Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Pharmacol ; 106(5): 225-239, 2024 Oct 17.
Article in English | MEDLINE | ID: mdl-39187390

ABSTRACT

The antitumor effect of cardiotonic steroids (CTS) has stimulated the search for new methods to evaluate both kinetic and thermodynamic aspects of their binding to Na+/K+-ATPase (IUBMB Enzyme Nomenclature). We propose a real-time assay based on a chromogenic substrate for phosphatase activity (pNPPase activity), using only two concentrations with an inhibitory progression curve, to obtain the association rate (kon ), dissociation rate (koff ), and equilibrium (Ki ) constants of CTS for the structure-kinetics relationship in drug screening. We show that changing conditions (from ATPase to pNPPase activity) resulted in an increase of Ki of the cardenolides digitoxigenin, essentially due to a reduction of kon In contrast, the Ki of the structurally related bufadienolide bufalin increased much less due to the reduction of its koff partially compensating the decrease of its kon When evaluating the kinetics of 15 natural and semisynthetic CTS, we observed that both kon and koff correlated with Ki (Spearman test), suggesting that differences in potency depend on variations of both kon and koff A rhamnose in C3 of the steroidal nucleus enhanced the inhibitory potency by a reduction of koff rather than an increase of kon Raising the temperature did not alter the koff of digitoxin, generating a ΔH‡ (koff ) of -10.4 ± 4.3 kJ/mol, suggesting a complex dissociation mechanism. Based on a simple and inexpensive methodology, we determined the values of kon , koff , and Ki of the CTS and provided original kinetics and thermodynamics differences between CTS that could help the design of new compounds. SIGNIFICANCE STATEMENT: This study describes a fast, simple, and cost-effective method for the measurement of phosphatase pNPPase activity enabling structure-kinetics relationships of Na+/K+-ATPase inhibitors, which are important compounds due to their antitumor effect and endogenous role. Using 15 compounds, some of them original, this study was able to delineate the kinetics and/or thermodynamics differences due to the type of sugar and lactone ring present in the steroid structure.


Subject(s)
Bufanolides , Cardiac Glycosides , Sodium-Potassium-Exchanging ATPase , Thermodynamics , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Cardiac Glycosides/pharmacology , Cardiac Glycosides/chemistry , Cardiac Glycosides/metabolism , Kinetics , Bufanolides/pharmacology , Bufanolides/chemistry , Bufanolides/metabolism , Digitoxigenin/analogs & derivatives , Digitoxigenin/pharmacology , Digitoxigenin/metabolism , Digitoxigenin/chemistry , Structure-Activity Relationship , Animals
2.
J Cell Biochem ; 122(12): 1903-1914, 2021 12.
Article in English | MEDLINE | ID: mdl-34553411

ABSTRACT

Cardiac glycosides, such as digoxin and digitoxin, are compounds that interact with Na+ /K+ -ATPase to induce anti-neoplastic effects; however, these cardiac glycosides have narrow therapeutic index. Thus, semi-synthetic analogs of digitoxin with modifications in the sugar moiety has been shown to be an interesting approach to obtain more selective and more effective analogs than the parent natural product. Therefore, the aim of this study was to assess the cytotoxic potential of novel digitoxigenin derivatives, digitoxigenin-α-L-rhamno-pyranoside (1) and digitoxigenin-α-L-amiceto-pyranoside (2), in cervical carcinoma cells (HeLa) and human diploid lung fibroblasts (Wi-26-VA4). In addition, we studied the anticancer mechanisms of action of these compounds by comparing its cytotoxic effects with the potential to modulate the activity of three P-type ATPases; Na+ /K+ -ATPase, sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA), and plasma membrane Ca2+ -ATPase (PMCA). Briefly, the results showed that compounds 1 and 2 were more cytotoxic and selectivity for HeLa tumor cells than the nontumor cells Wi-26-VA4. While the anticancer cytotoxicity in HeLa cells involves the modulation of Na+ /K+ -ATPase, PMCA and SERCA, the modulation of these P-type ATPases was completely absent in Wi-26-VA4 cells, which suggest the importance of their role in the cytotoxic effect of compounds 1 and 2 in HeLa cells. Furthermore, the compound 2 inhibited directly erythrocyte ghosts PMCA and both compounds were more cytotoxic than digitoxin in HeLa cells. These results provide a better understanding of the mode of action of the synthetic cardiac glycosides and highlights 1 and 2 as potential anticancer agents.


Subject(s)
Cell Membrane/enzymology , Digitoxigenin , Plasma Membrane Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Cell Membrane/genetics , Digitoxigenin/analogs & derivatives , Digitoxigenin/pharmacology , HeLa Cells , Humans , Plasma Membrane Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sodium-Potassium-Exchanging ATPase/genetics
3.
Eur J Med Chem ; 167: 546-561, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30798081

ABSTRACT

In recent years, new therapeutic possibilities were proposed for cardiac glycosides traditionally used to treat heart diseases, such as anticancer and antiviral activities. In this sense, this work aimed to synthesize the readily accessible 3ß-azido-3-deoxydigitoxigenin (5) from digitoxigenin (1). Two new series of compounds were obtained from derivative (5): (i) O-glycosyl trizols through click chemistry with propargyl glycosides; and (ii) compounds substituted in the alpha carbonyl position with different residues linked via an amino-group. All obtained derivatives have their chemical structures confirmed, and their anti-herpes (against HSV-types 1 and 2 replication) and cytotoxic (against PC3, A549, HCT-8 and LNCaP cell lines) activities evaluated. Compounds 10 and 11 exhibited the most promising results against HSV-1 (KOS and 29-R strains) and HSV-2 (333 strain) replication with SI values > 1000. Both compounds were also the most cytotoxic for the human cancer cell lines tested with IC50 values similar to those of paclitaxel. They also presented reduced toxicity toward non-cancerous cell lines (MRC-5 and HGF cells). Promising compounds were tested in regard to their ability to inhibit Na+/K+-ATPase. The inhibition rate correlates suitably with the bioactivity demonstrated by those both compounds against the different human cancer cells tested as well as against HSV replication. Moreover, the results showed that specific chemical features of compound 10 and 11 influenced the bioactivities tested. In summary, it was possible to obtain novel digitoxigenin-derivatives with remarkable cytotoxic and anti-herpes activities as well as low toxicity and high selectivity. In this way, they could be considered potential molecules for the development of new drugs.


Subject(s)
Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Digitoxigenin/pharmacology , Herpesviridae Infections/drug therapy , Cell Death/drug effects , Cell Line , Cell Line, Tumor , Click Chemistry , Digitoxigenin/analogs & derivatives , Digitoxigenin/chemical synthesis , Drug Screening Assays, Antitumor , Glycosides/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Humans
4.
Biomed Pharmacother ; 107: 464-474, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30107342

ABSTRACT

Cardiac glycosides (CGs) are natural compounds used to treat congestive heart failure. They have garnered attention as a potential cancer treatment option, especially because they bind to Na+/K+-ATPase as a target and activate intracellular signaling pathways leading to a variety of cellular responses. In this study we evaluated AMANTADIG, a semisynthetic cardenolide derivative, for its cytotoxic activity in two human androgen-insensitive prostate carcinoma cell lines, and the potential synergistic effects with docetaxel. AMANTADIG induced cytotoxic effects in both cell lines, and a combination with docetaxel showed a moderate and strong synergism in DU145 and PC-3 cells, respectively, at concentrations considerably lower than their IC50 values. Cell cycle analyses showed that AMANTADIG and its synergistic combination induced G2/M arrest of DU145 and PC-3 cells by modulating Cyclin B1, CDK1, p21 and, mainly, survivin expression, a promising target in cancer therapy. Furthermore, AMANTADIG presented reduced toxicity toward non-cancerous cell type (PBMC), and computational docking studies disclosed high-affinity binding to the Na+/K+-ATPase α subunit, a result that was experimentally confirmed by Na+/K+-ATPase inhibition assays. Hence, AMANTADIG inhibited Na+/K+-ATPase activity in PC-3 cells, as well as in purified pig kidney at nanomolar range. Altogether, these data highlight the potent effects of AMANTADIG in combination with docetaxel and offer important insights for the development of more effective and selective therapies against prostate cancer.


Subject(s)
Apoptosis/drug effects , Digitoxigenin/analogs & derivatives , Docetaxel/pharmacology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Digitoxigenin/chemistry , Digitoxigenin/pharmacology , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Molecular Docking Simulation , Necrosis , Prostatic Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Survivin/genetics , Survivin/metabolism
5.
Biomed Pharmacother ; 97: 684-696, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29101813

ABSTRACT

Cardiac glycosides (CGs) are natural compounds widely used to treat several cardiac conditions and more recently have been recognized as potential antitumor agents. They are known as Na,K-ATPases ligands, which is a promising drug target in cancer. In this study, the short and long-lasting cytotoxic effects of the natural cardenolide digitoxigenin monodigitoxoside (DGX) were evaluated against two non-small cell lung cancer lines (A549 and H460 cells). It was found that DGX induced cytotoxic effects in both cells and the apoptotic effects were more pronounced on H460 cells. In long-term analysis, using the clonogenic and the cumulative population doubling (CPD) assays, DGX showed a reduction of cell survival, after 15days without re-treatment. To better understand DGX effects in A549 cells, several assays were conducted. In cell cycle analysis, DGX caused an arrest in S and G2/M phases. This compound also increased the number of cells in subG1 phase in a concentration- and time-dependent manner. The presence of ß-galactosidase positive cells, large nucleus and flattened cells indicated senescence. Additionally, DGX inhibited Na,K-ATPase activity in A549 cells, as well as in purified pig kidney and in human red blood cell membrane preparations, at nanomolar range. Moreover, results of molecular docking showed that DGX binds with high efficiency (-11.4Kcal/mol) to the Na,K-ATPase (PDB:4HYT). Taken together, our results highlight the potent effects of DGX both in A549 and H460 cells, and disclose its link with Na,K-ATPase inhibition.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Digitoxigenin/analogs & derivatives , Lung Neoplasms/drug therapy , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Digitoxigenin/pharmacology , Humans , Lung Neoplasms/pathology , Molecular Docking Simulation , Swine , Time Factors
6.
Genet Mol Res ; 15(2)2016 May 09.
Article in English | MEDLINE | ID: mdl-27173346

ABSTRACT

The bioactive compounds proceraside A, frugoside and calotropin, which were extracted from the root bark of Calotropis procera (Aiton) W.T. Aiton (family Asclepiadaceae), were recently reported to inhibit the growth of inhibition against various human cancer cell lines in vitro. However, their modes of action have not been clearly defined. Therefore, we attempted an in silico approach to gain insights into their binding modes against the following selected molecular targets: CDK-2, CDK-6, topoisomerase I, BCL-2, VEGFR-2, telomere: G-quadruplex, and topoisomerase II. These targets were selected based on their key roles in cancer progression via the regulation of the cell cycle and DNA replication. Molecular-docking analyses revealed that proceraside A was the best docked ligand against all the targets, with the exception of telomere-G: quadruplex. Furthermore, it displayed the lowest binding energies and inhibition constants, and critical hydrogen bonds and hydrophobic interactions with the targets were also revealed. The present study may aid in the identification of possible targets for proceraside A, and might provide a plausible explanation for its proven anti-tumor activities. Moreover, the result of this study may further guide structure-activity relationship studies used to generate more potent target-specific inhibitors.


Subject(s)
Cardiac Glycosides/chemistry , Cardiac Glycosides/pharmacology , DNA Replication/physiology , Macromolecular Substances/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cardenolides/chemistry , Cardenolides/pharmacology , Cell Cycle/physiology , Cell Line, Tumor , Digitoxigenin/analogs & derivatives , Digitoxigenin/chemistry , Digitoxigenin/pharmacology , Humans , Ligands , Macromolecular Substances/metabolism , Molecular Docking Simulation , Structure-Activity Relationship
7.
Nat Prod Res ; 30(11): 1327-31, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26252521

ABSTRACT

Cardiac glycosides consist of a large family of naturally derived compounds that are clinically used to treat congestive heart failure, and also present anticancer properties. In this study, the cytotoxic effects of two cardenolides, digitoxigenin monodigitoxoside (DGX) and convallatoxin (CON) were screened in four human tumour cell lines. Both compounds showed anti-proliferative effects in all tumour cells, at nanomolar concentrations. Since the human lung cancer cell line A549 was the most sensitive, we investigated the anti-proliferative, anti-migratory and anti-invasive effects of these cardenolides. DGX and CON reduced A549 cell migration, being able to reduce more than 90% of cell invasion. Their effects on the expression of key regulators of metastatic mechanism showed decreased levels of MMP-2, MMP-9 and p-FAK. Both compounds also presented low toxicity for healthy cells. Finally, this work provides the first insights into the effects of these cardenolides on key steps of lung cancer metastasis.


Subject(s)
Cardenolides/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Digitoxigenin/analogs & derivatives , Lung Neoplasms/pathology , A549 Cells , Cardiac Glycosides/pharmacology , Cell Line, Tumor , Digitoxigenin/pharmacology , Humans , Neoplasm Metastasis/drug therapy , Strophanthins/pharmacology
8.
Biochem Pharmacol ; 70(6): 851-7, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16081050

ABSTRACT

Compound 14beta,17beta-cycloketoester-3beta-OH androstane (INCICH-D7) is a semisynthetic product of a structural modification of the digitoxigenin molecule. INCICH-D7 has a heterocyclic ketoester type fusion between positions C14 and C17 of the steroid nucleus, which confers this molecule stronger electronegativity than that of digitoxigenin. INCICH-D7 retained positive inotropic effect, with a greater safety margin, when compared to digitoxigenin and ouabain. In this study we have examinated the INCICH-D7 effect on Na+, K+-dependent adenosinetriphosphatase (Na+, K+-ATPase) and compared these results with the ones observed with digitoxigenin and ouabain. The inhibitory effect of INCICH-D7 on Na+, K+-ATPase was five times lower (IC50=4 microM) than that of ouabain (IC50=0.8 microM) and 70 times lower than that of digitoxigenin (IC50=0.06 microM). The inhibitory effect of INCICH-D7 and ouabain on the enzyme was irreversible while digitoxigenin's one was reversible in up to an 80%. Our results indicate that inclusion of the heterocycle between positions C14 and C17 in the digitoxigenin molecule lowers significantly the inhibitory effect on Na+, K+-ATPase and renders the interaction between INCICH-D7 and enzyme irreversible under the studied reaction conditions.


Subject(s)
Digitoxigenin/analogs & derivatives , Enzyme Inhibitors/pharmacology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Animals , Digitoxigenin/pharmacology , Dogs , Hydrolysis , Kidney Medulla/enzymology , Ouabain/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL