Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 650
Filter
1.
Environ Pollut ; 350: 123971, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641033

ABSTRACT

Haloacetaldehyde disinfection by-products (HAL-DBPs) are among the top three unregulated DBPs found in drinking water. The cytotoxicity and genotoxicity of HALs are much higher than that of the regulated trihalomethanes and haloacetic acids. Previous studies have mainly focused on the toxic effects of single HAL, with few examining the toxic effects of mixed exposures to HALs. The study aimed to observe the effects of mixed exposures of 1∼1000X the realistic level of HALs on the hepatotoxicity and lipid metabolism of C57BL/6J mice, based on the component and concentration of HALs detected in the finished water of Shanghai. Exposure to realistic levels of HALs led to a significant increase in phosphorated acetyl CoA carboxylase 1 (p-ACC1) in the hepatic de novo lipogenesis (DNL) pathway. Additionally, exposure to 100X realistic levels of HALs resulted in significant alterations to key enzymes of DNL pathway, including ACC1, fatty acid synthase (FAS), and diacylglycerol acyltransferase 2 (DGAT2), as well as key proteins of lipid disposal such as carnitine palmitoyltransferase 1 (CPT-1) and peroxisome proliferator activated receptor α (PPARα). Exposure to 1000X realistic levels of HALs significantly increased hepatic and serum triglyceride levels, as well as total cholesterol, low-density lipoprotein, alanine aminotransferase, aspartate transaminase, alkaline phosphatase, and lactate dehydrogenase levels, significantly decreased high-density lipoprotein. Meanwhile, histopathological analysis demonstrated that HALs exacerbated tissue vacuolization and inflammatory cell infiltration in mice livers, which showed the typical phenotypes of non-alcoholic fatty liver disease (NAFLD). These results suggested that the HALs mixture is a critical risk factor for NAFLD and is significantly highly toxic to C57BL/6J mice.


Subject(s)
Acetaldehyde , Lipid Metabolism , Liver , Mice, Inbred C57BL , Animals , Mice , Liver/drug effects , Liver/metabolism , Acetaldehyde/toxicity , Acetaldehyde/analogs & derivatives , Lipid Metabolism/drug effects , Male , Disinfection , Water Pollutants, Chemical/toxicity , Acetyl-CoA Carboxylase/metabolism , PPAR alpha/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Lipogenesis/drug effects , Disinfectants/toxicity , Fatty Acid Synthases/metabolism , China , Drinking Water/chemistry
2.
Commun Biol ; 7(1): 480, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641731

ABSTRACT

Triglyceride (TAG) deposition in the liver is associated with metabolic disorders. In lower vertebrate, the propensity to accumulate hepatic TAG varies widely among fish species. Diacylglycerol acyltransferases (DGAT1 and DGAT2) are major enzymes for TAG synthesis. Here we show that large yellow croaker (Larimichthys crocea) has significantly higher hepatic TAG level than that in rainbow trout (Oncorhynchus mykiss) fed with same diet. Hepatic expression of DGATs genes in croaker is markedly higher compared with trout under physiological condition. Meanwhile, DGAT1 and DGAT2 in both croaker and trout are required for TAG synthesis and lipid droplet formation in vitro. Furthermore, oleic acid treatment increases DGAT1 expression in croaker hepatocytes rather than in trout and has no significant difference in DGAT2 expression in two fish species. Finally, effects of various transcription factors on croaker and trout DGAT1 promoter are studied. We find that DGAT1 is a target gene of the transcription factor CREBH in croaker rather than in trout. Overall, hepatic expression and transcriptional regulation of DGATs display significant species differences between croaker and trout with distinct hepatic triglyceride deposition, which bring new perspectives on the use of fish models for studying hepatic TAG deposition.


Subject(s)
Diacylglycerol O-Acyltransferase , Perciformes , Animals , Triglycerides/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Diglycerides/metabolism , Liver/metabolism , Hepatocytes/metabolism , Perciformes/genetics
3.
BMC Plant Biol ; 24(1): 309, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649801

ABSTRACT

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. RESULT: In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). CONCLUSIONS: This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.


Subject(s)
Diacylglycerol O-Acyltransferase , Diatoms , Nicotiana , Diatoms/genetics , Diatoms/enzymology , Diatoms/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Nicotiana/genetics , Nicotiana/enzymology , Nicotiana/metabolism , Acyl Coenzyme A/metabolism , Plants, Genetically Modified , Triglycerides/biosynthesis , Triglycerides/metabolism , Eicosapentaenoic Acid/biosynthesis , Eicosapentaenoic Acid/metabolism , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-3/metabolism , Metabolic Engineering
4.
Nat Commun ; 15(1): 3547, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670976

ABSTRACT

Typical plant membranes and storage lipids are comprised of five common fatty acids yet over 450 unusual fatty acids accumulate in seed oils of various plant species. Plant oils are important human and animal nutrients, while some unusual fatty acids such as hydroxylated fatty acids (HFA) are used in the chemical industry (lubricants, paints, polymers, cosmetics, etc.). Most unusual fatty acids are extracted from non-agronomic crops leading to high production costs. Attempts to engineer HFA into crops are unsuccessful due to bottlenecks in the overlapping pathways of oil and membrane lipid synthesis where HFA are not compatible. Physaria fendleri naturally overcomes these bottlenecks through a triacylglycerol (TAG) remodeling mechanism where HFA are incorporated into TAG after initial synthesis. TAG remodeling involves a unique TAG lipase and two diacylglycerol acyltransferases (DGAT) that are selective for different stereochemical and acyl-containing species of diacylglycerol within a synthesis, partial degradation, and resynthesis cycle. The TAG lipase interacts with DGAT1, localizes to the endoplasmic reticulum (with the DGATs) and to puncta around the lipid droplet, likely forming a TAG remodeling metabolon near the lipid droplet-ER junction. Each characterized DGAT and TAG lipase can increase HFA accumulation in engineered seed oils.


Subject(s)
Diacylglycerol O-Acyltransferase , Fatty Acids , Plant Oils , Triglycerides , Triglycerides/metabolism , Triglycerides/biosynthesis , Plant Oils/metabolism , Plant Oils/chemistry , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Fatty Acids/metabolism , Lipase/metabolism , Seeds/metabolism , Endoplasmic Reticulum/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Lipid Droplets/metabolism , Plants, Genetically Modified
5.
J Transl Med ; 22(1): 290, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500157

ABSTRACT

Lipid metabolism is widely reprogrammed in tumor cells. Lipid droplet is a common organelle existing in most mammal cells, and its complex and dynamic functions in maintaining redox and metabolic balance, regulating endoplasmic reticulum stress, modulating chemoresistance, and providing essential biomolecules and ATP have been well established in tumor cells. The balance between lipid droplet formation and catabolism is critical to maintaining energy metabolism in tumor cells, while the process of energy metabolism affects various functions essential for tumor growth. The imbalance of synthesis and catabolism of fatty acids in tumor cells leads to the alteration of lipid droplet content in tumor cells. Diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2, the enzymes that catalyze the final step of triglyceride synthesis, participate in the formation of lipid droplets in tumor cells and in the regulation of cell proliferation, migration and invasion, chemoresistance, and prognosis in tumor. Several diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 inhibitors have been developed over the past decade and have shown anti-tumor effects in preclinical tumor models and improvement of metabolism in clinical trials. In this review, we highlight key features of fatty acid metabolism and different paradigms of diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 activities on cell proliferation, migration, chemoresistance, and prognosis in tumor, with the hope that these scientific findings will have potential clinical implications.


Subject(s)
Diacylglycerol O-Acyltransferase , Neoplasms , Animals , Humans , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Triglycerides/metabolism , Lipid Metabolism , Lipogenesis , Cell Proliferation , Mammals/metabolism
6.
Plant Physiol ; 195(1): 685-697, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38386316

ABSTRACT

The accumulation of triacylglycerol (TAG) in vegetative tissues is necessary to adapt to changing temperatures. It has been hypothesized that TAG accumulation is required as a storage location for maladaptive membrane lipids. The TAG acyltransferase family has five members (DIACYLGLYCEROL ACYLTRANSFERSE1/2/3 and PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1/2), and their individual roles during temperature challenges have either been described conflictingly or not at all. Therefore, we used Arabidopsis (Arabidopsis thaliana) loss of function mutants in each acyltransferase to investigate the effects of temperature challenge on TAG accumulation, plasma membrane integrity, and temperature tolerance. All mutants were tested under one high- and two low-temperature regimens, during which we quantified lipids, assessed temperature sensitivity, and measured plasma membrane electrolyte leakage. Our findings revealed reduced effectiveness in TAG production during at least one temperature regimen for all acyltransferase mutants compared to the wild type, resolved conflicting roles of pdat1 and dgat1 by demonstrating their distinct temperature-specific actions, and uncovered that plasma membrane integrity and TAG accumulation do not always coincide, suggesting a multifaceted role of TAG beyond its conventional lipid reservoir function during temperature stress.


Subject(s)
Acyltransferases , Arabidopsis Proteins , Arabidopsis , Cold Temperature , Diacylglycerol O-Acyltransferase , Triglycerides , Arabidopsis/genetics , Arabidopsis/enzymology , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Triglycerides/metabolism , Acyltransferases/metabolism , Acyltransferases/genetics , Cell Membrane/metabolism , Hot Temperature , Gene Expression Regulation, Plant , Mutation/genetics
7.
J Agric Food Chem ; 72(7): 3584-3595, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38344823

ABSTRACT

Astaxanthin esters are a major form of astaxanthin found in nature. However, the exact mechanisms of the biosynthesis and storage of astaxanthin esters were previously unknown. We found that Schizochytrium sp. synthesized both astaxanthin and docosahexaenoic acid (DHA)-enriched lipids. The major type of astaxanthin produced was free astaxanthin along with astaxanthin-DHA monoester and other esterified forms. DHA accounted for 41.0% of the total fatty acids from astaxanthin monoesters. These compounds were deposited mainly in lipid droplets. The biosynthesis of the astaxanthin esters was mainly carried out by a novel diacylglycerol acyltransferase ScDGAT2-1, while ScDGAT2-2 was involved only in the production of triacylglycerol. We also identified astaxanthin ester synthases from the astaxanthin-producing algae Haematococcus pluvialis and Chromochloris zofingiensis, as well as a thraustochytrid Hondaea fermentalgiana with an unknown carotenoid profile. This investigation enlightens the application of thraustochytrids for the production of both DHA and astaxanthin and provides enzyme resources for the biosynthesis of astaxanthin esters in the engineered microbes.


Subject(s)
Chlorophyceae , Stramenopiles , Esters , Diacylglycerol O-Acyltransferase/genetics , Xanthophylls , Stramenopiles/genetics , Docosahexaenoic Acids
8.
Article in English | MEDLINE | ID: mdl-38266530

ABSTRACT

Triacylglycerol (TAG) is crucial in animal energy storage and membrane biogenesis. The conversion of diacylglycerol (DAG) to triacylglycerol (TAG) is catalyzed by diacylglycerol acyltransferase enzymes (DGATs), which are encoded by genes belonging to two distinct gene families. Although arthropods are known to possess DGATs activities and utilize the glycerol-3-phosphate pathway and MAG pathway for TAG biosynthesis, the sequence characterization and evolutionary history of DGATs in arthropods remains unclear. This study aimed to comparatively evaluate genomic analyses of DGATs in 13 arthropod species and 14 outgroup species. We found that arthropods lack SOAT2 genes within the DGAT1 family, while DGAT2, MOGAT3, AWAT1, and AWAT2 were absent from in DGAT2 family. Gene structure and phylogenetic analyses revealed that DGAT1 and DGAT2 genes come from different gene families. The expression patterns of these genes were further analyzed in crustaceans, demonstrating the importance of DGAT1 in TAG biosynthesis. Additionally, we identified the DGAT1 gene in Swimming crab (P. trituberculatus) undergoes a mutually exclusive alternative splicing event in the molt stages. Our newly determined DGAT inventory data provide a more complete scenario and insights into the evolutionary dynamics and functional diversification of DGATs in arthropods.


Subject(s)
Arthropods , Diacylglycerol O-Acyltransferase , Animals , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Phylogeny , Arthropods/genetics , Arthropods/metabolism , Triglycerides
9.
Int J Biol Macromol ; 259(Pt 1): 129078, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176490

ABSTRACT

Docosahexaenoic acid (DHA) is known to have numerous health benefits and immense dietary value. There is a pressing need to have a deeper understanding of DHA metabolism. Acyl CoA: Diacylglycerol Acyltransferase (DGAT) is an important enzyme of lipid anabolism and an essential piece of the puzzle. Aurantiochytrium limacinum, a primary producer of DHA, is a good model for studying DHA metabolism. Thus, we aimed to investigate important lipid metabolic genes from A. limacinum. We cloned four putative DGATs (DGAT2a, DGAT2b, DGAT2c, and DGAT2d) from A. limacinum and performed detailed in vivo and in vitro characterization. Functional characterization showed that not all the studied genes exhibited DGAT activity. DGAT2a and DGAT2d conferred DGAT activity whereas DGAT2b showed wax synthase (WS) activity and DGAT2c showed dual function of both WS and DGAT. Based on their identified function, DGAT2b and DGAT2c were renamed as AlWS and AlWS/DGAT respectively. DGAT2a was found to exhibit a preference for DHA as a substrate. DGAT2d was found to have robust activity and emerged as a promising candidate for genetic engineering aimed at increasing oil yield. The study enriches our knowledge of lipid biosynthetic enzymes in A. limacinum, which can be utilized to design suitable application strategies.


Subject(s)
Diacylglycerol O-Acyltransferase , Genetic Engineering , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Lipids
10.
Oncogene ; 43(2): 136-150, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37973951

ABSTRACT

Impaired macroautophagy/autophagy flux has been implicated in the treatment of prostate cancer (PCa). However, the mechanism underlying autophagy dysregulation in PCa remains unknown. In the current study, we investigated the role of diacylglycerol acyltransferases 1 (DGAT1) and its potential effects on cellular energy homeostasis and autophagy flux in PCa. The results of immunohistochemical staining suggested that DGAT1 expression was positively corrected with tumor stage and node metastasis, indicating DGAT1 is an important factor involved in the development and progression of PCa. Furthermore, targeting DGAT1 remarkably inhibited cell proliferation in vitro and suppressed PCa growth in xenograft models by triggering severe oxidative stress and subsequently autophagy flux blockage. Mechanically, DGAT1 promoted PCa progression by maintaining cellular energy homeostasis, preserving mitochondrial function, protecting against reactive oxygen species, and subsequently promoting autophagy flux via regulating lipid droplet formation. Moreover, we found that fenofibrate exhibits as an upstream regulator of DGAT1. Fenofibrate performed its anti-PCa effect involved the aforementioned mechanisms, and partially dependent on the regulation of DGAT1. Collectively. These findings indicate that DGAT1 regulates PCa lipid droplets formation and is essential for PCa progression. Targeting DGAT1 might be a promising method to control the development and progression of PCa. Schematic representation of DGAT1 affects autophagy flux by regulating lipid homeostasis and maintaining mitochondrial function in prostate cancer (PCa). PCa is characterized up-regulation of DGAT1, leading to the translocation of free fatty acids into lipid droplets, thereby preventing PCa cell from lipotoxicity. Inhibition of DGAT1 suppresses growth of PCa by inducing oxidative stress and subsequently autophagy flux blockage. Further, the current results revealed that fenofibrate exhibits as an upstream regulator of DGAT1, and fenofibrate plays an anti-PCa role partially dependent on the regulation of DGAT1, suggesting a potential therapeutic approach to ameliorate this refractory tumor.


Subject(s)
Fenofibrate , Prostatic Neoplasms , Humans , Male , Autophagy , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Fenofibrate/metabolism , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Oxidative Stress , Prostate/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
12.
Proc Natl Acad Sci U S A ; 120(51): e2302161120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38079544

ABSTRACT

Gastroenteritis is among the leading causes of mortality globally in infants and young children, with rotavirus (RV) causing ~258 million episodes of diarrhea and ~128,000 deaths annually in infants and children. RV-induced mechanisms that result in diarrhea are not completely understood, but malabsorption is a contributing factor. RV alters cellular lipid metabolism by inducing lipid droplet (LD) formation as a platform for replication factories named viroplasms. A link between LD formation and gastroenteritis has not been identified. We found that diacylglycerol O-acyltransferase 1 (DGAT1), the terminal step in triacylglycerol synthesis required for LD biogenesis, is degraded in RV-infected cells by a proteasome-mediated mechanism. RV-infected DGAT1-silenced cells show earlier and increased numbers of LD-associated viroplasms per cell that translate into a fourfold-to-fivefold increase in viral yield (P < 0.05). Interestingly, DGAT1 deficiency in children is associated with diarrhea due to altered trafficking of key ion transporters to the apical brush border of enterocytes. Confocal microscopy and immunoblot analyses of RV-infected cells and DGAT1-/- human intestinal enteroids (HIEs) show a decrease in expression of nutrient transporters, ion transporters, tight junctional proteins, and cytoskeletal proteins. Increased phospho-eIF2α (eukaryotic initiation factor 2 alpha) in DGAT1-/- HIEs, and RV-infected cells, indicates a mechanism for malabsorptive diarrhea, namely inhibition of translation of cellular proteins critical for nutrient digestion and intestinal absorption. Our study elucidates a pathophysiological mechanism of RV-induced DGAT1 deficiency by protein degradation that mediates malabsorptive diarrhea, as well as a role for lipid metabolism, in the pathogenesis of gastroenteritis.


Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus , Child , Infant , Humans , Child, Preschool , Rotavirus/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Virus Replication , Diarrhea , Rotavirus Infections/genetics
13.
FASEB J ; 37(11): e23209, 2023 11.
Article in English | MEDLINE | ID: mdl-37779421

ABSTRACT

The roles of DGAT1 and DGAT2 in lipid metabolism and insulin responsiveness of human skeletal muscle were studied using cryosections and myotubes prepared from muscle biopsies from control, athlete, and impaired glucose regulation (IGR) cohorts of men. The previously observed increases in intramuscular triacylglycerol (IMTG) in athletes and IGR were shown to be related to an increase in lipid droplet (LD) area in type I fibers in athletes but, conversely, in type II fibers in IGR subjects. Specific inhibition of both diacylglycerol acyltransferase (DGAT) 1 and 2 decreased fatty acid (FA) uptake by myotubes, whereas only DGAT2 inhibition also decreased fatty acid oxidation. Fatty acid uptake in myotubes was negatively correlated with the lactate thresholds of the respective donors. DGAT2 inhibition lowered acetate uptake and oxidation in myotubes from all cohorts whereas DGAT1 inhibition had no effect. A positive correlation between acetate oxidation in myotubes and resting metabolic rate (RMR) from fatty acid oxidation in vivo was observed. Myotubes from athletes and IGR had higher rates of de novo lipogenesis from acetate that were normalized by DGAT2 inhibition. Moreover, DGAT2 inhibition in myotubes also resulted in increased insulin-induced Akt phosphorylation. The differential effects of DGAT1 and DGAT2 inhibition suggest that the specialized role of DGAT2 in esterifying nascent diacylglycerols and de novo synthesized FA is associated with synthesis of a pool of triacylglycerol, which upon hydrolysis results in effectors that promote mitochondrial fatty acid oxidation but decrease insulin signaling in skeletal muscle cells.


Subject(s)
Diacylglycerol O-Acyltransferase , Muscle Fibers, Skeletal , Male , Humans , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Muscle Fibers, Skeletal/metabolism , Glucose/metabolism , Insulin , Acetates , Triglycerides/metabolism , Fatty Acids/metabolism
14.
Appl Environ Microbiol ; 89(11): e0100123, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37874286

ABSTRACT

IMPORTANCE: Since the global market for sterols and vitamin D are grown with a high compound annual growth rate, a sustainable source of these compounds is required to keep up with the increasing demand. Thraustochytrid is a marine oleaginous microorganism that can synthesize several sterols, which are stored as SE in lipid droplets. DGAT2C is an unconventional SE synthase specific to thraustochytrids. Although the primary structure of DGAT2C shows high similarities with that of DGAT, DGAT2C utilizes sterol as an acceptor substrate instead of diacylglycerol. In this study, we examined more detailed enzymatic properties, intracellular localization, and structure-activity relationship of DGAT2C. Furthermore, we successfully developed a method to increase sterol and provitamin D3 productivity of thraustochytrid by more than threefold in the process of elucidating the function of the DGAT2C-specific N-terminal region. Our findings could lead to sustainable sterol and vitamin D production using thraustochytrid.


Subject(s)
Sterol O-Acyltransferase , Sterols , Lipid Droplets , Vitamin D , Diacylglycerol O-Acyltransferase/genetics
15.
PeerJ ; 11: e15724, 2023.
Article in English | MEDLINE | ID: mdl-37583911

ABSTRACT

Background: Olive (Olea europaea L.) oil accumulate more diacylglycerols (DAG) than mostly vegetable oils. Unsaturated fatty acids-enriched DAG consumption enhanced wellness in subjects. However, the mechanism of DAG accumulation is not yet fully understood. Methods: In this study, gene network of DAG accumulation and fatty acid composition in the two olive mesocarps ("Chenggu 32" (CG) and "Koroneiki" (QJ)) were investigated by integrating lipidome and transcriptome techniques. Results: A total of 1,408 lipid molecules were identified by lipidomic analysis in olive mesocarp, of which DAG (DAG36:3, DAG36:4 and DAG36:5) showed higher content, and triacylglycerols (TAG54:3, TAG54:4) exhibited opposite trend in CG. Specifically, DAG was rich in polyunsaturated fatty acids (especially C18:2) at the sn-2 position, which was inconsistent with TAG at the same positions (Primarily C18:1). Transcriptomic analysis revealed that phospholipase C (NPC, EC 3.1.4.3) were up-regulated relative to QJ, whereas diacylglycerol kinase (ATP) (DGK, EC 2.7.1.107), diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), and phospholipid: diacylglycerol acyltransferase (PDAT, EC 2.3.1.158) were down-regulated. Conclusion: We speculated that the non-acyl coenzyme A pathway played a significant role in DAG biosynthesis. Additionally, fatty acyl-ACP thioesterase B (FATB, EC 3.1.2.14), stearoyl [acyl-carrier-protein] 9-desaturase (SAD, EC 1.14.19.2) and omega-6 fatty acid desaturase (FAD2, EC 1.14.19.6) were highly expressed in CG and may be involved in regulating fatty acid composition. Meanwhile, phospholipase A1 (LCAT, EC 3.1.1.32) involved in the acyl editing reaction facilitated PUFA linkage at the sn-2 position of DAG. Our findings provide novel insights to increase the DAG content, improve the fatty acid composition of olive oil, and identify candidate genes for the production of DAG-rich oils.


Subject(s)
Olea , Humans , Olea/genetics , Lipidomics , Diacylglycerol O-Acyltransferase/genetics , Diglycerides/metabolism , Transcriptome/genetics , Fatty Acids , Fatty Acids, Unsaturated
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159376, 2023 10.
Article in English | MEDLINE | ID: mdl-37516308

ABSTRACT

Two distinct diacylglycerol acyltransferases (DGAT1 and DGAT2) catalyze the final committed step of triacylglycerol (TG) synthesis in hepatocytes. After its synthesis in the endoplasmic reticulum (ER) TG is either stored in cytosolic lipid droplets (LDs) or is assembled into very low-density lipoproteins in the ER lumen. TG stored in cytosolic LDs is hydrolyzed by adipose triglyceride lipase (ATGL) and the released fatty acids are converted to energy by oxidation in mitochondria. We hypothesized that targeting/association of ATGL to LDs would differ depending on whether the TG stores were generated through DGAT1 or DGAT2 activities. Individual inhibition of DGAT1 or DGAT2 in Huh7 hepatocytes incubated with oleic acid did not yield differences in TG accretion while combined inhibition of both DGATs completely prevented TG synthesis suggesting that either DGAT can efficiently esterify exogenously supplied fatty acid. DGAT2-made TG was stored in larger LDs, whereas TG formed by DGAT1 accumulated in smaller LDs. Inactivation of DGAT1 or DGAT2 did not alter expression (mRNA or protein) of ATGL, the ATGL activator ABHD5/CGI-58, or LD coat proteins PLIN2 or PLIN5, but inactivation of both DGATs increased PLIN2 abundance despite a dramatic reduction in the number of LDs. ATGL was found to preferentially target to LDs generated by DGAT1 and fatty acids released from TG in these LDs were also preferentially used for fatty acid oxidation. Combined inhibition of DGAT2 and ATGL resulted in larger LDs, suggesting that the smaller size of DGAT1-generated LDs is the result of increased lipolysis of TG in these LDs.


Subject(s)
Hepatocytes , Lipolysis , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Fatty Acids/metabolism , Hepatocytes/metabolism , Triglycerides/metabolism
17.
Appl Microbiol Biotechnol ; 107(18): 5761-5774, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37498333

ABSTRACT

Mortierella alpina produces various polyunsaturated fatty acids in the form of triacylglycerols (TAG). Diacylglycerol acyltransferase (DGAT) catalyzes the binding of acyl-CoA to diacylglycerol to form TAG and is the key enzyme involved in TAG synthesis. A variety of DGATs are present in M. alpina; however, comparative analysis of the functional properties and substrate selectivity of these DGATs is insufficient. In this study, DGAT1 (MaDGAT1A/1B/1C) and DGAT2 (MaDGAT2A/2B) isoforms from M. alpina were analyzed and heterologously expressed in S. cerevisiae H1246. The results showed that MaDGAT1A/1B/2A/2B were able to restore TAG synthesis, and the corresponding TAG content in recombinant yeasts was 2.92 ± 0.42%, 3.62 ± 0.22%, 0.86 ± 0.34%, and 0.18 ± 0.09%, respectively. In S. cerevisiae H1246, MaDGAT1A preferred C16:1 among monounsaturated fatty acids, MaDGAT1B preferred C16:0 among saturated fatty acids (SFAs), and MaDGAT2A/2B preferred C18:0 among SFAs. Under exogenous addition of polyunsaturated fatty acids (PUFAs), MaDGAT1A and 2A preferentially assembled linoleic acid into TAG, and MaDGAT2B had substrate selectivity for eicosapentaenoic and linoleic acids in ω-6 PUFAs. In vitro, MaDGAT1A showed no obvious acyl-CoA selectivity and MaDGAT1B preferred C20:5-CoA. MaDGAT1A/1B preferred C18:1/C18:1-DAG compared with C20:4/C20:4-DAG. This study indicates that MaDGATs have the potential to be used in the production of LA/EPA-rich TAG and provide a reference for improving the production of TAGs in oleaginous fungi. KEY POINTS: • MaDGAT1A preferred C16:1 among MUFAs, MaDGAT1B and MaDGAT2A/2B preferred C16:0 and C18:0 among SFAs, respectively • MaDGAT1A/2A preferentially assembled linoleic acid into TAG, and MaDGAT2B has substrate selectivity for eicosapentaenoic acid and linoleic acid in ω-6 PUFAs • MaDGAT1A showed no obvious acyl-CoA selectivity, and MaDGAT1B preferred C20:5-CoA. MaDGAT1A/1B preferred to select C18:1/C18:1-DAG compared with C20:4/C20:4-DAG.


Subject(s)
Diacylglycerol O-Acyltransferase , Saccharomyces cerevisiae , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Linoleic Acid , Diglycerides , Fatty Acids/metabolism , Fatty Acids, Unsaturated , Triglycerides/metabolism , Acyltransferases
18.
BMC Plant Biol ; 23(1): 370, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37491206

ABSTRACT

BACKGROUND: Extensive population growth and climate change accelerate the search for alternative ways of plant-based biomass, biofuel and feed production. Here, we focus on hitherto unknow, new promising cold-stimulated function of phospholipid:diacylglycerol acyltransferase1 (PDAT1) - an enzyme catalyzing the last step of triacylglycerol (TAG) biosynthesis. RESULT: Overexpression of AtPDAT1 boosted seed yield by 160% in Arabidopsis plants exposed to long-term cold compared to standard conditions. Such seeds increased both their weight and acyl-lipids content. This work also elucidates PDAT1's role in leaves, which was previously unclear. Aerial parts of AtPDAT1-overexpressing plants were characterized by accelerated growth at early and vegetative stages of development and by biomass weighing three times more than control. Overexpression of PDAT1 increased the expression of SUGAR-DEPENDENT1 (SDP1) TAG lipase and enhanced lipid remodeling, driving lipid turnover and influencing biomass increment. This effect was especially pronounced in cold conditions, where the elevated synergistic expression of PDAT1 and SDP1 resulted in double biomass increase compared to standard conditions. Elevated phospholipid remodeling also enhanced autophagy flux in AtPDAT1-overexpresing lines subjected to cold, despite the overall diminished autophagy intensity in cold conditions. CONCLUSIONS: Our data suggest that PDAT1 promotes greater vitality in cold-exposed plants, stimulates their longevity and boosts oilseed oil production at low temperature.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phospholipids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Diglycerides/metabolism , Triglycerides , Arabidopsis/metabolism , Plants/metabolism , Seeds , Plants, Genetically Modified/metabolism , Plant Oils/metabolism , Carboxylic Ester Hydrolases/metabolism
19.
Article in English | MEDLINE | ID: mdl-37481107

ABSTRACT

Lipids play essential roles in cell-structuring, cell-signaling, and as efficient metabolic energy stores. Lipid storage capacities determine life history traits of organisms and, thus, their ecological function. Among storage lipids, triacylglycerols (TAGs) are widespread in marine invertebrates. However, abilities to accumulate TAGs can vary even between closely related species, such as the caridean shrimps Crangon crangon and Pandalus montagui. The first species shows low TAG levels throughout the year in the main storage organ, the midgut gland, while the latter accumulates high TAG-levels, peaking in summer. TAGs synthesis is facilitated by the terminal step of the Kennedy-pathway, where the enzyme diacylglycerol-acyltransferase (DGAT) catalyzes the esterification of diacylglycerols with activated fatty acids. We investigated DGAT activity in the midgut gland using a fluorescent enzyme assay. Sequence information was extracted from whole transcriptome shotgun assembly data, that is publicly available on NCBI, and catalytic properties were deduced from molecular structure analysis. C. crangon showed significantly lower TAG synthesis rates than P. montagui, which explains the native TAG levels. Transcriptome data yielded several isoforms of DGAT enzymes in both species. C. crangon DGAT showed point mutations, which are capable of obstructing the catalytic capacity. The consequences are limited starvation resistance and, thus, presumably restricting C. crangon to a habitat with year-round sufficient food. In contrast, higher TAG synthesis rates presumably enable P. montagui to extend into northern subarctic habitats with limited food availability in winter. Moreover, the limited TAG synthesis and accumulation in the midgut gland may force C. crangon to direct energy into the ovaries, which results in multiple spawnings.


Subject(s)
Crangonidae , Life History Traits , Pandalidae , Animals , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Pandalidae/metabolism , Crangonidae/metabolism , Fatty Acids/metabolism , Triglycerides/metabolism
20.
Sci Rep ; 13(1): 8999, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268760

ABSTRACT

DGAT1 is playing a major role in fat metabolism and triacylglyceride synthesis. Only two DGAT1 loss-of-function variants altering milk production traits in cattle have been reported to date, namely p.M435L and p.K232A. The p.M435L variant is a rare alteration and has been associated with skipping of exon 16 which results in a non-functional truncated protein, and the p.K232A-containing haplotype has been associated with modifications of the splicing rate of several DGAT1 introns. In particular, the direct causality of the p.K232A variant in decreasing the splicing rate of the intron 7 junction was validated using a minigene assay in MAC-T cells. As both these DGAT1 variants were shown to be spliceogenic, we developed a full-length gene assay (FLGA) to re-analyse p.M435L and p.K232A variants in HEK293T and MAC-T cells. Qualitative RT-PCR analysis of cells transfected with the full-length DGAT1 expression construct carrying the p.M435L variant highlighted complete skipping of exon 16. The same analysis performed using the construct carrying the p.K232A variant showed moderate differences compared to the wild-type construct, suggesting a possible effect of this variant on the splicing of intron 7. Finally, quantitative RT-PCR analyses of cells transfected with the p.K232A-carrying construct did not show any significant modification on the splicing rate of introns 1, 2 and 7. In conclusion, the DGAT1 FLGA confirmed the p.M435L impact previously observed in vivo, but invalidated the hypothesis whereby the p.K232A variant strongly decreased the splicing rate of intron 7.


Subject(s)
Diacylglycerol O-Acyltransferase , Animals , Cattle , Female , Humans , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , HEK293 Cells , Lactation/genetics , Milk/metabolism , Polymorphism, Genetic , RNA Precursors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...