Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.189
Filter
1.
J Transl Med ; 22(1): 732, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103816

ABSTRACT

BACKGROUND: Inspiratory muscle fatigue has been shown to have effects on limbs blood flow and physical performance. This study aimed to evaluate the influence of an inspiratory muscle fatigue protocol on respiratory muscle strength, vertical jump performance and muscle oxygen saturation in healthy youths. METHODS: A randomized and double-blinded controlled clinical trial, was conducted. Twenty-four participants aged 18-45 years, non-smokers and engaged in sports activity at least three times a week for a minimum of one year were enrolled in this investigation. Participants were randomly assigned to three groups: Inspiratory Muscle Fatigue (IMFG), Activation, and Control. Measurements of vertical jump, diaphragmatic ultrasound, muscle oxygen saturation, and maximum inspiratory pressure were taken at two stages: before the intervention (T1) and immediately after treatment (T2). RESULTS: The IMFG showed lower scores in muscle oxygen saturation and cardiorespiratory variables after undergoing the diaphragmatic fatigue intervention compared to the activation and control groups (p < 0.05). For the vertical jump variables, intragroup differences were found (p < 0.01), but no differences were shown between the three groups (p > 0.05). CONCLUSIONS: Inspiratory muscle fatigue appears to negatively impact vertical jump performance, muscle oxygen saturation and inspiratory muscle strength in healthy youths. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT06271876. Date of registration 02/21/2024. https://clinicaltrials.gov/study/NCT06271876 .


Subject(s)
Inhalation , Muscle Fatigue , Muscle Strength , Respiratory Muscles , Humans , Respiratory Muscles/physiology , Muscle Fatigue/physiology , Muscle Strength/physiology , Male , Adolescent , Young Adult , Female , Adult , Inhalation/physiology , Oxygen Saturation/physiology , Middle Aged , Diaphragm/physiology , Double-Blind Method
2.
BMC Med Imaging ; 24(1): 217, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148010

ABSTRACT

BACKGROUND: The ratio (E/Ea) of mitral Doppler inflow velocity to annular tissue Doppler wave velocity by transthoracic echocardiography and diaphragmatic excursion (DE) by diaphragm ultrasound have been confirmed to predict extubation outcomes. However, few studies focused on the predicting value of E/Ea and DE at different positions during a spontaneous breathing trial (SBT), as well as the effects of △E/Ea and △DE (changes in E/Ea and DE during a SBT). METHODS: This study was a reanalysis of the data of 60 difficult-to-wean patients in a previous study published in 2017. All eligible participants were organized into respiratory failure (RF) group and extubation success (ES) group within 48 h after extubation, or re-intubation (RI) group and non-intubation (NI) group within 1 week after extubation. The risk factors for respiratory failure and re-intubation including E/Ea and △E/Ea, DE and △DE at different positions were analyzed by multivariate logistic regression, respectively. The receiver operating characteristic (ROC) curves of E/Ea (septal, lateral, average) and DE (right, left, average) were compared with each other, respectively. RESULTS: Of the 60 patients, 29 cases developed respiratory failure within 48 h, and 14 of those cases required re-intubation within 1 week. Multivariate logistic regression showed that E/Ea were all associated with respiratory failure, while only DE (right) and DE (average) after SBT were related to re-intubation. There were no statistic differences among the ROC curves of E/Ea at different positions, nor between the ROC curves of DE. No statistical differences were shown in △E/Ea between RF and ES groups, while △DE (average) was remarkably higher in NI group than that in RI group. However, multivariate logistic regression analysis showed that △DE (average) was not associated with re-intubation. CONCLUSIONS: E/Ea at different positions during a SBT could predict postextubation respiratory failure with no statistical differences among them. Likewise, only DE (right) and DE (average) after SBT might predict re-intubation with no statistical differences between each other.


Subject(s)
Airway Extubation , Diaphragm , Respiratory Insufficiency , Ventilator Weaning , Humans , Male , Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Female , Retrospective Studies , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/physiopathology , Aged , Ventilator Weaning/methods , Middle Aged , ROC Curve , Echocardiography/methods , Heart/diagnostic imaging , Risk Factors
3.
Eur Radiol Exp ; 8(1): 87, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090324

ABSTRACT

BACKGROUND: Severe chronic obstructive pulmonary disease (COPD) often results in hyperinflation and flattening of the diaphragm. An automated computed tomography (CT)-based tool for quantifying diaphragm configuration, a biomarker for COPD, was developed in-house and tested in a large cohort of COPD patients. METHODS: We used the LungQ platform to extract the lung-diaphragm intersection, as direct diaphragm segmentation is challenging. The tool computed the diaphragm index (surface area/projected surface area) as a measure of diaphragm configuration on inspiratory scans in a COPDGene subcohort. Visual inspection of 250 randomly selected segmentations served as a quality check. Associations between the diaphragm index, Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages, forced expiratory volume in 1 s (FEV1) % predicted, and CT-derived emphysema scores were explored using analysis of variance and Pearson correlation. RESULTS: The tool yielded incomplete segmentation in 9.2% (2.4% major defect, 6.8% minor defect) of 250 randomly selected cases. In 8431 COPDGene subjects (4240 healthy; 4191 COPD), the diaphragm index was increasingly lower with higher GOLD stages (never-smoked 1.83 ± 0.16; GOLD-0 1.79 ± 0.18; GOLD-1 1.71 ± 0.15; GOLD-2: 1.67 ± 0.16; GOLD-3 1.58 ± 0.14; GOLD-4 1.54 ± 0.11) (p < 0.001). Associations were found between the diaphragm index and both FEV1% predicted (r = 0.44, p < 0.001) and emphysema score (r = -0.36, p < 0.001). CONCLUSION: We developed an automated tool to quantify the diaphragm configuration in chest CT. The diaphragm index was associated with COPD severity, FEV1%predicted, and emphysema score. RELEVANCE STATEMENT: Due to the hypothesized relationship between diaphragm dysfunction and diaphragm configuration in COPD patients, automatic quantification of diaphragm configuration may prove useful in evaluating treatment efficacy in terms of lung volume reduction. KEY POINTS: Severe COPD changes diaphragm configuration to a flattened state, impeding function. An automated tool quantified diaphragm configuration on chest-CT providing a diaphragm index. The diaphragm index was correlated to COPD severity and may aid treatment assessment.


Subject(s)
Diaphragm , Pulmonary Disease, Chronic Obstructive , Tomography, X-Ray Computed , Humans , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/physiopathology , Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Tomography, X-Ray Computed/methods , Male , Female , Middle Aged , Aged , Forced Expiratory Volume
4.
Trials ; 25(1): 519, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095923

ABSTRACT

BACKGROUND: In the United States in 2017, there were an estimated 903,745 hospitalizations involving mechanical ventilation (MV). Complications from ventilation can result in longer hospital stays, increased risk of disability, and increased healthcare costs. It has been hypothesized that electrically pacing the diaphragm by phrenic nerve stimulation during mechanical ventilation may minimize or reverse diaphragm dysfunction, resulting in faster weaning. METHODS: The ReInvigorate Trial is a prospective, multicenter, randomized, controlled clinical trial evaluating the safety and efficacy of Stimdia's pdSTIM System for facilitating weaning from MV. The pdSTIM system employs percutaneously placed multipolar electrodes to stimulate the cervical phrenic nerves and activate contraction of the diaphragm bilaterally. Patients who were on mechanical ventilation for at least 96 h and who failed at least one weaning attempt were considered for enrollment in the study. The primary efficacy endpoint was the time to successful liberation from mechanical ventilation (treatment vs. control). Secondary endpoints will include the rapid shallow breathing index and other physiological and system characteristics. Safety will be summarized for both primary and additional analyses. All endpoints will be evaluated at 30 days or at the time of removal of mechanical ventilation, whichever is first. DISCUSSION: This pivotal study is being conducted under an investigational device exception with the U.S. Food and Drug Administration. The technology being studied could provide a first-of-kind therapy for difficult-to-wean patients on mechanical ventilation in an intensive care unit setting. TRIAL REGISTRATION: Clinicaltrials.gov, NCT05998018 , registered August 2023.


Subject(s)
Diaphragm , Multicenter Studies as Topic , Phrenic Nerve , Randomized Controlled Trials as Topic , Ventilator Weaning , Humans , Ventilator Weaning/methods , Diaphragm/innervation , Phrenic Nerve/physiology , Prospective Studies , Time Factors , Treatment Outcome , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Electric Stimulation Therapy/methods , Electric Stimulation Therapy/adverse effects , Electric Stimulation Therapy/instrumentation
5.
J Visc Surg ; 161(4): 262-266, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971628
6.
Transpl Int ; 37: 12897, 2024.
Article in English | MEDLINE | ID: mdl-38979122

ABSTRACT

Mutual interactions between the diaphragm and lung transplantation (LTx) are known to exist. Before LTx, many factors can exert notable impact on the diaphragmatic function, such as the underlying respiratory disease, the comorbidities, and the chronic treatments of the patient. In the post-LTx setting, even the surgical procedure itself can cause a stressful trauma to the diaphragm, potentially leading to morphological and functional alterations. Conversely, the diaphragm can significantly influence various aspects of the LTx process, ranging from graft-to-chest cavity size matching to the long-term postoperative respiratory performance of the recipient. Despite this, there are still no standard criteria for evaluating, defining, and managing diaphragmatic dysfunction in the context of LTx to date. This deficiency hampers the accurate assessment of those factors which affect the diaphragm and its reciprocal influence on LTx outcomes. The objective of this narrative review is to delve into the complex role the diaphragm plays in the different stages of LTx and into the modifications of this muscle following surgery.


Subject(s)
Diaphragm , Lung Transplantation , Humans , Postoperative Complications/etiology
7.
Crit Care ; 28(1): 245, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014512

ABSTRACT

BACKGROUND: In mechanically ventilated patients, diaphragm ultrasound can identify diaphragm weakness and predict weaning failure. We evaluated whether a novel operator-independent ultrasound-based medical device allowing continuous monitoring of the diaphragm (CUSdi) could reliably (1) measure diaphragm excursion (EXdi) and peak contraction velocity (PCVdi), (2) predict weaning outcome, and (3) approximate transdiaphragmatic pressure (Pdi). METHODS: In 49 mechanically ventilated patients, CUSdi was recorded during a 30-min spontaneous breathing trial (SBT), and EXdi and PCVdi were measured. In subgroups of patients, standard ultrasound measurement of EXdi and PCVdi was performed (n = 36), and Pdi derived parameters (peak and pressure time product, n = 30) were measured simultaneously. RESULTS: The agreement bias between standard ultrasound and CUSdi for EXdi was 0.1 cm (95% confidence interval -0.7-0.9 cm). The regression of Passing-Bablok indicated a lack of systematic difference between EXdi measured with standard ultrasound and CUSdi, which were positively correlated (Rho = 0.84, p < 0.001). Weaning failure was observed in 54% of patients. One, two and three minutes after the onset of the SBT, EXdi was higher in the weaning success group than in the failure group. Two minutes after the onset of the SBT, an EXdi < 1.1 cm predicted weaning failure with a sensitivity of 0.83, a specificity of 0.68, a positive predictive value of 0.76, and a negative predictive value of 0.24. There was a weak correlation between EXdi and both peak Pdi (r = 0.22, 95% confidence interval 0.15 - 0.28) and pressure time product (r = 0.13, 95% confidence interval 0.06 - 0.20). Similar results were observed with PCVdi. CONCLUSIONS: Operator-independent continuous diaphragm monitoring quantifies EXdi reliably and can predict weaning failure with an identified cut-off value of 1.1 cm. Trial registration clinicaltrial.gov, NCT04008875 (submitted 12 April 2019, posted 5 July 2019) and NCT03896048 (submitted 27 March 2019, posted 29 March 2019).


Subject(s)
Diaphragm , Ultrasonography , Ventilator Weaning , Humans , Ventilator Weaning/methods , Ventilator Weaning/standards , Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Prospective Studies , Male , Female , Ultrasonography/methods , Ultrasonography/standards , Middle Aged , Aged , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Respiration, Artificial/methods , Predictive Value of Tests
8.
Int J Chron Obstruct Pulmon Dis ; 19: 1591-1601, 2024.
Article in English | MEDLINE | ID: mdl-39005647

ABSTRACT

Background: Exercise is an indispensable component of pulmonary rehabilitation with strong anti-inflammatory effects. However, the mechanisms by which exercise prevents diaphragmatic atrophy in COPD (chronic obstructive pulmonary disease) remain unclear. Methods: Forty male C57BL/6 mice were assigned to the control (n=16) and smoke (n=24) groups. Mice in the smoke group were exposed to the cigarette smoke (CS) for six months. They were then divided into model and exercise training groups for 2 months. Histological changes were observed in lung and diaphragms. Subsequently, agonist U46639 and antagonist Y27632 of RhoA/ROCK were subjected to mechanical stretching in LPS-treated C2C12 myoblasts. The expression levels of Atrogin-1, MuRF-1, MyoD, Myf5, IL-1ß, TNF-α, and RhoA/ROCK were determined by Western blotting. Results: Diaphragmatic atrophy and increased RhoA/ROCK expression were observed in COPD mice. Exercise training attenuated diaphragmatic atrophy, decreased the expression of MuRF-1, and increased MyoD expression in COPD diaphragms. Exercise also affects the upregulation of RhoA/ROCK and inflammation-related proteins. In in vitro experiments with C2C12 myoblasts, LPS remarkably increased the level of inflammation and protein degradation, whereas Y27632 or combined with mechanical stretching prevented this phenomenon considerably. Conclusion: RhoA/ROCK plays an important role in the prevention of diaphragmatic atrophy in COPD.


Subject(s)
Diaphragm , Disease Models, Animal , Mice, Inbred C57BL , Muscular Atrophy , Pulmonary Disease, Chronic Obstructive , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Animals , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , rho-Associated Kinases/metabolism , Male , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Muscular Atrophy/etiology , rhoA GTP-Binding Protein/metabolism , Diaphragm/metabolism , Diaphragm/physiopathology , Diaphragm/pathology , Cell Line , rho GTP-Binding Proteins/metabolism , Exercise Therapy/methods , Mice , Lung/pathology , Lung/metabolism , Lung/physiopathology , Inflammation Mediators/metabolism , Physical Conditioning, Animal
9.
A A Pract ; 18(7): e01816, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39008447

ABSTRACT

Referred chronic shoulder pain may arise from diaphragmatic irritation. It can potentially be alleviated by blockade of the phrenic nerve. There is literature describing its use in acute pain conditions; yet for chronic pain, there are no reports. We present 2 cases of chronic diaphragmatic irritation causing ipsilateral referred shoulder pain. Patients experienced significant pain relief and a reduction in opioid consumption after receiving an ultrasound-guided phrenic nerve block. While the phrenic nerve block shows promise for pain relief, carefully evaluating its benefits and risks is recommended before considering its application in selected cases.


Subject(s)
Nerve Block , Phrenic Nerve , Shoulder Pain , Humans , Phrenic Nerve/injuries , Nerve Block/methods , Shoulder Pain/etiology , Male , Diaphragm/innervation , Female , Middle Aged , Chronic Pain
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 643-648, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38991965

ABSTRACT

OBJECTIVE: To investigate the dynamic changes of diaphragm and limb skeletal muscle in patients with sepsis by bedside ultrasound and their correlation with the ratio of blood urea/creatinine ratio (UCR) in 7 days after intensive care unit (ICU) admission. METHODS: A prospective observational study was conducted. A total of 55 patients with sepsis admitted to ICU of General Hospital of Ningxia Medical University from June 2022 to February 2023 were selected as the research objects. General information, laboratory indicators [urea, serum creatinine (SCr), and UCR] on days 1, 4, and 7 of ICU admission, and prognostic indicators were observed. Bedside ultrasound was used to assess the dynamic changes of diaphragm morphology [including diaphragmatic excursion (DE), end-inspiratory diaphragm thickness (DTei), and end-expiratory diaphragm thickness (DTee)] on days 1, 4, and 7 of ICU admission, as well as limb skeletal muscle (quadriceps femoris) morphology [including rectus femoris-muscle layer thickness (RF-MLT), vastus intermedius-muscle layer thickness (VI-MLT), and rectus femoris-cross sectional area (RF-CSA)]. Diaphragm thickening fraction (DTF) and RF-CSA atrophy rate were calculated, and the incidence of diaphragm and limb skeletal muscle dysfunction was recorded. The correlation between ultrasound morphological parameters of diaphragm and quadriceps and UCR at each time points in 7 days after ICU admission was analyzed by Pearson correlation. RESULTS: A total of 55 patients with sepsis were included, of which 29 were in septic shock. As the duration of ICU admission increased, the incidence of diaphragm dysfunction in patients with sepsis increased first and then decreased (63.6%, 69.6%, and 58.6% on days 1, 4, and 7 of ICU admission, respectively), while the incidence of limb skeletal muscle dysfunction showed an increasing trend (54.3% and 62.1% on days 4 and 7 of ICU admission, respectively), with a probability of simultaneous occurrence on days 4 and 7 of ICU admission were 32.6% and 34.5%, respectively. The UCR on day 7 of ICU admission was significantly higher than that on day 1 [121.77 (95.46, 164.55) vs. 97.00 (70.26, 130.50)], and RF-CSA atrophy rate on day 7 was significantly higher than that on day 4 [%: -39.7 (-52.4, -22.1) vs. -26.5 (-40.2, -16.4)]. RF-CSA was significantly lower on day 7 compared to day 1 [cm2: 1.3 (1.0, 2.5) vs. 2.1 (1.7, 2.9)], with all differences being statistically significant (all P < 0.05). Pearson correlation analysis showed that RF-CSA on day 7 of ICU admission was negatively associated with the UCR on the same day (r = -0.407, P = 0.029). CONCLUSIONS: Diaphragmatic dysfunction in patients with sepsis occurred early and can be improved. Limb skeletal muscle dysfunction occurred relatively later and progresses progressively. The RF-CSA on day 7 of ICU admission may be a reliable measure of limb skeletal muscle dysfunction in patients with sepsis, can be an indicator of early identification and diagnosis of ICU-acquired weakness (ICU-AW). Continuous loss of muscle mass occurring in septic patients is mainly associated with persistent organismal catabolism, and undergoes significant changes around a week in ICU.


Subject(s)
Creatinine , Diaphragm , Intensive Care Units , Muscle, Skeletal , Sepsis , Ultrasonography , Urea , Humans , Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Prospective Studies , Ultrasonography/methods , Muscle, Skeletal/diagnostic imaging , Creatinine/blood , Urea/blood , Extremities , Male , Female , Point-of-Care Systems , Middle Aged
11.
Medicine (Baltimore) ; 103(27): e38595, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968523

ABSTRACT

To observe of the effect of electrical stimulation at the back-shu acupoint with extrinsic diaphragmatic pacing (EDP) mode on respiratory function and extubation success rate in tracheostomized stroke patients. A total of 200 patients who underwent tracheostomy after a stroke from January 2022 to February 2023 were included in this study. They were divided into 2 groups based on whether electroacupuncture was used: the EDP + electroacupuncture group and the EDP group. We assessed the differences in cough reflex scores and clinical lung infection scores between the 2 groups, and measured levels of blood gas analysis indicators, diaphragmatic function, lung function, maximum inspiratory pressure, and maximum expiratory pressure in both groups. The total effective rate in the EDP + electroacupuncture group was 91.00% (91/100), which was higher than the EDP group's 80.00% (80/100) (P < .05). After treatment, both groups showed a decrease in clinical lung infection scores and cough reflex scores compared to before treatment, with the EDP + electroacupuncture group having lower scores than the EDP group (P < .05). After treatment, the pH value, arterial oxygen pressure, and oxygenation index all increased compared to before treatment, with the EDP + electroacupuncture group showing higher values than the EDP group (P < .05). After treatment, both groups showed a decrease in arterial carbon dioxide pressure compared to before treatment, with the EDP + electroacupuncture group having lower PaCO2 levels than the EDP group (P < .05). After treatment, both groups showed an increase in forced vital capacity as a percentage of predicted value (FVC%), diaphragm thickness, diaphragm mobility, maximum inspiratory pressure, maximum expiratory pressure, forced expiratory volume in the first second as a percentage of predicted value (FEV1%), and diaphragm contraction speed compared to before treatment. Additionally, the EDP + electroacupuncture group had higher values in these parameters compared to the EDP group (P < .05). The EDP + electroacupuncture group had a shorter average extubation time and a higher extubation success rate compared to the EDP group (P < .05). The combination of EDP mode and electroacupuncture at the back-shu acupoint appears to be effective in improving lung function and diaphragmatic function in tracheostomized stroke patients. It also leads to a shorter extubation time and higher extubation success rates.


Subject(s)
Acupuncture Points , Airway Extubation , Diaphragm , Electroacupuncture , Stroke , Tracheostomy , Humans , Male , Female , Middle Aged , Electroacupuncture/methods , Aged , Airway Extubation/methods , Diaphragm/physiopathology , Stroke/therapy , Tracheostomy/methods , Treatment Outcome , Respiratory Function Tests
12.
Eur Respir Rev ; 33(173)2024 Jul.
Article in English | MEDLINE | ID: mdl-39048128

ABSTRACT

Diaphragmatic palsy after lung transplantation has been reported infrequently. Given the role of the diaphragm in respiration, the palsy may play a significant role in the post-surgical recovery as well as morbidity and mortality. This review summarises the current literature to better understand diaphragmatic palsy in the post lung-transplant setting among adults. A thorough literature search was conducted through multiple databases and 91 publications were identified that fit the research question. The review aimed to report the burden of this problem, explore different modalities of diagnosis reported, the effect of various clinical factors and treatment modalities, as well as their effects on outcomes. Additionally, it aimed to highlight the variability, limitations of reported data, and the absence of a standardised approach. This review emphasises the crucial need for more dedicated research to better address this clinical challenge.


Subject(s)
Lung Transplantation , Respiratory Paralysis , Humans , Lung Transplantation/adverse effects , Respiratory Paralysis/etiology , Respiratory Paralysis/physiopathology , Respiratory Paralysis/therapy , Risk Factors , Treatment Outcome , Recovery of Function , Diaphragm/physiopathology , Adult , Female , Male
13.
J Ultrasound ; 27(3): 733-737, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39060717

ABSTRACT

BACKGROUND: Recent studies have highlighted the recognition of diaphragmatic dysfunction as a significant factor contributing to respiratory disturbances in severely ill COVID-19 patients. In the field of noninvasive respiratory support, high-flow nasal cannula (HFNC) has shown effectiveness in relieving diaphragm dysfunction. This study aims to investigate the diaphragmatic response to HFNC in patients with COVID-19 pneumonia by utilizing ultrasound. METHODS: This retrospective study was conducted in a medical-surgical intensive care unit (ICU) at a tertiary care center in Buenos Aires, Argentina (Sanatorio de Los Arcos) over a 16-month period (January 2021-June 2022). The study included patients admitted to the ICU with a diagnosis of COVID-19 pneumonia who were deemed suitable candidates for HFNC therapy by the attending physician. Diaphragm ultrasound was conducted, measuring diaphragmatic excursion (DE) both before and during the utilization of HFNC for these patients. RESULTS: A total of 10 patients were included in the study. A statistically significant decrease in respiratory rate was observed with the use of HFNC (p = 0.02), accompanied by a significant increase in DE (p = 0.04). CONCLUSION: HFNC leads to a reduction in respiratory rate and an increase in DE as observed by ultrasound in patients with COVID-19 pneumonia, indicating promising enhancements in respiratory mechanics. However, further research is required to validate these findings.


Subject(s)
COVID-19 , Cannula , Diaphragm , Ultrasonography , Humans , COVID-19/therapy , COVID-19/complications , COVID-19/diagnostic imaging , Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Male , Female , Retrospective Studies , Middle Aged , Ultrasonography/methods , Aged , Proof of Concept Study , SARS-CoV-2 , Oxygen Inhalation Therapy/methods , Intensive Care Units , Noninvasive Ventilation/methods , Adult , Respiratory Rate
14.
Fitoterapia ; 177: 106127, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019238

ABSTRACT

Melanin is a dark pigment from the group of phenolic or indole polymers with inherent biocompatibility and antioxidant capacity. In extremophilic lichen Lobaria pulmonaria, melanin is responsible for protective properties against hostile environments. Herein, the ability of melanin extracted from L. pulmonaria to counteract oxidative stress and related damages was studied in the mouse diaphragm, the main respiratory muscle. Initial in vitro experiments demonstrated ultraviolet (UV)-absorbing, antioxidant and metal chelating activities of melanin. This melanin can form nanoparticles and stabile colloidal system at concentration of 5 µg/ml. Pretreatment of the muscle with melanin (5 µg/ml) markedly reduced UV-induced increase in intracellular and extracellular reactive oxygen species (ROS) as well as antimycin A-mediated enhancement in mitochondrial ROS production accompanied by lipid peroxidation and membrane asymmetry loss. In addition, melanin attenuated suppression of neuromuscular transmission and alterations of contractile responses provoked by hydrogen peroxide. Thus, this study shed the light on the perspectives of the application of a lichen melanin as a protective component for treatment of skeletal muscle disorders, which are accompanied with an increased ROS production.


Subject(s)
Antioxidants , Lichens , Melanins , Oxidative Stress , Reactive Oxygen Species , Animals , Melanins/pharmacology , Oxidative Stress/drug effects , Mice , Reactive Oxygen Species/metabolism , Lichens/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Diaphragm/drug effects , Male , Lipid Peroxidation/drug effects , Muscle, Skeletal/drug effects
15.
Toxicology ; 507: 153890, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029734

ABSTRACT

In the absence of appropriate medical care, exposure to organophosphorus nerve agents, such as VX, can lead to respiratory failure, and potentially death by asphyxiation. Despite the critical role of respiratory disturbances in organophosphorus-induced toxicity, the nature and underlying mechanisms of respiratory failure remain poorly understood. This study aimed to characterize respiratory alterations by determining their type and duration in mice exposed to a subcutaneous sublethal dose of VX. Respiratory ventilation in Swiss mice was monitored using dual-chamber plethysmography for up to 7 days post-exposure. Cholinesterase activity was assessed via spectrophotometry, and levels of inflammatory biomarkers were quantified using Luminex technology in blood and tissues involved in respiration (diaphragm, lung, and medulla oblongata). Additionally, a histological study was conducted on these tissues to ensure their structural integrity. Ventilatory alterations appeared 20-25 minutes after the injection of 0.9 LD50 VX and increased until the end of the recording, i.e., 40 minutes after intoxication. Concurrent with the occurrence of apnea, increased inspiratory and expiratory times resulted in a significant decrease in respiratory rate in exposed mice compared to controls. Ventilatory amplitude and, consequently, minute volume were reduced, while specific airway resistance significantly increased, indicating bronchoconstriction. These ventilatory effects persisted up to 24 or even 72 hours post-intoxication, resolving on the 7th day. They were correlated with a decrease in acetylcholinesterase activity in the diaphragm, which persisted for up to 72 hours, and with the triggering of an inflammatory reaction in the same tissue. No significant histologic lesions were observed in the examined tissues. The ventilatory alterations observed up to 72 hours post-VX exposure appear to result from a functional failure of the respiratory system rather than tissue damage. This comprehensive characterization contributes to a better understanding of the respiratory effects induced by VX exposure, which is crucial for developing specific medical countermeasures.


Subject(s)
Chemical Warfare Agents , Organothiophosphorus Compounds , Animals , Chemical Warfare Agents/toxicity , Mice , Male , Organothiophosphorus Compounds/toxicity , Acetylcholinesterase/metabolism , Lung/drug effects , Lung/pathology , Diaphragm/drug effects
16.
J Vis Exp ; (208)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949318

ABSTRACT

Following cSCI, activation of the DIAm can be impacted depending on the extent of the injury. The present manuscript describes a unilateral C2 hemisection (C2SH) model of cSCI that disrupts eupneic ipsilateral diaphragm (iDIAm) electromyographic (EMG) activity during breathing in rats. To evaluate recovery of DIAm motor control, the extent of deficit due to C2SH must first be clearly established. By verifying a complete initial loss of iDIAm EMG during breathing, subsequent recovery can be classified as either absent or present, and the extent of recovery can be estimated using the EMG amplitude. Additionally, by measuring the continued absence of iDIAm EMG activity during breathing after the acute spinal shock period following C2SH, the success of the initial C2SH may be validated. Measuring contralateral diaphragm (cDIAm) EMG activity can provide information about the compensatory effects of C2SH, which also reflects neuroplasticity. Moreover, DIAm EMG recordings from awake animals can provide vital physiological information about the motor control of the DIAm after C2SH. This article describes a method for a rigorous, reproducible, and reliable C2SH model of cSCI in rats, which is an excellent platform for studying respiratory neuroplasticity, compensatory cDIAm activity, and therapeutic strategies and pharmaceuticals.


Subject(s)
Diaphragm , Electromyography , Recovery of Function , Spinal Cord Injuries , Animals , Rats , Spinal Cord Injuries/physiopathology , Diaphragm/physiopathology , Electromyography/methods , Recovery of Function/physiology , Cervical Cord/injuries , Cervical Cord/physiopathology , Rats, Sprague-Dawley , Disease Models, Animal
17.
Sci Transl Med ; 16(758): eadg3894, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083588

ABSTRACT

Patients receiving mechanical ventilation in the intensive care unit (ICU) frequently develop contractile weakness of the diaphragm. Consequently, they may experience difficulty weaning from mechanical ventilation, which increases mortality and poses a high economic burden. Because of a lack of knowledge regarding the molecular changes in the diaphragm, no treatment is currently available to improve diaphragm contractility. We compared diaphragm biopsies from ventilated ICU patients (N = 54) to those of non-ICU patients undergoing thoracic surgery (N = 27). By integrating data from myofiber force measurements, x-ray diffraction experiments, and biochemical assays with clinical data, we found that in myofibers isolated from the diaphragm of ventilated ICU patients, myosin is trapped in an energy-sparing, super-relaxed state, which impairs the binding of myosin to actin during diaphragm contraction. Studies on quadriceps biopsies of ICU patients and on the diaphragm of previously healthy mechanically ventilated rats suggested that the super-relaxed myosins are specific to the diaphragm and not a result of critical illness. Exposing slow- and fast-twitch myofibers isolated from the diaphragm biopsies to small-molecule compounds activating troponin restored contractile force in vitro. These findings support the continued development of drugs that target sarcomere proteins to increase the calcium sensitivity of myofibers for the treatment of ICU-acquired diaphragm weakness.


Subject(s)
Diaphragm , Muscle Contraction , Myosins , Respiration, Artificial , Respiratory Muscles , Humans , Animals , Myosins/metabolism , Diaphragm/metabolism , Diaphragm/physiopathology , Respiratory Muscles/metabolism , Rats , Male , Intensive Care Units , Middle Aged , Female , Aged , Hibernation/physiology , Actins/metabolism
18.
Muscle Nerve ; 70(3): 352-359, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38935447

ABSTRACT

INTRODUCTION/AIMS: Point-of-care ultrasound of the diaphragm is highly sensitive and specific in the detection of neuromuscular diaphragmatic dysfunction. In some patients with neuromuscular diaphragmatic dysfunction, paradoxical thinning of the diaphragm during inspiration is observed on ultrasound; however, its frequency, electrodiagnostic associations, and prognostic significance remain uncertain. METHODS: Medical records of patients presenting to two electrodiagnostic laboratories (Mayo Clinic, Rochester, Minnesota and University of Alberta, Edmonton, Alberta) from January 1, 2022 to December 31, 2022, for evaluation of suspected neuromuscular respiratory failure, were reviewed. RESULTS: 214 patients were referred and 19 patients excluded due to incomplete information. Of 195 patients (384 hemidiaphragms), 104 had phrenic neuropathy, 12 had myopathy, and 79 had no evidence of neuromuscular disease affecting the diaphragm. Paradoxical thinning occurred in 31 (27%) patients with neuromuscular diaphragmatic dysfunction and was unilateral in 30, the majority (83%) having normal contralateral ultrasound. Phrenic nerve conduction studies and diaphragm electromyography results did not distinguish patients with paradoxical thinning versus without. Most patients (71%) with paradoxical thinning required non-invasive ventilation (NIV), including 16 with unilateral paradoxical thinning. Paradoxical thinning and BMI ≥30 kg/m2 were risk factors for requiring NIV in multivariable logistic regression analysis, with odds ratios of 2.887 (95% CI:1.166, 7.151) and 2.561 (95% CI: 1.186, 5.532), respectively. DISCUSSION: Paradoxical thinning of the diaphragm occurs in patients with prominent neuromuscular diaphragmatic dysfunction, most commonly from phrenic neuropathy, and is a significant risk factor for requiring NIV. Unilateral paradoxical thinning is sufficient for needing NIV. BMI ≥30 kg/m2 additionally increases risk of requiring NIV in patients with neuromuscular diaphragmatic dysfunction.


Subject(s)
Diaphragm , Noninvasive Ventilation , Ultrasonography , Humans , Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Male , Female , Middle Aged , Aged , Risk Factors , Noninvasive Ventilation/methods , Adult , Neuromuscular Diseases/diagnostic imaging , Neuromuscular Diseases/physiopathology , Retrospective Studies , Phrenic Nerve/diagnostic imaging , Electromyography , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Aged, 80 and over
19.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928077

ABSTRACT

Mechanical ventilation (MV), used in patients with acute lung injury (ALI), induces diaphragmatic myofiber atrophy and contractile inactivity, termed ventilator-induced diaphragm dysfunction. Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating fibrogenesis during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, myofiber fibrosis, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase diaphragm muscle fibrosis through the PI3K-γ pathway. Five days after receiving a single bolus of 0.075 units of bleomycin intratracheally, C57BL/6 mice were exposed to 6 or 10 mL/kg of MV for 8 h after receiving 5 mg/kg of AS605240 intraperitoneally. In wild-type mice, bleomycin exposure followed by MV 10 mL/kg prompted significant increases in disruptions of diaphragmatic myofibrillar organization, transforming growth factor-ß1, oxidative loads, Masson's trichrome staining, extracellular collagen levels, positive staining of α-smooth muscle actin, PI3K-γ expression, and myonuclear apoptosis (p < 0.05). Decreased diaphragm contractility and peroxisome proliferator-activated receptor-γ coactivator-1α levels were also observed (p < 0.05). MV-augmented bleomycin-induced diaphragm fibrosis and myonuclear apoptosis were attenuated in PI3K-γ-deficient mice and through AS605240-induced inhibition of PI3K-γ activity (p < 0.05). MV-augmented diaphragm fibrosis after bleomycin-induced ALI is partially mediated by PI3K-γ. Therapy targeting PI3K-γ may ameliorate MV-associated diaphragm fibrosis.


Subject(s)
Acute Lung Injury , Bleomycin , Diaphragm , Disease Models, Animal , Fibrosis , Mice, Inbred C57BL , Animals , Bleomycin/adverse effects , Diaphragm/metabolism , Diaphragm/pathology , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Male , Respiration, Artificial/adverse effects , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Class Ib Phosphatidylinositol 3-Kinase/genetics , Transforming Growth Factor beta1/metabolism , Apoptosis/drug effects , Quinoxalines , Thiazolidinediones
20.
Thorax ; 79(8): 711-717, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38914469

ABSTRACT

RATIONALE: Endoscopic lung volume reduction improves lung function, quality of life and exercise capacity in severe emphysema patients. However, its effect on the diaphragm function is not well understood. We hypothesised that endoscopic lung volume reduction increases its strength by modifying its shape. OBJECTIVES: To investigate changes in both diaphragm shape and strength induced by the insertion of endobronchial valves. METHODS: In 19 patients, both the diaphragm shape and strength were investigated respectively by 3D Slicer software applied on CT scans acquired at functional residual capacity and by transdiaphragmatic pressure measurements by bilateral magnetic stimulation of the phrenic nerves before and 3 months after unilateral valves insertion. MEASUREMENTS AND MAIN RESULTS: After lung volume reduction (median (IQR), 434 mL (-597 to -156], p<0.0001), diaphragm strength increased (transdiaphragmatic pressure: 3 cmH2O (2.3 to 4.2), p<0.0001). On the treated side, this increase was associated with an increase in the coronal (16 mm (13 to 24), p<0.0001) and sagittal (26 mm (21 to 30), p<0.0001) lengths as well as in the area of the zone of apposition (62 cm2 (3 to 100), p<0.0001) with a decrease in the coronal (8 mm (-12 to -4), p<0.0001) and sagittal (9 mm (-18 to -2), p=0.0029) radii of curvature. CONCLUSIONS: Endoscopic lung volume reduction modifies the diaphragm shape by increasing its length and its zone of apposition and by decreasing its radius of curvature on the treated side, resulting in an increase in its strength. TRIAL REGISTRATION NUMBER: NCT05799352.


Subject(s)
Diaphragm , Pneumonectomy , Pulmonary Emphysema , Tomography, X-Ray Computed , Humans , Diaphragm/diagnostic imaging , Male , Pneumonectomy/methods , Female , Middle Aged , Aged , Pulmonary Emphysema/surgery , Pulmonary Emphysema/physiopathology , Pulmonary Emphysema/diagnostic imaging , Bronchoscopy/methods , Muscle Strength/physiology , Functional Residual Capacity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL