mutations in EGFR and K-Ras are common in lung cancer, we hypothesized that limiting the function of DGKη would attenuate oncogenic properties of lung cancer cells. METHODS: We determined the expression levels of DGKη in a mouse models of mutant EGFR and K-Ras lung cancer and in human lung cancer cell lines with activating mutations in either EGFR or K-Ras. We also tested the effects of shRNA-mediated depletion of DGKη in lung cancer cells and tested if DGKη depletion augmented the effects of afatinib, a new generation EGFR inhibitor. RESULTS: DGKη was expressed in malignant epithelium from mice with mutant EGFR or K-Ras lung cancer. It was also expressed in human lung cancer cell lines with EGFR or K-Ras mutations. Depleting DGKη in lung cancer cell lines, harboring mutant EGFR, reduced their growth on plastic and in soft agar and also augmented the effects of afatinib, an EGFR inhibitor. DGKη depletion also reduced growth of one of two lung cancer cell lines that harbored mutant K-Ras. CONCLUSIONS: Our data indicate that DGKη is a potential therapeutic target in lung cancers, especially those harboring EGFR mutations. Our findings warrant further studies to examine the effects of limiting its function in vivo.


Subject(s)
Diacylglycerol Kinase/metabolism , Lung Neoplasms/enzymology , Signal Transduction/physiology , Animals , Blotting, Western , Cell Line, Tumor , Genes, erbB-1 , Genes, ras , Humans , Lung Neoplasms/genetics , Mice , Mice, Transgenic , Mutation , Reverse Transcriptase Polymerase Chain Reaction
11.
Exp Eye Res ; 112: 139-50, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23608524

ABSTRACT

The present study shows the selective light-dependent distribution of 1,2-diacylglycerol kinase epsilon (DAGKɛ) in photoreceptor cells from bovine and albino rat retina. Immunofluorescence microscopy in isolated rod outer segments from bleached bovine retinas (BBROS) revealed a higher DAGKɛ signal than that found in rod outer segments from dark-adapted bovine retinas (BDROS). The light-dependent outer segment localization of DAGKɛ was also observed by immunohistochemistry in retinas from albino rats. DAGK activity, measured in terms of phosphatidic acid formation from a) [(3)H]DAG and ATP in the presence of EGTA and R59022, a type I DAGK inhibitor, or b) [γ-(32)P]ATP and 1-stearoyl, 2-arachidonoylglycerol (SAG), was found to be significantly higher in BBROS than in BDROS. Higher light-dependent DAGK activity (condition b) was also found when ROS were isolated from dark-adapted rat retinas exposed to light. Western blot analysis of isolated ROS proteins from bovine and rat retinas confirmed that illumination increases DAGKɛ content in the outer segments of these two species. Light-dependent DAGKɛ localization in the outer segment was not observed when U73122, a phospholipase C inhibitor, was present prior to the exposure of rat eyecups (in situ model) to light. Furthermore, no increased PA synthesis from [(3)H]DAG and ATP was observed in the presence of neomycin prior to the exposure of bovine eyecups to light. Interestingly, when BBROS were pre-phosphorylated with ATP in the presence of 1,2-dioctanoyl sn-glycerol (di-C8) or phorbol dibutyrate (PDBu) as PKC activation conditions, higher DAGK activity was observed than in dephosphorylated controls. Taken together, our findings suggest that the selective distribution of DAGKɛ in photoreceptor cells is a light-dependent mechanism that promotes increased SAG removal and synthesis of 1-stearoyl, 2-arachidonoyl phosphatidic acid in the sensorial portion of this cell, thus demonstrating a novel mechanism of light-regulated DAGK activity in the photoreceptors of two vertebrate species.


Subject(s)
Diacylglycerol Kinase/metabolism , Photic Stimulation , Rod Cell Outer Segment/enzymology , Rod Cell Outer Segment/radiation effects , Animals , Blotting, Western , Cattle , Dark Adaptation , Diacylglycerol Kinase/antagonists & inhibitors , Egtazic Acid/pharmacology , Enzyme Inhibitors/pharmacology , Estrenes/pharmacology , Fluorescent Antibody Technique, Indirect , Light , Phosphatidic Acids/metabolism , Pyrimidinones/pharmacology , Pyrrolidinones/pharmacology , Rats , Rats, Wistar , Rod Cell Outer Segment/drug effects , Thiazoles/pharmacology
12.
Plant Physiol Biochem ; 58: 83-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22784988

ABSTRACT

We analyzed lipid kinase and lipid phosphatase activities and determined endogenous phytohormone levels by liquid chromatography-tandem mass spectrometry in root and coleoptile tissues following germination of barley (Hordeum vulgare) seeds. The enzymes showing highest activity in aleurone cells were diacylglycerol kinase (DAG-k, EC 2.7.1.107) and phosphatidate kinase (PA-k). The ratio of gibberellins (GAs) to abscisic acid (ABA) was 2-fold higher in aleurone than in coleoptile or root tissues. In coleoptiles, phosphatidylinositol 4-kinase (PI4-k, EC 2.7.1.67) showed the highest enzyme activity, and jasmonic acid (JA) level was higher than in aleurone. In roots, activities of PI4-k, DAG-k, and PA-k were similar, and salicylic acid (SA) showed the highest concentration. In the assays to evaluate the hydrolysis of DGPP (diacylglycerol pyrophosphate) and PA (phosphatidic acid) we observed that PA hydrolysis by LPPs (lipid phosphate phosphatases) was not modified; however, the diacylglycerol pyrophosphate phosphatase (DGPPase) was strikingly higher in coleoptile and root tissues than to aleurone. Relevance of these findings in terms of signaling responses and seedling growth is discussed.


Subject(s)
Cotyledon/metabolism , Hordeum/enzymology , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Seeds/metabolism , 1-Phosphatidylinositol 4-Kinase/metabolism , Diacylglycerol Kinase/metabolism , Diphosphates/metabolism , Germination/physiology , Glycerol/analogs & derivatives , Glycerol/metabolism , Glycerophosphates/metabolism , Hordeum/growth & development , Hordeum/metabolism , Phosphatidate Phosphatase/metabolism , Phosphatidic Acids/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Plant Proteins/metabolism , Pyrophosphatases/metabolism , Signal Transduction
13.
Lipids ; 46(10): 969-79, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21667213

ABSTRACT

Lipid kinases and phosphatases play essential roles in signal transduction processes involved in cytoskeletal rearrangement, membrane trafficking, and cellular differentiation. Phosphatidic acid (PtdOH) is an important mediator lipid in eukaryotic cells, but little is known regarding its regulation in the parasite Trypanosoma cruzi, an agent of Chagas disease. In order to clarify the relationship between PtdOH metabolism and developmental stages of T. cruzi, epimastigotes in culture were subjected to hyperosmotic stress (~1,000 mOsm/L), mimicking the environment in the rectum of vector triatomine bugs. These experimental conditions resulted in differentiation to an intermediate form between epimastigotes and trypomastigotes. Morphological changes of epimastigotes were correlated with an increase in PtdOH mass accomplished by increased enzyme activity of diacylglycerol kinase (DAGK, E.C. 2.7.1.107) and concomitant decreased activity of phosphatidate phosphatases type 1 and type 2 (PAP1, PAP2, E.C. 3.1.3.4). Our results indicate progressive increases of PtdOH levels during the differentiation process, and suggest that the regulation of PtdOH metabolism is an important mechanism in the transition from T. cruzi epimastigote to intermediate form.


Subject(s)
Chagas Disease/parasitology , Phosphatidic Acids/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , Amino Acid Sequence , Diacylglycerol Kinase/metabolism , Humans , Molecular Sequence Data , Pancreatitis-Associated Proteins , Phosphatidate Phosphatase/metabolism , Trypanosoma cruzi/metabolism
14.
J Plant Physiol ; 168(6): 534-9, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-20951469

ABSTRACT

Nitric oxide (NO) and the lipid second messenger phosphatidic acid (PA) are involved in plant defense responses during plant-pathogen interactions. NO has been shown to be involved in the induction of PA production in response to the pathogen associated molecular pattern (PAMP) xylanase in tomato cells. It was shown that NO is critical for PA production induced via phospholipase C (PLC) in concerted action with diacylglycerol kinase (DGK) but not for the xylanase-induced PA via phospholipase D (PLD). In order to study whether this is a general phenomenon during PAMP perception or if it is particular for xylanase, we studied the effect of the PAMP chitosan in tomato cell suspensions. We observed a rapid NO production in tomato cells treated with chitosan. Chitosan induced the formation of PA by activating both PLD and PLC/DGK. The activation of either phospholipase-mediated signaling pathway was inhibited in cells treated with the NO scavenger cPTIO. This indicates that NO is required for PA generation via both the PLD and PLC/DGK pathway during plant defense response in chitosan elicited cells. Responses downstream PA were studied. PLC inhibitors neomycin and U73122 inhibited chitosan-induced ROS production. Differences between xylanase and chitosan-induced phospholipid signaling pathways are discussed.


Subject(s)
Chitosan/metabolism , Nitric Oxide/metabolism , Phosphatidic Acids/metabolism , Signal Transduction , Solanum lycopersicum/enzymology , Diacylglycerol Kinase/metabolism , Estrenes/metabolism , Neomycin/metabolism , Nitric Oxide/chemistry , Phospholipase D/metabolism , Phospholipids/metabolism , Pyrrolidinones/metabolism , Reactive Oxygen Species/metabolism , Type C Phospholipases/metabolism
15.
Neurochem Int ; 58(3): 330-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21167245

ABSTRACT

The purpose of the present study was to analyze diacylglycerol kinase (DAGK) activity in synaptic terminals from cerebral cortex (CC) and hippocampus (Hp) from adult (3-4 month-old) and aged (26-28 month-old) rats. The effect of insulin through DAGK activity on synaptosomes from adult and aged rats was also analyzed under conditions favoring saturated or unsaturated phosphatidic acid (PA) formation, using exogenous di-palmitoil glycerol (DPG) or 1-stearoyl-2-arachidonoylglycerol (SAG) as substrates. Results showed that the enzymatic activity preferentially uses SAG as substrate, thus indicating the presence of ɛ-type DAGK. A significant decrease in DAGK activity transforming SAG into PA was also observed in both tissues from aged rats. Western blot detection of DAGKɛ showed that enzyme content undergoes no changes with aging. [3H] inositol incorporation into phosphoinosites was also analyzed to evaluate the role of DAGKɛ in their synthesis. Data obtained from 3H-inositol incorporation into phosphoinositides revealed that in synaptosomes from aged rats phosphatidylinositol (PI) synthesis is lower than in adult animals. Interestingly, in the presence of SAG, PI synthesis was restored to adult values. DAGK activity over SAG was more highly stimulated by insulin in CC and Hp synaptosomes of aged rats with respect to adult rats. On the other hand, insulin exerted a stimulatory effect on PI and phosphatidylinositol 4 phosphate (PI(4)P) synthesis in synaptosomal CC from aged rats. Taken together, our findings indicate that in aged rats insulin triggers a stimulatory mechanism that reverts the diminished synaptosomal ability to synthesize arachidonoyl phosphatidic acid (20:4 PA). The recovery of this PA species indicates that insulin positively regulates phosphoinositide synthesis.


Subject(s)
Aging/physiology , Diacylglycerol Kinase/metabolism , Diglycerides/metabolism , Insulin/physiology , Phosphatidylinositols/metabolism , Presynaptic Terminals/physiology , Animals , Diacylglycerol Kinase/antagonists & inhibitors , Phosphatidylinositols/antagonists & inhibitors , Phosphorylation , Presynaptic Terminals/enzymology , Rats , Rats, Wistar , Synaptosomes
16.
New Phytol ; 185(4): 909-16, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20356346

ABSTRACT

*In animals and plants, extracellular ATP exerts its effects by regulating the second messengers Ca(2+), nitric oxide (NO) and reactive oxygen species (ROS). In animals, phospholipid-derived molecules, such as diacylglycerol, phosphatidic acid (PA) and inositol phosphates, have been associated with the extracellular ATP signaling pathway. The involvement of phospholipids in extracellular ATP signaling in plants, as it is established in animals, is unknown. *In vivo phospholipid signaling upon extracellular ATP treatment was studied in (32)P(i)-labeled suspension-cultured tomato (Solanum lycopersicum) cells. *Here, we report that, in suspension-cultured tomato cells, extracellular ATP induces the formation of the signaling lipid phosphatidic acid. Exogenous ATP at doses of 0.1 and 1 mM induce the formation of phosphatidic acid within minutes. Studies on the enzymatic sources of phosphatidic acid revealed the participation of both phospholipase D and C in concerted action with diacylglycerol kinase. *Our results suggest that extracellular ATP-mediated nitric oxide production is downstream of phospholipase C/diacylglycerol kinase activation.


Subject(s)
Adenosine Triphosphate/pharmacology , Extracellular Space/metabolism , Nitric Oxide/biosynthesis , Phosphatidic Acids/biosynthesis , Solanum lycopersicum/cytology , Solanum lycopersicum/metabolism , Calcium/metabolism , Cells, Cultured , Diacylglycerol Kinase/metabolism , Enzyme Activation/drug effects , Extracellular Space/drug effects , Solanum lycopersicum/drug effects , Solanum lycopersicum/enzymology , Phospholipase D/metabolism , Suspensions , Type C Phospholipases/metabolism
17.
J Inorg Biochem ; 103(11): 1497-503, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19740543

ABSTRACT

In acid soils, aluminium (Al) toxicity and phosphate (Pi) deficiency are the most significant constraints on plant growth. Al inhibits cell growth and disrupts signal transduction processes, thus interfering with metabolism of phospholipase C (PLC), an enzyme involved in second messenger production in the cell. Using a Coffea arabica suspension cell model, we demonstrate that cell growth inhibition by Al toxicity is mitigated at a high Pi concentration. Aluminium-induced cell growth inhibition may be due to culture medium Pi deficiency, since Pi forms complexes with Al, reducing Pi availability to cells. Phosphate does not mitigate inhibition of PLC activity by Al toxicity. Other enzymes of the phosphoinositide signal transduction pathway were also evaluated. Aluminium disrupts production of second messengers such as inositol 1,4,5-trisphosphate (IP(3)) and phosphatidic acid (PA) by blocking PLC activity; however, phospholipase D (PLD) and diacylglycerol kinase (DGK) activities are stimulated by Al, a response probably aimed at counteracting Al effects on PA formation. Phosphate deprivation also induces PLC and DGK activity. These results suggest that Al-induced cell growth inhibition is not linked to PLC activity inhibition.


Subject(s)
Aluminum/pharmacology , Coffea/drug effects , Phosphates/pharmacology , Signal Transduction/drug effects , Type C Phospholipases/metabolism , Aluminum/analysis , Cells, Cultured , Coffea/growth & development , Coffea/metabolism , Diacylglycerol Kinase/drug effects , Diacylglycerol Kinase/metabolism , Inositol 1,4,5-Trisphosphate/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate/metabolism , Phosphatidic Acids/antagonists & inhibitors , Phosphatidic Acids/metabolism , Phospholipase D/drug effects , Phospholipase D/metabolism , Signal Transduction/physiology , Type C Phospholipases/antagonists & inhibitors
18.
Neurochem Res ; 34(7): 1236-48, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19130221

ABSTRACT

The highly efficient formation of phosphatidic acid from exogenous 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) in rat brain synaptic nerve endings (synaptosomes) from cerebral cortex and hippocampus is reported. Phosphatidic acid synthesized from SAG or 1,2-dipalmitoyl-sn-glycerol (DPG) was 17.5 or 2.5 times higher, respectively, than from endogenous synaptosomal diacylglycerides. Insulin increased diacylglycerol kinase (DAGK) action on endogenous substrate in synaptic terminals from hippocampus and cerebral cortex by 199 and 97%, respectively. Insulin preferentially increased SAG phosphorylation from hippocampal membranes. In CC synaptosomes insulin increased phosphatidic acid (PA) synthesis from SAG by 100% with respect to controls. Genistein (a tyrosine kinase inhibitor) inhibited this stimulatory insulin effect. Okadaic acid or cyclosporine, used as Ser/Threo protein phosphatase inhibitors, failed to increase insulin effect on PA formation. GTP gamma S and particularly NaF were potent stimulators of PA formation from polyunsaturated diacylglycerol but failed to increase this phosphorylation when added after 5 min of insulin exposure. GTP gamma S and NaF increased phosphatidylinositol 4,5 bisphosphate (PIP2) labeling with respect to controls when SAG was present. On the contrary, they decreased polyphosphoinositide labeling with respect to controls in the presence of DPG. Our results indicate that a DAGK type 3 (DAGKepsilon) which preferentially, but not selectively, utilizes 1-acyl-2-arachidonoyl-sn-glycerol and which could be associated with polyphosphoinositide resynthesis, participates in synaptic insulin signaling. GTP gamma S and NaF appear to be G protein activators related to insulin and the insulin receptor, both affecting the signaling mechanism that augments phosphatidic acid formation.


Subject(s)
Cerebral Cortex/metabolism , Hippocampus/metabolism , Insulin/pharmacology , Phosphatidic Acids/biosynthesis , Synaptosomes/metabolism , Animals , Chromones/pharmacology , Cyclosporine/pharmacology , Diacylglycerol Kinase/metabolism , Diglycerides/metabolism , Genistein/pharmacology , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Insulin Antagonists/pharmacology , Morpholines/pharmacology , Okadaic Acid/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Piperidines/pharmacology , Pyrimidinones/pharmacology , Quinazolinones/pharmacology , Rats , Rats, Wistar , Sodium Fluoride/pharmacology , Synaptosomes/drug effects , Thiazoles/pharmacology , Vanadates/pharmacology
19.
Physiol Plant ; 134(3): 381-93, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18573189

ABSTRACT

ABA plays an important regulatory role in seed germination because it inhibits the response to GA in aleurone, a secretory tissue surrounding the endosperm. Phosphatidic acid (PA) is a well-known intermediary in ABA signaling, but the role of diacylglycerol pyrophosphate (DGPP) in germination processes is not clearly established. In this study, we show that PA produced by phospholipase D (E.C. 3.1.4.4) during the antagonist effect of ABA in GA signaling is rapidly phosphorylated by phosphatidate kinase (PAK) to DGPP. This is a crucial fact for aleurone function because exogenously added dioleoyl-DGPP inhibits secretion of alpha-amylase (E.C. 3.2.1.1). Aleurone treatment with ABA and 1-butanol results in normal secretory activity, and this effect is reversed by addition of dioleoyl-DGPP. We also found that ABA decreased the activity of an Mg2+-independent, N-ethylmaleimide-insensitive form of phosphatidate phosphohydrolase (PAP2) (E.C. 3.1.3.4), leading to reduction of PA dephosphorylation and increased PAK activity. Sequence analysis using Arabidopsis thaliana lipid phosphate phosphatase (LPP) sequences as queries identified two putative molecular homologues, termed HvLPP1 and HvLPP2, encoding putative Lpps with the presence of well-conserved structural Lpp domains. Our results are consistent with a role of DGPP as a regulator of ABA antagonist effect in GA signaling and provide evidence about regulation of PA level by a PAP2 during ABA response in aleurone.


Subject(s)
Diphosphates/pharmacology , Gibberellins/pharmacology , Glycerol/analogs & derivatives , Hordeum/drug effects , Hordeum/enzymology , Seeds/drug effects , Seeds/enzymology , alpha-Amylases/metabolism , 1-Butanol/pharmacology , Abscisic Acid/pharmacology , Amino Acid Sequence , Arabidopsis/enzymology , Diacylglycerol Kinase/metabolism , Enzyme Inhibitors/pharmacology , Glycerol/pharmacology , Molecular Sequence Data , Phosphatidate Phosphatase/chemistry , Phosphatidate Phosphatase/metabolism , Phosphatidic Acids/metabolism , Phosphatidic Acids/pharmacology , Phospholipase D/antagonists & inhibitors , Phosphorylation/drug effects , Phylogeny , Protein Kinases/metabolism , Sequence Homology, Amino Acid
20.
J Neurosci Res ; 84(5): 1012-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16886188

ABSTRACT

The mechanism by which insulin increases diacylglycerol kinase (DAGK) activity has been studied in cerebral cortex (CC) synaptosomes from adult (3-4 months of age) rats. The purpose of this study was to identify the role of phospholipases C and D (PLC and PLD) in DAGK activation by insulin. Neomycin, an inhibitor of PLC phosphatidylinositol-bisphosphate (PIP2) specific; ethanol, an inhibitor of phosphatidic acid (PA) formation by the promotion of a transphosphatidyl reaction of phosphatidylcholine phospholipase D (PC-PLD); and DL propranolol, an inhibitor of phosphatidate phosphohydrolase (PAP), were used in this study. Insulin (0.1 microM) shielded an increase in PA synthesis by [32P] incorporation using [gamma-32P]ATP as substrate and endogenous diacylglycerol (DAG) as co-substrate. This activated synthesis was strongly inhibited either by ethanol or DL propranolol. Pulse chase experiments also showed a PIP2-PLC activation within 1 min exposure to insulin. When exogenous unsaturated 18:0-20:4 DAG was present, insulin increased PA synthesis significantly. However, this stimulatory effect was not observed in the presence of exogenous saturated (di-16:0). In the presence of R59022, a selective DAGK inhibitor, insulin exerted no stimulatory effect on [32P]PA formation, suggesting a strong relationship between increased PA formation by insulin and DAGK activity. These data indicate that the increased synthesis of PA by insulin could be mediated by the activation of both a PC-PLD pathway to provide DAG and a direct DAGK activation that is associated to the use of 18:0-20:4 DAG species. PIP2-PLC activation may contribute at least partly to the insulin effect on DAGK activity.


Subject(s)
Cerebral Cortex/cytology , Diacylglycerol Kinase/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Synaptosomes/drug effects , Adenosine Triphosphate/metabolism , Animals , Enzyme Activation/drug effects , Neomycin/pharmacology , Phosphatidate Phosphatase/metabolism , Phosphatidylcholines/metabolism , Phospholipase D/physiology , Phosphorus Isotopes/metabolism , Protein Synthesis Inhibitors/pharmacology , Rats , Rats, Wistar , Type C Phospholipases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL