Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 75(12): 3282-3292, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31006949

ABSTRACT

BACKGROUND: Great efforts have been made to identify grasses that are resistant to spittlebugs (Hemiptera: Cercopidae). However, the time required to develop and launch new cultivars is relatively long. The employment of resistance inducers is a current strategy that may be useful for the control of insect pests. This analysis evaluates the feasibility of using the chemical inducers silicon and nitric oxide to increase spittlebug resistance based on changes in forage grass vegetative characteristics and the biological traits of Mahanarva spectabilis (Distant, 1909). RESULTS: Mahanarva spectabilis nymphs and adults can cause significant damage to forage grasses. Furthermore, silicon and nitric oxide inducers were not sufficient to lessen this damage by positively influencing the growth and development of forage grasses. These inducers did not negatively alter the biological parameters of M. spectabilis or diminish its population. However, phenolic compound concentrations increased when forage grasses were treated with silicon or attacked by adult insects, but this parameter was not useful to predict spittlebug resistance. This fact suggests that the physiological and biochemical changes caused by silicon should be further studied. CONCLUSION: The current analysis demonstrated that application of the chemical inducers silicon and nitric oxide is currently not a viable strategy for the effective and economic management of M. spectabilis on Brachiaria ruziziensis, Pennisetum purpureum and Digitaria sp. © 2019 Society of Chemical Industry.


Subject(s)
Antibiosis , Brachiaria/physiology , Digitaria/physiology , Hemiptera/physiology , Nitric Oxide/administration & dosage , Pennisetum/physiology , Silicon/administration & dosage , Animals , Brachiaria/drug effects , Digitaria/drug effects , Female , Hemiptera/growth & development , Nymph/growth & development , Nymph/physiology , Pennisetum/drug effects
2.
Pestic Biochem Physiol ; 154: 78-87, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30765060

ABSTRACT

A series of novel aryloxyphenoxypropionate (APP) herbicides containing benzofuran moiety were designed, synthesized and tested for herbicidal activity. The bioassay results indicated that most of target compounds possessed moderate to good herbicidal activity against monocotyledonous weeds. Compounds 5a-5d and 6a-6d showed 100% control efficiency against crabgrass (Digitaria sanguinalis) and barnyard grass (Echinochloa crus-galli) in both pre-emergence and post-emergence treatments at the dosage of 1500 g a.i. ha-1. Compound 6c was the most promising, with herbicidal activity better than clodinafop-propargyl. Molecular docking for compound 6c and its hydrolysis acid 1c were performed. ACCase activities of some compounds were also tested. Theoretical calculations for corresponding hydrolysis products 1a-1ewere carried out. Based on the results of molecular docking, enzyme activity test and theoretical calculation, the potential mechanism for herbicidal activity of these compounds was evaluated.


Subject(s)
Benzofurans/pharmacology , Herbicides/pharmacology , Propionates/pharmacology , Acetyl-CoA Carboxylase/metabolism , Benzofurans/chemistry , Digitaria/drug effects , Digitaria/physiology , Drug Design , Echinochloa/drug effects , Echinochloa/physiology , Herbicides/chemistry , Models, Theoretical , Molecular Docking Simulation , Plant Proteins/metabolism , Plant Weeds/drug effects , Propionates/chemistry
3.
Pest Manag Sci ; 75(8): 2242-2250, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30701648

ABSTRACT

BACKGROUND: Several factors may degrade pastures, in particular, inadequate nutrient application and spittlebug attacks. Mahanarva spectabilis (Distant, 1909) (Hemiptera: Cercopidae), one of the species that occur in Brazil, is a limiting pest in forage production. This study analyzes the influence of fertilization with the macronutrients nitrogen, phosphorus and potassium (NPK) on the survival of M. spectabilis nymphs, and the effects of damage by nymphs and adults on the production, quality and regrowth capacity of the forages Brachiaria ruziziensis, Pennisetum purpureum and Digitaria sp. RESULTS: Fertilization of the forages differentially affected damage due to spittlebug herbivory. Attacks by nymphs and adults decreased chlorophyll content, plant regrowth and forage quality, and increased injury, regardless of fertilization. The availability of nutrients in the soil not only decreased fiber content, but also increased crude protein, chlorophyll content and regrowth, even when pest infested. Soil fertilization increased the capacity of forage plants to lessen, albeit not eliminate, the effects of injury by M. spectabilis. CONCLUSION: Forages in fertilized soil are more tolerant to attacks by M. spectabilis nymphs and adults. © 2019 Society of Chemical Industry.


Subject(s)
Brachiaria/physiology , Digitaria/physiology , Fertilizers/analysis , Hemiptera/physiology , Pennisetum/physiology , Animals , Hemiptera/growth & development , Herbivory , Nymph/growth & development , Nymph/physiology
4.
Planta ; 245(3): 641-657, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27990574

ABSTRACT

MAIN CONCLUSION: Three species chosen as representatives of NADP-ME C4 subtype exhibit different sensitivity toward photoinhibition, and great photochemical differences were found to exist between the species. These characteristics might be due to the imbalance in the excitation energy between the photosystems present in M and BS cells, and also due to that between species caused by the penetration of light inside the leaves. Such regulation in the distribution of light intensity between M and BS cells shows that co-operation between both the metabolic systems determines effective photosynthesis and reduces the harmful effects of high light on the degradation of PSII through the production of reactive oxygen species (ROS). We have investigated several physiological parameters of NADP-ME-type C4 species (e.g., Zea mays, Echinochloa crus-galli, and Digitaria sanguinalis) grown under moderate light intensity (200 µmol photons m-2 s-1) and, subsequently, exposed to excess light intensity (HL, 1600 µmol photons m-2 s-1). Our main interest was to understand why these species, grown under identical conditions, differ in their responses toward high light, and what is the physiological significance of these differences. Among the investigated species, Echinochloa crus-galli is best adapted to HL treatment. High resistance of the photosynthetic apparatus of E. crus-galli to HL was accompanied by an elevated level of phosphorylation of PSII proteins, and higher values of photochemical quenching, ATP/ADP ratio, activity of PSI and PSII complexes, as well as integrity of the thylakoid membranes. It was also shown that the non-radiative dissipation of energy in the studied plants was not dependent on carotenoid contents and, thus, other photoprotective mechanisms might have been engaged under HL stress conditions. The activity of the enzymes superoxide dismutase and ascorbate peroxidase as well as the content of malondialdehyde and H2O2 suggests that antioxidant defense is not responsible for the differences observed in the tolerance of NADP-ME species toward HL stress. We concluded that the chloroplasts of the examined NADP-ME species showed different sensitivity to short-term high light irradiance, suggesting a role of other factors excluding light factors, thus influencing the response of thylakoid proteins. We also observed that HL affects the mesophyll chloroplasts first hand and, subsequently, the bundle sheath chloroplasts.


Subject(s)
Digitaria/physiology , Echinochloa/physiology , Light , Malate Dehydrogenase/metabolism , Photosynthesis/radiation effects , Zea mays/physiology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Biological Transport/radiation effects , Carotenoids/metabolism , Cell Respiration/radiation effects , Chlorophyll/metabolism , Chlorophyll A , Digitaria/enzymology , Digitaria/radiation effects , Echinochloa/enzymology , Echinochloa/radiation effects , Electron Transport/radiation effects , Electrophoresis, Polyacrylamide Gel , Fluorescence , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Mesophyll Cells/metabolism , Mesophyll Cells/radiation effects , Metabolome , Phosphorylation/radiation effects , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/radiation effects , Thylakoids/metabolism , Thylakoids/radiation effects , Zea mays/enzymology , Zea mays/radiation effects
5.
Mycorrhiza ; 26(2): 141-52, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26184604

ABSTRACT

This study evaluates antioxidant responses and jasmonate regulation in Digitaria eriantha cv. Sudafricana plants inoculated (AM) and non-inoculated (non-AM) with Rhizophagus irregularis and subjected to drought, cold, or salinity. Stomatal conductance, photosynthetic efficiency, biomass production, hydrogen peroxide accumulation, lipid peroxidation, antioxidants enzymes activities, and jasmonate levels were determined. Stomatal conductance and photosynthetic efficiency decreased in AM and non-AM plants under all stress conditions. However, AM plants subjected to drought, salinity, or non-stress conditions showed significantly higher stomatal conductance values. AM plants subjected to drought or non-stress conditions increased their shoot/root biomass ratios, whereas salinity and cold caused a decrease in these ratios. Hydrogen peroxide accumulation, which was high in non-AM plant roots under all treatments, increased significantly in non-AM plant shoots under cold stress and in AM plants under non-stress and drought conditions. Lipid peroxidation increased in the roots of all plants under drought conditions. In shoots, although lipid peroxidation decreased in AM plants under non-stress and cold conditions, it increased under drought and salinity. AM plants consistently showed high catalase (CAT) and ascorbate peroxidase (APX) activity under all treatments. By contrast, the glutathione reductase (GR) and superoxide dismutase (SOD) activity of AM roots was lower than that of non-AM plants and increased in shoots. The endogenous levels of cis-12-oxophytodienoc acid (OPDA), jasmonic acid (JA), and 12-OH-JA showed a significant increase in AM plants as compared to non-AM plants. 11-OH-JA content only increased in AM plants subjected to drought. Results show that D. eriantha is sensitive to drought, salinity, and cold stresses and that inoculation with AM fungi regulates its physiology and performance under such conditions, with antioxidants and jasmonates being involved in this process.


Subject(s)
Antioxidants/metabolism , Cyclopentanes/metabolism , Digitaria/microbiology , Glomeromycota/physiology , Mycorrhizae/physiology , Oxylipins/metabolism , Stress, Physiological , Symbiosis , Cold Temperature , Digitaria/physiology , Droughts , Salinity
6.
J Chem Ecol ; 39(2): 262-70, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23314892

ABSTRACT

Leptospermone is a natural ß-triketone that specifically inhibits the enzyme p-hydrophyphenylpyruvate dioxygenase, the same molecular target site as that of the commercial herbicide mesotrione. The ß-triketone-rich essential oil of Leptospermum scoparium has both preemergence and postemergence herbicidal activity, resulting in bleaching of treated plants and dramatic growth reduction. Radiolabeled leptospermone was synthesized to investigate the in planta mechanism of action of this natural herbicide. Approximately 50 % of the absorbed leptospermone was translocated to the foliage suggesting rapid acropetal movement of the molecule. On the other hand, very little leptospermone was translocated away from the point of application on the foliage, indicating poor phloem mobility. These observations are consistent with the physico-chemical properties of leptospermone, such as its experimentally measured logP and pK a values, and molecular mass, number of hydrogen donors and acceptors, and number of rotatable bonds. Consequently, leptospermone is taken up readily by roots and translocated to reach its molecular target site. This provides additional evidence that the anecdotal observation of allelopathic suppression of plant growth under ß-triketone-producing species may be due to the release of these phytotoxins in soils.


Subject(s)
Digitaria/physiology , Herbicides/chemistry , Herbicides/metabolism , Leptospermum/chemistry , Oils, Volatile/chemistry , Oils, Volatile/metabolism , Biological Transport , Phloroglucinol/analogs & derivatives , Plant Leaves/physiology , Plant Roots/physiology
7.
J Environ Sci (China) ; 24(3): 396-401, 2012.
Article in English | MEDLINE | ID: mdl-22655351

ABSTRACT

Whether plant coexistence can reduce the impacts of lead (Pb) on crops in agroecosystems has not been well understood. We conducted a factorial experiment to investigate the effects of weeds coexisting with maize (Zea mays L.) on Pb accumulation in maize and soil microbes at two Pb levels (ambient and 300 mg/kg). Elevated Pb tended to increase the Pb concentration in maize and decreased soil microbial activity (indicated by the average well color development, AWCD), functional group diversity, as well as arbuscular mycorrhizal (AM) colonization and vesicle number of maize. Compared to the monoculture, weeds coexisting with maize reduced the Pb concentrations in the root, leaf, sheath and stem of maize at both seedling and mature stages. In maize-weed mixtures, soil microbial activity and functional group diversity tended to increase for both Pb treatments relative to the monoculture. Furthermore, principal component analysis revealed that the soil microbial community structure changed with the introduction of weeds. The highest Pb accumulation in weeds occurred for the elevated Pb treatment in a three species mixture. The results suggest that multiple plant species coexistence could reduce lead accumulation in crop plants and alleviate the negative impacts on soil microbes in polluted land, thereby highlighting the significance of plant diversity in agroecosystems.


Subject(s)
Agriculture/methods , Digitaria/physiology , Fabaceae/physiology , Lead/toxicity , Zea mays/drug effects , Ecosystem , Environmental Monitoring , Mycorrhizae , Plant Weeds , Soil Pollutants/toxicity , Zea mays/physiology
8.
Ann Bot ; 110(2): 271-80, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22408186

ABSTRACT

BACKGROUND AND AIMS: Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. METHODS: Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. KEY RESULTS: In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. CONCLUSIONS: The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.


Subject(s)
Cynodon/physiology , Digitaria/physiology , Pisum sativum/physiology , Plant Roots/physiology , Sodium Chloride/metabolism , Adaptation, Physiological , Droughts , Osmotic Pressure , Plant Stomata/physiology , Signal Transduction , Stress, Physiological , Water/metabolism
9.
J Agric Food Chem ; 60(2): 615-22, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22175446

ABSTRACT

Digitaria insularis biotypes resistant to glyphosate have been detected in Brazil. Studies were carried out in controlled conditions to determine the role of absorption, translocation, metabolism, and gene mutation as mechanisms of glyphosate resistance in D. insularis. The susceptible biotype absorbed at least 12% more (14)C-glyphosate up to 48 h after treatment (HAT) than resistant biotypes. High differential (14)C-glyphosate translocation was observed at 12 HAT, so that >70% of the absorbed herbicide remained in the treated leaf in resistant biotypes, whereas 42% remained in the susceptible biotype at 96 HAT. Glyphosate was degraded to aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine by >90% in resistant biotypes, whereas a small amount of herbicide (up to 11%) was degraded by the susceptible biotype up to 168 HAT. Two amino acid changes were found at positions 182 and 310 in EPSPS, consisting of a proline to threonine and a tyrosine to cysteine substitution, respectively, in resistant biotypes. Therefore, absorption, translocation, metabolism, and gene mutation play an important role in the D. insularis glyphosate resistance.


Subject(s)
Digitaria/drug effects , Digitaria/physiology , Glycine/analogs & derivatives , Herbicide Resistance , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Brazil , Glycine/pharmacokinetics , Glycine/pharmacology , Glyoxylates/metabolism , Herbicides/pharmacology , Isoxazoles , Mutation , Organophosphonates/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Sarcosine/metabolism , Shikimic Acid/analysis , Shikimic Acid/metabolism , Tetrazoles , Glyphosate
10.
J Integr Plant Biol ; 50(5): 531-5, 2008 May.
Article in English | MEDLINE | ID: mdl-18713420

ABSTRACT

Knowledge of soil seed banks is essential to understand the dynamics of plant populations and communities and would greatly benefit from the integration of existing knowledge on ecological correlations of seed size and shape. The present study aims to establish a feasible and meaningful method to describe size-number distributions of seeds in multi-species situations. For that purpose, size-number distributions of seeds with known length, width and thickness were determined by sequential sieving. The most appropriate combination of sieves and seeds dimensions was established, and the adequacy of the power function and the Weibull model to describe size-number distributions of spherical, non-spherical, and all seeds was investigated. We found that the geometric mean of seed length, width and thickness was the most adequate size estimator, providing shape-independent measures of seeds volume directly related to sieves mesh side, and that both the power function and the Weibull model provide high quality descriptions of size-number distributions of spherical, non-spherical, and all seeds. We also found that, in spite of its slightly lower accuracy, the power function is, at this stage, a more trustworthy model to characterize size-number distributions of seeds in soil banks because in some Weibull equations the estimates of the scale parameter were not acceptable.


Subject(s)
Biological Specimen Banks , Models, Biological , Seeds/physiology , Soil , Chenopodium album/physiology , Digitaria/physiology
11.
Int J Phytoremediation ; 5(4): 381-97, 2003.
Article in English | MEDLINE | ID: mdl-14750564

ABSTRACT

Phytoremediation can be a viable alternative to traditional, more costly remediation techniques. Three greenhouse studies were conducted to evaluate plant growth with different soil amendments in crude oil-contaminated soil. Growth of alfalfa (Medicago sativa L., cultivar: Riley), bermudagrass (Cynodon dactylon L., cultivar: Common), crabgrass (Digitaria sanguinalis, cultivar: Large), fescue (Lolium arundinaceum Schreb., cultivar: Kentucky 31), and ryegrass (Lolium multiflorum Lam., cultivar: Marshall) was determined in crude oil-contaminated soil amended with either inorganic fertilizer, hardwood sawdust, papermill sludge, broiler litter or unamended (control). In the first study, the addition of broiler litter reduced seed germination for ryegrass, fescue, and alfalfa. In the second study, bermudagrass grown in broiler litter-amended soil produced the most shoot biomass, bermudagrass produced the most root biomass, and crabgrass and bermudagrass produced the most root length. In the third study, soil amended with broiler litter resulted in the greatest reduction in gravimetric total petroleum hydrocarbon (TPH) levels across the six plant treatments following the 14-wk study. Ryegrass produced more root biomass than any other species when grown in inorganic fertilizer- or hardwood sawdust + inorganic fertilizer-amended soil. The studies demonstrated that soil amendments and plant species selection were important considerations for phytoremediation of crude oil-contaminated soil.


Subject(s)
Petroleum , Plants/drug effects , Sewage , Soil Pollutants , Cynodon/drug effects , Cynodon/physiology , Digitaria/drug effects , Digitaria/physiology , Humans , Lolium/drug effects , Lolium/physiology , Medicago/drug effects , Medicago/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...